
First Joint Conference on Lexical and Computational Semantics (*SEM), pages 543–546,
Montréal, Canada, June 7-8, 2012. c©2012 Association for Computational Linguistics

LIMSI: Learning Semantic Similarity by Selecting Random Word Subsets

Artem Sokolov
LIMSI-CNRS

B.P. 133, 91403 Orsay, France
artem.sokolov@limsi.fr

Abstract

We propose a semantic similarity learning
method based on Random Indexing (RI) and
ranking with boosting. Unlike classical RI, we
use only those context vector features that are
informative for the semantics modeled. De-
spite ignoring text preprocessing and dispens-
ing with semantic resources, the approach was
ranked as high as 22nd among 89 participants
in the SemEval-2012 Task6: Semantic Textual
Similarity.

1 Introduction

One of the popular and flexible tools of semantics
modeling are vector distributional representations of
texts (also known as vector space models, seman-
tic word spaces or distributed representations). The
principle idea behind vector space models is to use
word usage statistics in different contexts to gen-
erate a high-dimensional vector representations for
each word. Words are represented by context vec-
tors whose closeness in the vector space is postu-
lated to reflect semantic similarity (Sahlgren, 2005).
The approach rests upon the distributional hypothe-
sis: words with similar meanings or functions tend
to appear in similar contexts. The prominent ex-
amples of vector space models are Latent Seman-
tic Analysis (or Indexing) (Landauer and Dutnais,
1997) and Random Indexing (Kanerva et al., 2000).

Because of the heuristic nature of distributional
methods, they are often designed with a specific
semantic relation in mind (synonymy, paraphrases,
contradiction, etc.). This complicates their adaption
to other application domains and tasks, requiring

manual trial-and-error feature redesigns and tailored
preprocessing steps to remove morphology/syntax
variations that are not supposed to contribute to the
semantics facet in question (e.g., stemming, stop-
words). Further, assessing closeness of semantic
vectors is usually based on a fixed simple similarity
function between distributed representations (often,
the cosine function). The cosine function implicitly
assigns equal weights to each component of the se-
mantic vectors regardless of its importance for the
particular semantic relation and task. Finally, dur-
ing production of training and evaluation sets, the
continuum of possible grades of semantic similar-
ity is usually substituted with several integer values,
although often only the relative grade order matters
and not their absolute values. Trying to reproduce
the same values or the same gaps between grades
when designing a semantic representation scheme
may introduce an unnecessary bias.

In this paper we address all of the above draw-
backs and present a semantic similarity learning
method based on Random Indexing. It does not re-
quire manual feature design, and is automatically
adapted to the specific semantic relations by select-
ing needed important features and/or learning neces-
sary feature transformations before calculating sim-
ilarity. In the proof-of-concept experiments on the
SemEval-2012 data we deliberately ignored all rou-
tine preprocessing steps, that are often considered
obligatory in semantic text processing, we did not
use any of the semantic resources (like WordNet)
nor trained different models for different data do-
mains/types. Despite such over-constrained setting,
the method showed very positive performance and

543

was ranked as high as 22nd among 89 participants.

2 Random Indexing

Random Indexing (RI) is an alternative to LSA-
like models with large co-occurrence matrices and
separate matrix decomposition phase to reduce di-
mension. RI constructs context vectors on-the-fly
based on the occurrence of words in contexts. First,
each word is assigned a unique and randomly gener-
ated high-dimensional sparse ternary vector. Vec-
tors contain a small number (between 0.1-1%) of
randomly distributed +1s and -1s, with the rest of
the elements set to 0. Next, the final context vectors
for words are produced by scanning through the text
with a sliding window of fixed size, and each time
the word occurs in the text, the generated vectors of
all its neighbors in the sliding context window are
added to the context vector of this word1. Finally,
the obtained context vectors are normalized by the
occurrence count of the word.

RI is a practical variant of the well-known
dimension reduction technique of the Johnson-
Lindenstrauss (JL) lemma (Dasgupta and Gupta,
2003). An Euclidean space can be projected with a
random Gaussian matrix R onto smaller dimension
Euclidean space, such that with high probability the
distance between any pair of points in the new space
is within a distortion factor of 1 ± ε of their origi-
nal distance. Same or similar guarantees also hold
for a uniform {−1,+1}-valued or ternary (from a
certain distribution) randomR (Achlioptas, 2003) or
for even sparser matrices (Dasgupta et al., 2010)

Restating the JL-lemma in the RI-terminology,
one can think of the initial space of characteristic
vectors of word sets of all contexts (each compo-
nent counts corresponding words seen in the context
window over the corpus) embedded into a smaller
dimension space, and approximately preserving dis-
tances between characteristic vectors. Because
of the ternary generation scheme, each resulting
feature-vector dimension either rewards, penalizes
or “switches off” certain words for which the cor-
responding row of R contained, resp., +1, −1 or 0.

So far, RI has been a naı̈ve approach to feature

1Although decreasing discounts dampening contribution of
far-located context words may by beneficial, we do not use it
putting our method in more difficult conditions.

learning – although it produces low-dimensional
feature representations, it is unconscious of the
learning task behind. There is no guarantee that the
Euclidean distance (or cosine similarity) will cor-
rectly reflect the necessary semantic relation: for a
pair of vectors, not all word subsets are characteris-
tic of a particular semantic relation or specific to it,
as presence or absence of certain words may play no
role in assessing given similarity type. Implications
of RI in the context of learning textual similarity
are coming from the feature selection (equivalently,
word subset selection) method, based on boosting,
that selects only those features that are informative
for the semantic relation being learned (Section 4).
Thus, the supervision information on sentence simi-
larity guides the choose of word subsets (among all
randomly generated by the projection matrix) that
happen to be relevant to the semantic annotations.

3 Semantic Textual Similarity Task

Let {(si
1, s

i
2)} be the training set of N pairs of sen-

tences, provided along with similarity labels yi. The
higher the value of yi the more semantically similar
is the pair (si

1, s
i
2). Usually absolute values of yi are

chosen arbitrary; only their relative order matters.
We would learn semantic similarity between

(si
1, s

i
2) as a function H(x̄i), where x̄i is a sin-

gle vector combining sentence context vectors v(si
1)

and v(si
2). Context representation v(s) for a sen-

tence s is defined as an average of the word context
vectors v(w) contained in it, found using a large text
corpus with the RI approach, described in the pre-
vious section: v(s) =

∑
w∈s v(w)/ |s|. Possible

transformations into x̄i include a concatenation of
v(si

1) and v(si
2), concatenation of the sum and dif-

ference vectors or a vector composed of component-
wise symmetric functions (e.g., a product of cor-
responding components). In order to learn a sym-
metric H , one can either use each pair twice during
training, or symmetrize the construction of x̄.

4 Feature Selection with Boosting

We propose to exploit natural ordering of (si
1, s

i
2)

according to yi to learn a parameterized similarity
function H(x̄i). In this way we do not try learn-
ing the absolute values of similarity provided in the
training. Also, by using boosting approach we allow

544

for gradual inclusion of features into similarity func-
tion H , implementing in this way feature selection.

For a given number of training steps T , a boost-
ing ranking algorithm learns a scoring function H ,
which is a linear combination of T simple, non-
linear functions ht called weak learners: H(x̄) =∑T

t=1 αtht(x̄),where each αt is the weight assigned
to ht at step t of the learning process.

Usually the weak learner is defined on only few
components of x̄. Having build H at step t, the next
in turn (t + 1)’s leaner is selected, optimized and
weighted with the corresponding coefficient αt+1.
In this way the learning process selects only those
features in x̄ (or, if viewed from the RI perspective,
random word subsets) that contribute most to learn-
ing the desired type input similarity.

As the first ranking method we applied the pair-
wise ranking algorithm RankBoost (Freund et al.,
2003), that learns H by minimizing a convex ap-
proximation to a weighted pair-wise loss:∑

(si
1,si

2),(sj
1,sj

2):yi<yj

P (i, j)[[H(x̄i) ≥ H(x̄j)]].

Operator [[A]] = 1 if the A = true and 0 other-
wise. Positive values of P weight pairs of x̄i and x̄j

– the higher is P (i, j), the more important it is to
preserve the relative ordering of x̄i and x̄j . We used
the simplest decision stumps that depend on one fea-
ture as weak learners: h(x; θ, k) = [[xk > θ]], where
k is a feature index and θ is a learned threshold.

The second ranking method we used was a point-
wise ranking algorithm, based on gradient boosting
regression for ranking (Zheng et al., 2007), called
RtRank and implemented by Mohan et al. (2011)2.
The loss optimized by RtRank is slightly different:∑

(si
1,si

2),(sj
1,sj

2):yi<yj

(max{0, H(x̄i)−H(x̄j)})2.

Another difference is in the method for selecting
weak learner at each boosting step, that relies on re-
gression loss and not scalar product as RankBoost.
Weak learners for RtRank were regression trees of
fixed depth (4 in our experiments).

5 Experiments

We learned context vectors on the GigaWord En-
glish corpus. The only preprocessing of the cor-

2http://sites.google.com/site/rtranking

learner transform correl. σ

ba
se

lin
e pure RI, cos - 0.264 0.005

logistic reg. - 0.508 0.041
logistic reg. concat 0.537 0.052

bo
os

tin
g RankBoost

sumdiff 0.685 0.027
product 0.663 0.018

crossprod 0.648 0.028
crossdiff 0.643 0.023
concat 0.625 0.025
absdiff 0.602 0.021

RtRank
sumdiff 0.730 0.020
product 0.721 0.023

Table 1: Mean performance of the transformation and
boosting methods for N = 100 on train data.

pus was stripping all tag data, removing punctuation
and lowercasing. Stop-words were not removed.
Context vectors were built with the JavaSDM pack-
age (Hassel, 2004)3 of dimensionality N = 100 and
N = 105, resp., for preliminary and final experi-
ments, with random degree 10 (five +1s and -1s in
each initial vector), right and left context window
size of 4 words4 and constant weighting scheme.

Training and test data provided in the SemEval-
2012 Task 6 contained 5 training and 5 testing text
sets each of different domains or types of sentences
(short video descriptions, pairs of outputs of a ma-
chine translation system, etc.). Although the 5 sets
had very different characteristics, we concatenated
all training files and trained a single model. The
principal evaluation metrics was Pearson correlation
coefficient, that we report here. Two related other
measures were also used (Agirre et al., 2012).

Obtained sentence vectors v(s) for were trans-
formed into vectors x̄ with several methods:

• ‘sumdiff’: x̄ = (v̄(s1) + v̄(s2), sgn(v1(s1) −
v1(s2))(v(s1)− v(s2)))

• ‘concat’: x̄ = (v(s1), v(s2)), and x̄′ =
(v(s2), v(s1))

• ‘product’: xi = vi(s1) · vi(s2)

• ‘crossprod’: xij = vi(s1) · vj(s2)

• ‘crossdiff’: xij = vi(s1)− vj(s2)

• ‘absdiff’: xi = |vi(s1)− vi(s2)|.
Methods ‘concat’ and ‘sumdiff’ were proposed
by Hertz et al. (2004) for distance learning for clus-

3http://www.csc.kth.se/∼xmartin/java
4Little sensitivity was found to the window sizes from 3 to 6.

545

learner transform train±σ test rank MSRpar MSRvid SMTeur OnWN SMTnews

RankBoost
product 0.748±0.017 0.6392 32 0.3948 0.6597 0.0143 0.4157 0.2889
sumdiff 0.735±0.016 0.6196 45 0.4295 0.5724 0.2842 0.3989 0.2575

RtRank
product 0.784±0.017 0.6789 22 0.4848 0.6636 0.0934 0.3706 0.2455
sumdiff 0.763±0.014

Table 2: Mean performance of the best-performing two transformation and two boosting methods for N = 105.

tering. Comparison of mean performance of differ-
ent transformation and learning methods on the 5-
fold splitting of the training set is given in Table 1
for short context vectors (N = 100). The correlation
is given for the optimal algorithms’ parameters (T
for RankBoost and, additionally, tree depth and ran-
dom ratio for RtRank), found with cross-validation
on 5 folds. With these results for smallN , two trans-
formation methods were preselected (‘sumdiff’ and
‘product’) for testing and submission with N = 105

(Table 2), as increasing N usually increased perfor-
mance. Yet, only about 103 features were actually
selected by RankBoost, meaning that a relatively
few random word subsets were informative for ap-
proximating semantic textual similarity.

In result, RtRank showed better performance,
most likely because of more powerful learners, that
depend on several features (word subsets) simulta-
neously. Performance on machine translation test
sets was the lowest that can be explained by very
poor quality of the training data5: models for these
subsets should have been trained separately.

6 Conclusion

We presented a semantic similarity learning ap-
proach that learns a similarity function specific to
the semantic relation modeled and that selects only
those word subsets in RI, presence of which in the
compared sentences is indicative of their similarity,
by using only relative order of the labels and not
their absolute values. In spite of paying no atten-
tion to preprocessing, nor using semantic corpora,
and with no domain adaptation the method showed
promising results.

Acknowledgments
This work has been funded by OSEO under the Quaero
program.

5A reviewer suggested another reason: more varied or even
incorrect lexical choice that is sometimes found in MT output.

References
Dimitris Achlioptas. 2003. Database-friendly random

projections: Johnson-Lindenstrauss with binary coins.
Comput. Syst. Sci., 66:671–687.

Eneko Agirre, Daniel Cer, Mona Diab, and Aitor Gonza-
lez. 2012. Semeval-2012 task 6: A pilot on semantic
textual similarity. In Proc. of the Int. Workshop on Se-
mantic Evaluation (SemEval 2012) // Joint Conf. on
Lexical & Computational Semantics (*SEM 2012).

Sanjoy Dasgupta and Anupam Gupta. 2003. An elemen-
tary proof of a theorem of Johnson and Lindenstrauss.
Random Struct. Algorithms, 22(1):60–65.

Anirban Dasgupta, Ravi Kumar, and Tamás Sarlos. 2010.
A sparse Johnson-Lindenstrauss transform. In Proc. of
the ACM Symp. on Theory of Comput., pages 341–350.

Yoav Freund, Raj Iyer, Robert E. Schapire, and Yoram
Singer. 2003. An efficient boosting algorithm for
combining preferences. Mach.Learn.Res., 4:933–969.

Martin Hassel. 2004. JavaSDM - a Java package for
working with Random Indexing and Granska.

Tomer Hertz, Aharon Bar-hillel, and Daphna Weinshall.
2004. Boosting margin based distance functions for
clustering. In ICML, pages 393–400.

Pentti Kanerva, Jan Kristoferson, and Anders Holst.
2000. Random indexing of text samples for latent se-
mantic analysis. In Proc. of the Conf. of the Cogn.
Science Society.

Thomas K. Landauer and Susan T. Dutnais. 1997. A so-
lution to Plato’s problem: The latent semantic analysis
theory of acquisition, induction, and representation of
knowledge. Psychol. Rev., pages 211–240.

Ananth Mohan, Zheng Chen, and Kilian Q. Weinberger.
2011. Web-search ranking with initialized gradient
boosted regression trees. Mach.Learn.Res., 14:77–89.

Magnus Sahlgren. 2005. An introduction to random in-
dexing. In Workshop on Methods & Applic. of Sem.
Indexing // Int. Conf. on Terminol. & Knowl. Eng.

Zhaohui Zheng, Hongyuan Zha, Tong Zhang, Olivier
Chapelle, Keke Chen, and Gordon Sun. 2007. A
general boosting method and its application to learn-
ing ranking functions for web search. In NIPS.

546

