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Abstract
This paper describes methods that were sub-
mitted as part of the *SEM shared task on
Semantic Textual Similarity. Multiple kernels
provide different views of syntactic structure,
from both tree and dependency parses. The
kernels are then combined with simple lex-
ical features using Gaussian process regres-
sion, which is trained on different subsets of
training data for each run. We found that the
simplest combination has the highest consis-
tency across the different data sets, while in-
troduction of more training data and models
requires training and test data with matching
qualities.

1 Introduction

The Semantic Textual Similarity (STS) shared task
consists of several data sets of paired passages of
text. The aim is to predict the similarity that hu-
man annotators have assigned to these aligned pairs.
Text length and grammatical quality vary between
the data sets, so our submissions to the task aimed to
investigate whether models that incorporate syntac-
tic structure in similarity calculation can be consis-
tently applied to diverse and noisy data.

We model the problem as a combination of ker-
nels (Shawe-Taylor and Cristianini, 2004), each of
which calculates similarity based on a different view
of the text. State-of-the-art results on text classifi-
cation have been achieved with kernel-based classi-
fication algorithms, such as the support vector ma-
chine (SVM) (Joachims, 1998), and the methods
here can be adapted for use in multiple kernel classi-
fication, as in Polajnar et al. (2011). The kernels are

combined using Gaussian process regression (GPR)
(Rasmussen and Williams, 2006). It is important
to note that the combination strategy described here
is only a different way of viewing the regression-
combined mixture of similarity measures approach
that is already popular in STS systems, including
several that participated in previous SemEval tasks
(Croce et al., 2012; Bär et al., 2012). Likewise, oth-
ers, such as Croce et al. (2012), have used tree and
dependency parse information as part of their sys-
tems; however, we use a tree kernel approach based
on a novel encoding method introduced by Zanzotto
et al. (2011) and from there derive two dependency-
based methods.

In the rest of this paper we will describe our sys-
tem, which consists of distributional similarity (Sec-
tion 2.1), several kernel measures (Section 2.2), and
a combination method (Section 2.3). This will be
followed by the description of our three submissions
(Section 3), and a discussion of the results (Sec-
tion 4).

2 Methods

At the core of all the kernel methods is either sur-
face, distributional, or syntactic similarity between
sentence constituents. The methods themselves en-
code sentences into vectors or sets of vectors, while
the similarity between any two vectors is calculated
using cosine.

2.1 Distributional Similarity

Target words are the non-stopwords that occur
within our training and test data. The two distri-
butional methods we use here both represent target
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words as vectors that encode word occurrence within
a set of contexts. The first method is a variation on
BEAGLE (Jones and Mewhort, 2007), which con-
siders contexts to be words that surround targets.
The second method is based on ESA (Gabrilovich
and Markovitch, 2007), which considers contexts to
be Wikipedia documents that contain target words.

To gather the distributional data with both of
these approaches we used 316,305 documents from
the September 2012 snapshot of Wikipedia. The
training corpus for BEAGLE is generated by pool-
ing the top 20 documents retrieved by querying the
Wikipedia snapshot index for each target word in the
training and test data sets.

2.1.1 BEAGLE
Random indexing (Kaski, 1998) is a technique for

dimensionality reduction where pseudo-orthogonal
bases are generated by randomly sampling a distri-
bution. BEAGLE is a model where random indexing
is used to represent word co-occurrence vectors in a
distributional model.

Each context word is represented as a D-
dimensional vector of normally distributed random
values drawn from the Gaussian distribution

N (0, σ2), where σ =
1√
D

and D = 4096 (1)

A target word is represented as the sum of the
vectors of all the context words that occur within a
certain context window around the target word. In
BEAGLE this window is considered to be the sen-
tence in which the target word occurs; however, to
avoid segmenting the entire corpus, we assume the
window to include 5 words to either side of the tar-
get. This method has the advantage of keeping the
dimensionality of the context space constant even
if more context words are added, but we limit the
context words to the top 10,000 most frequent non-
stopwords in the corpus.

2.1.2 ESA
ESA represents a target word as a weighted

ranked list of the top N documents that contain the
word, retrieved from a high quality collection. We
used the BM25F (Robertson et al., 2004) weighting
function and the topN = 700 documents. These pa-
rameters were chosen by testing on the WordSim353

dataset.1 The list of retrieved documents can be rep-
resented as a very sparse vector whose dimensions
match the number of documents in the collection,
or in a more computationally efficient manner as
a hash map linking document identifiers to the re-
trieval weights. Similarity between lists was calcu-
lated using the cosine measure augmented to work
on the hash map data type.

2.2 Kernel Measures
In our experiments we use six basic kernel types,
which are described below. Effectively we have
eight kernels, because we also use the tree and de-
pendency kernels with and without distributional in-
formation. Each kernel is a function which is passed
a pair of short texts, which it then encodes into a spe-
cific format and compares using a defined similarity
function. LK uses the regular cosine similarity func-
tion, but LEK, TK, DK, MDK, DGK use the follow-
ing cosine similarity redefined for sets of vectors. If
the texts are represented as sets of vectors X and Y ,
the set similarity kernel function is:

κset(X,Y ) =
∑

i

∑
j

cos(~xi, ~yj) (2)

and normalisation is accomplished in the standard
way for kernels by:

κset−n(X,Y ) =
κset(X,Y )√

(κset(X,X)κset(Y, Y ))
(3)

LK - The lexical kernel calculates the overlap be-
tween the tokens that occur in each of the paired
texts, where the tokens consist of Porter stemmed
(Porter, 1980) non-stopwords. Each text is repre-
sented as a frequency vector of tokens that occur
within it and the similarity between the pair is cal-
culated using cosine.

LEK - The lexical ESA kernel represents each
example in the pair as the set of words that do not
occur in the intersection of the two texts. The simi-
larity is calculated as in Equation (3) with X and Y
being the ESA vectors of each word from the first
and second text representations, respectively.

TK - The tree kernel representation is based on
the definition by Zanzotto et al. (2011). Briefly,

1http://www.cs.technion.ac.il/˜gabr/resources/
data/wordsim353/
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each piece of text is parsed2; the non-terminal
nodes of the parse tree, stopwords, and out-of-
dictionary terms are all assigned a new random vec-
tor (Equation 1); while the leaves that occurred
in the BEAGLE training corpus are assigned their
learned distributional vectors (Section 2.1.1).

Each subtree of a tree is encoded recursively as
a vector, where the distributional vectors represent-
ing each node are combined using the circular con-
volution operator (Plate, 1994; Jones and Mewhort,
2007). The whole tree is represented as a set of vec-
tors, one for each subtree.

DK - The dependency kernel representation en-
codes each dependency pair as a separate vector, dis-
counting the labels. The non-stopword terminals are
represented as their distributional vectors, while the
stopwords and out-of-dictionary terms are given a
unique random vector. The vector for the depen-
dency pair is obtained via a circular convolution of
the individual word vectors.

MDK - The multiple dependency kernel is con-
structed like the dependency kernel, but similarity is
calculated separately between all the the pairs that
share the same dependency label. The combined
similarity for all dependency labels in the parse is
then calculated using least squares linear regression.
While at the later stage we use GPR to combine all
of the different kernels, for MDK we found that lin-
ear regression provided better performance.

DGK - The depgram kernel represents each de-
pendency pair as an ESA vector obtained by search-
ing the ESA collection for the two words in the
dependency pair joined by the AND operator. The
DGK representation only contains the dependencies
that occur in one similarity text or the other, but not
in both.

2.3 Regression

Each of the kernel measures above is used to calcu-
late a similarity score between a pair of texts. The
different similarity scores are then combined using

2Because many of the datasets contained incomplete or un-
grammatical sentences, we had to approximate some parses.
The parsing was done using the Stanford parser (Klein and
Manning, 2003), which failed on some overly long sentences,
which we therefore segmented at conjunctions or commas.
Since our methods only compared subtrees of parses, we simply
took the union of all the partial parses for a given sentence.

Gaussian process regression (GPR) (Rasmussen and
Williams, 2006). GPR is a probabilistic regression
method where the weights are modelled as Gaussian
random variables. GPR is defined by a covariance
function, which is akin to the kernel function in the
support vector machine. We used the squared expo-
nential isotropic covariance function (also known as
the radial basis function):

cov(xi, xj) = p2
1e

(xi−xj)T ·(p2∗I)−1·(xi−xj)

2 + p2
3δij

with parameters p1 = 1, p2 = 1, and p3 = 0.01. We
found that training for parameters increased overfit-
ting and produced worse results in validation exper-
iments.

3 Submitted Runs

We submitted three runs. This is not sufficient for
a full evaluation of the new methods we proposed
here, but it gives us an inkling of general trends. To
choose the composition of the submissions, we used
STS 2012 training data for training, and STS 2012
test data for validation (Agirre et al., 2012). The
final submitted runs also used some of the STS 2012
test data for training.

Basic - With this run we were examining if a sim-
ple introduction of syntactic structure can improve
over the baseline performance. We trained a GPR
combination of the linear and tree kernels (LK-TK)
on the MSRpar training data. In validation experi-
ments we found that this data set in general gave the
most consistent performance for regression training.

Custom - Here we tried to approximate the best
training setup for each type of data. We only had
training data for OnWN and for this dataset we were
able to improve over the LK-TK setup; however, the
settings for the rest of the data sets were guesses
based on observations from the validation experi-
ments and overall performed poorly. OnWN was
trained on MSRpar train with LK and DK. The head-
lines model was trained on MSRpar train and Eu-
roparl test, with LK-LEK-TK-DK-TKND-DKND-
MDK (trained on Europarl).3 FNWN was trained on
MSRpar train and OnWN test with LK-LEK-DGK-
TK-DK-TKND-DKND. Finally, the SMT model

3TKND and DKND are the versions of the tree and depen-
dency kernels where no distributional vectors were used.
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Figure 1: Score distributions of different runs on the OnWN dataset

was trained on MSRpar train and Europarl test with
LK-LEK-TK-DK-TKND-DKND-MDK (trained on
MSRpar).

All - As in the LK-TK experiment, we used
the same model on all of the data sets. It was
trained on all of the training data except MSRvid,
using all eight kernel types defined above. In sum-
mary we used the LK-LEK-TK-TKND-DK-DKND-
MDK-DGK kernel combination. MDK was trained
on the 2012 training portion of MSRpar.

4 Discussion

From the shared task results in Table 1, we can see
that Basic is our highest ranked run. It has also
achieved the best performance on all data sets. The
LK on its own improves slightly on the task baseline
by removing stop words and using stemming, while
the introduction of TK contributes syntactic and dis-
tributional information. With the Custom run, we
were trying to manually estimate which training data
would best reflect properties of particular test data,
and to customise the kernel combination through
validation experiments. The only data set for which
this led to an improvement is OnWN, indicating
that customised settings can be beneficial, but that
a more scientific method for matching of training
and test data properties is required. In the All run,
we were examining the effects that maximising the
amount of training data and the number of kernel

hdlns OnWN FNWN SMT mean rank
BL 0.5399 0.2828 0.2146 0.2861 0.3639 71
Basic 0.6399 0.4440 0.3995 0.3400 0.4709 51
Cstm 0.4962 0.5639 0.1724 0.3006 0.4207 60
All 0.5510 0.3099 0.2385 0.1171 0.3200 78

Table 1: Shared task results: Pearson correlation with the
gold standard

measures has on the output predictions. The results
show that swamping the regression with models and
training data leads to overly normalised output and
a decrease in performance.

While the evaluation measure, Pearson correla-
tion, does not take into account the shape of the out-
put distribution, Figure 1 shows that this informa-
tion may be a useful indicator of model quality and
behaviour. In particular, the role of the regression
component in our approach is to learn a transforma-
tion from the output distributions of the models to
the distribution of the training data gold standard.
This makes it sensitive to the choice of training data,
which ideally would have similar characteristics to
the individual kernels, as well as a similar gold stan-
dard distribution to the test data. We can see in Fig-
ure 1 that the training data and choice of kernels in-
fluence the output distribution.

Analysis of the minimum, first quartile, median,
third quartile, and maximum statistics of the distri-
butions in Figure 1 demonstrates that, while it is dif-
ficult to visually evaluate the similarities of the dif-
ferent distributions, the smallest squared error is be-
tween the gold standard and the Custom run. This
suggests that properties other than the rank order
may also be good indicators in training and testing
of STS methods.
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