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Abstract 

Temporal information extraction is a 
popular and interesting research field in 
the area of Natural Language Processing 
(NLP). In this paper, we report our works 
on TempEval-2 shared task. This is our 
first participation and we participated in 
all the tasks, i.e., A, B, C, D, E and F. We 
develop rule-based systems for Tasks A 
and B, whereas the remaining tasks are 
based on a machine learning approach, 
namely Conditional Random Field 
(CRF). All our systems are still in their 
development stages, and we report the 
very initial results. Evaluation results on 
the shared task English datasets yield the 
precision, recall and F-measure values of 
55%, 17% and 26%, respectively for 
Task A and 48%, 56% and 52%, respec-
tively for Task B (event recognition).  
The rest of tasks, namely C, D, E and F 
were evaluated with a relatively simpler 
metric: the number of correct answers di-
vided by the number of answers. Experi-
ments on the English datasets yield the 
accuracies of 63%, 80%, 56% and 56% 
for tasks C, D, E and F, respectively.        

1 Introduction 

Temporal information extraction is, nowadays, a 
popular and interesting research area of Natural 
Language Processing (NLP). Generally, events 
are described in different newspaper texts, sto-
ries and other important documents where 
events happen in time and the temporal location 
and ordering of these events are specified. One 
of the important tasks of text analysis clearly re-
quires identifying events described in a text and 

locating these in time. This is also important in a 
wide range of NLP applications that include 
temporal question answering, machine transla-
tion and document summarization.  

   In the literature, temporal relation identifica-
tion based on machine learning approaches can 
be found in Boguraev et el. (2005), Mani et al. 
(2006), Chambers et al. (2007) and some of the 
TempEval 2007 participants (Verhagen et al., 
2007). Most of these works tried to improve 
classification accuracies through feature engi-
neering. The performance of any machine learn-
ing based system is often limited by the amount 
of available training data. Mani et al. (2006) in-
troduced a temporal reasoning component that 
greatly expands the available training data. The 
training set was increased by a factor of 10 by 
computing the closure of the various temporal 
relations that exist in the training data. They re-
ported significant improvement of the classifica-
tion accuracies on event-event and event-time 
relations. Their experimental result showed the 
accuracies of 62.5%-94.95% and 73.68%-
90.16% for event-event and event-time relations, 
respectively. However, this has two shortcom-
ings, namely feature vector duplication caused 
by the data normalization process and the unreal-
istic evaluation scheme.  The solutions to these 
issues are briefly described in Mani et al. (2007).  
In TempEval 2007 task, a common standard da-
taset was introduced that involves three temporal 
relations. The participants reported F-measure 
scores for event-event relations ranging from 
42% to 55% and for event-time relations from 
73% to 80%. Unlike (Mani et al., 2007; 2006), 
event-event temporal relations were not dis-
course-wide (i.e., any pair of events can be tem-
porally linked) in TempEval 2007. Here, the 
event-event relations were restricted to events 
within two consecutive sentences. Thus, these 
two frameworks produced highly dissimilar re-
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sults for solving the problem of temporal relation 
classification.  
   In order to apply various machine learning al-
gorithms, most of the authors formulated tempo-
ral relation as an event paired with a time or an-
other event and translated these into a set of fea-
ture values. Some of the popularly used machine 
learning techniques were Naive-Bayes, Decision 
Tree (C5.0), Maximum Entropy (ME) and Sup-
port Vector Machine (SVM). Machine learning 
techniques alone cannot always yield good accu-
racies. To achieve reasonable accuracy, some 
researchers (Mao et al., 2006) used hybrid ap-
proach. The basic principle of hybrid approach is 
to combine the rule-based component with ma-
chine learning.  It has been shown in (Mao et al., 
2006) that classifiers make most mistakes near 
the decision plane in feature space. The authors 
carried out a series of experiments for each of the 
three tasks on four models, namely naive-Bayes, 
decision tree (C5.0), maximum entropy and sup-
port vector machine. The system was designed in 
such a way that they can take the advantage of 
rule-based as well as machine learning during 
final decision making. But, they did not explain 
exactly in what situations machine learning or 
rule based system should be used given a particu-
lar instance. They had the option to call either 
component on the fly in different situations so 
that they can take advantage of the two empirical 
approaches in an integrated way. 

The rest of the paper is structured as follows. 
We present very brief descriptions of the differ-
ent tasks in Section 2. Section 3 describes our 
approach in details with rule-based techniques 
for tasks A and B in Subsection 3.1, CRF based 
techniques in Subsection 3.2 for tasks C, D, E 
and F, and features in Subsection 3.3. Detailed 
evaluation results are reported in Section 4. Fi-
nally, Section 5 concludes the paper with a direc-
tion to future works.  

2 Task Description 

The main research in this area involves identifi-
cation of all temporal referring expressions, 
events and temporal relations within a text. The 
main challenges involved in this task were first 
addressed during TempEval-1 in 2007 (Verhagen 
et al., 2007). This was an initial evaluation exer-
cise based on three limited tasks that were con-
sidered realistic both from the perspective of as-
sembling resources for development and testing 
and from the perspective of developing systems 
capable of addressing the tasks. In TempEval 

2007, following types of event-time temporal 
relations were considered: Task A (relation be-
tween the events and times within the same sen-
tence), Task B (relation between events and 
document creation time) and Task C (relation 
between verb events in adjacent sentences). The 
data sets were based on TimeBank, a hand-built 
gold standard of annotated texts using the Ti-
meML markup scheme1. The data sets included 
sentence boundaries, timex3 tags (including the 
special document creation time tag), and event 
tags. For tasks A and B, a restricted set of events 
was used, namely those events that occur more 
than 5 times in TimeBank. For all three tasks, the 
relation labels used were before, after, overlap, 
before-or-overlap, overlap-or-after and vague. 
Six teams participated in the TempEval tasks. 
Three of the teams used statistics exclusively, 
one used a rule-based system and the other two 
employed a hybrid approach. For task A, the 
range of F-measure scores were from 0.34 to 
0.62 for the strict scheme and from 0.41 to 0.63 
for the relaxed scheme. For task B, the scores 
were from 0.66 to 0.80 (strict) and 0.71 to 0.81 
(relaxed). Finally, task C scores range from 0.42 
to 0.55 (strict) and from 0.56 to 0.66 (relaxed). 
   In TempEval-2, the following six tasks were 
proposed:  
 A:  The main task was to determine the extent of 
the time expressions in a text as defined by the 
TimeML timex3 tag. In addition, values of the 
features type and val had to be determined. The 
possible values of type are time, date, duration, 
and set; the value of val is a normalized value as 
defined by the timex2 and timex3 standards. 
B. Task was to determine the extent of the events 
in a text as defined by the TimeML event tag. In 
addition, the values of the features tense, aspect, 
polarity, and modality had to be determined. 
C. Task was to determine the temporal relation 
between an event and a time expression in the 
same sentence. 
D. Temporal relation between an event and the 
document creation time had to be determined. 
E. Temporal relation between two main events in 
consecutive sentences had to be determined.  
F. Temporal relation between two events, where 
one event syntactically dominates the other 
event.  
     In our present work, use handcrafted rules for 
Task A and Task B. All the other tasks, i.e., C, 
D, E and F are developed based on the well 
known statistical algorithm, Conditional Random 

                                                 
1www.timeml.org for details on TimeML  
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Field (CRF). For CRF, we use only those fea-
tures that are available in the training data. All 
the systems are evaluated on the TempEval-
2 shared task English datasets. Evaluation results 
yield the precision, recall and F-measure values 
of 55%, 17% and 26%, respectively for Task A 
and 48%, 56% and 52%, respectively for Task B. 
Experiments on the other tasks demonstrate the 
accuracies of 63%, 80%, 56% and 56% for C, D, 
E and F, respectively.   

3 Our Approach  

In this section, we present our systematic ap-
proach for evaluating events, time expressions 
and temporal relations as part of our first partici-
pation in the TempEval shared task. We partici-
pated in all the six tasks of TempEval-2. Rule-
based systems are developed using a preliminary 
handcrafted set of rules for tasks A and B. We 
use machine learning approach, namely CRF for 
solving the remaining tasks, i.e., C, D, E and F.  
 

3.1 Rules for Task A and Task B 

We manually identify a set of rules studying the 
various features available in the training data. 
There were some exceptions to these rules. How-
ever, a rule is used if it is found to be correct 
most of the time throughout the training data. It 
is to be noted that these are the very preliminary 
rules, and we are still working on finding out 
more robust rules. Below, we present the rules 
for tasks A and B.  
 
Task A. The time expression is identified by de-
fining appropriate regular expression. The regu-
lar expressions are based on several entities that 
denote month names, year, weekdays and the 
various digit expressions. We also use a list of 
keywords (e.g., day, time, AM, PM etc.) that de-
note the various time expressions. The values of 
various attributes (e.g., type and value) of time 
expressions are computed by some simple tem-
plate matching algorithms.  
 
Task B. In case of Task B, the training data is 
initially passed through the Stanford PoS tagger2. 
We consider the tokens as the events that are 
tagged with POS tags such as VB, VBG, VBN, 
VBP, VBZ and VBD, denoting the various verb 
expressions. Values of different attributes are 
computed as follows.  

                                                 
2 http://nlp.stanford.edu/software/tagger.shtml 

 
a. Tense: A manually augmented suffix list such 
as: "ed","d","t" etc. is used to capture the proper 
tense of any event verb from surface level ortho-
graphic variations. 
b. Aspect: The Tense-Aspect-Modality (TAM) 
for English verbs is generally associated with 
auxiliaries. A list is manually prepared. Any oc-
currence of main verb with continuous aspect 
leads to search for the adjacent previous auxil-
iary and rules are formulated to extract TAM 
relation using the manually generated checklist. 
A separate list of auxiliaries is prepared and suc-
cessfully used for detection of progressive verbs.  
c. Polarity: Verb-wise polarity is assigned by the 
occurrence of previous negation words. If any 
negation word appears before any event verb 
then the resultant polarity is negative; otherwise, 
the verb considered as positive by default. 
d. Modality: We prepare a manual list that con-
tains the words such as: may, could, would etc. 
The presence of these modal auxiliaries gives 
modal tag to the targeted verb in a sentence oth-
erwise it is considered a non-modal. 
e. Class: We select ‘occurrence’ to be class val-
ue by default.  
 

3.2 Machine Learning Approach for Tasks 
C, D, E and F 

 
For tasks C-F, we use a supervised machine 
learning approach that is based on CRF. We con-
sider the temporal relation identification task as a 
pair-wise classification problem in which the 
target pairs–a TIMEX3 tag and an EVENT–are 
modelled using CRF, which can include arbitrary 
set of features, and still can avoid overfitting in a 
principled manner.  
 
Introduction to CRF.  CRF (Lafferty et al., 
2001), is used to calculate the conditional prob-
ability of values on designated output nodes 
given values on other designated input nodes. 
The conditional probability of a state sequence 

1, 2, ..., TS s s s=<
1 2,O o
>  given an observation se-

quence , ....., )To o=<  is calculated as: 
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is a feature function 
whose weight λ is to be learned via training. 
The values of the feature functions may range 
between .....− ∝ + ∝ , but typically they are 
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binary. To make all conditional probabilities sum 
up to 1, we must calculate the normalization 
factor, 

0
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exp( ( , , ))
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s k k t
t k
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= =

= ∑ ∑ ∑ ,                                             

which, as in HMMs, can be obtained efficiently 
by dynamic programming. 
   To train a CRF, the objective function to be 
maximized is the penalized log-likelihood of the 
state sequences given the observation sequence: 
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where, { } is the labeled training da-
ta. The second sum corresponds to a zero-mean, 

( ) ( ),i io s<

2σ -variance Gaussian prior over parameters, 
which facilitates optimization by making the li-
kelihood surface strictly convex.  
  CRFs generally can use real-valued functions 
but it is often required to incorporate the binary 
valued features. A feature function 

1 ,( , ,k t t )f s s o t− has a value of 0 for most cases 
and is only set to  1, when 1,t ts s−  are certain 
states and the observation has certain properties. 
Here, we set parameters λ  to maximize the pe-
nalized log-likelihood using Limited-memory 
BFGS (Sha and Pereira, 2003) a quasi-Newton 
method that is significantly more efficient, and 
which results in only minor changes in accuracy 
due to changes in σ . 
   We use the OpenNLP C++ based CRF++ pack-
age 3 , a simple, customizable, and open source 
implementation of CRF for segmenting /labeling 
sequential data.  
 

3.3 Features of Tasks C, D, E and F 

 
We extract the gold-standard TimeBank features 
for events and times in order to train/test the 
CRF. In the present work, we mainly use the 
various combinations of the following features:  
 
(i). Part of Speech (POS) of event terms: It de-
notes the POS information of the event. The fea-
tures values may be either of ADJECTIVE, 
NOUN, VERB, and PREP. 
 (ii). Event Tense: This feature is useful to cap-
ture the standard distinctions among the gram-
matical categories of verbal phrases. The tense 
attribute can have values, PRESENT, PAST, 
                                                 
3http://crfpp.sourceforge.net  

FUTURE, INFINITIVE, PRESPART, PAST-
PART, or NONE. 
 (iii). Event Aspect: It denotes the aspect of the 
events. The aspect attribute may take values, 
PROGRESSIVE, PERFECTIVE and PERFEC-
TIVE PROGRESSIVE or NONE. 
(iv). Event Polarity: The polarity of an event 
instance is a required attribute represented by the 
boolean attribute, polarity. If it is set to ’NEG’, 
the event instance is negated.  If it is set to ’POS’ 
or not present in the annotation, the event in-
stance is not negated. 
(v). Event Modality: The modality attribute is 
only present if there is a modal word that modi-
fies the instance. 
(vi). Event Class: This is denoted by the 
‘EVENT’ tag and used to annotate those ele-
ments in a text that mark the semantic events 
described by it. Typically, events are verbs but 
can be nominal also. It may belong to one of the 
following classes:  
 REPORTING: Describes the action of a person 
or an organization declaring something, narrating 
an event, informing about an event, etc.  For ex-
ample, say, report, tell, explain, state etc. 
 PERCEPTION: Includes events involving the 
physical perception of another event. Such 
events are typically expressed by verbs like: see, 
watch, glimpse, behold, view, hear, listen, over-
hear etc. 
ASPECTUAL: Focuses on different facets of 
event history. For example, initiation, reinitia-
tion, termination, culmination, continuation etc. 
 I_ACTION: An intentional action. It introduces 
an event argument which must be in the text ex-
plicitly describing an action or situation from 
which we can infer something given its relation 
with the I_ ACTION. 
I_STATE: Similar to the I_ACTION class. This 
class includes states that refer to alternative or 
possible words, which can be introduced by sub-
ordinated clauses, nominalizations, or untensed 
verb phrases (VPs). 
 STATE: Describes circumstances in which 
something obtains or holds true. 
 Occurrence: Includes all of the many other 
kinds of events that describe something that hap-
pens or occurs in the world. 
(vii). Type of temporal expression: It repre-
sents the temporal relationship holding between 
events, times, or between an event and a time of 
the event.  
(viii). Event Stem:  It denotes the stem of the 
head event.  
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(ix). Document Creation Time: The document 
creation time of the event.  

4 Evaluation Results 

Each of the tasks is evaluated with the Tem-
pEval-2 shared task datasets. 
  

4.1 Evaluation Scheme 

 
For the extents of events and time expressions 
(tasks A and B), precision, recall and the F-
measure are used as evaluation metrics, using the 
following formulas: 
Precision (P) = tp/ (tp + fp) 
Recall (R) = tp/ (tp + fn) 
F-measure = 2 *(P * R)/ (P + R) 
   Where, tp is the number of tokens that are part 
of an extent in both keys and response,  
fp is the number of tokens that are part of an ex-
tent in the response but not in the key, and  
fn is the number of tokens that are part of an ex-
tent in the key but not in the response. 
  An even simpler evaluation metric similar to 
the definition of ‘accuracy’ is used to evaluate 
the attributes of events and time expressions (the 
second part of tasks, A and B) and for relation 
types (tasks C through F). The metric, henceforth 
referred to as ‘accuracy’, is defined as below:  
    Number of correct answers/ Number of an-
swers present in the test data  
 

4.2 Results 

 
For tasks A and B, we identify a set of rules from 
the training set and apply them on the respective 
test sets.  
   The tasks C, D, E and F are based on CRF. We 
develop a number of models based on CRF using 
the different features included into it. A feature 
vector consisting of the subset of the available 
features as described in Section 2.3 is extracted 
for each of <event, timex>, <event, DCT>, 
<event, event> and <event, event> pairs in tasks 
C, D, E and F, respectively. Now, we have a 
training data in the form ( , , where,  is 
the ith pair along with its feature vector and  is 
it’s corresponding TempEval relation class. 
Models are built based on the training data and 
the feature template. The procedure of training is 
summarized below: 

)i iW T iW
iT

1. Define the training corpus, C. 

2. Extract the corresponding relation from 
the training corpus. 

3. Create a file of candidate features, in-
cluding lexical features derived from the 
training corpus. 

4. Define a feature template.  
5. Compute the CRF weights λk for every fK 

using the CRF toolkit with the training 
file and feature template as input. 

  During evaluation, we consider the following 
feature templates for the respective tasks:  
 
(i) Task C: Feature vector consisting of current 
token, polarity, POS, tense, class and value; 
combination of token and type, combination of 
tense and value of the current token, combination 
of aspect and type of current token, combination 
of aspect, value and type of the current token.      
(ii) Task D: Feature vector consisting of current 
token and POS; combination of POS and tense of 
the current token, combination of polarity and 
POS of the current token, combination of POS 
and aspect of current token, combination of po-
larity and POS of current token, combination of 
POS, tense and aspect of the current token.      
(iii). Task E: Current token, combination of 
event-class and event-id of the current token, 
combination of POS tags of the pair of events, 
combination of (tense, aspect) values of the event 
pairs. 
(iv). Task F: Current token, combination of POS 
tags of the pair of events, combination of tense 
values of the event pairs, combination of the as-
pect values of the event pairs, combination of the 
event classes of the event pairs. 
  Experimental results of tasks A and B are re-
ported in Table 1 for English datasets. The re-
sults for task A, i.e., recognition and normaliza-
tion of time expressions, yield the precision, re-
call and F-measure values of 55%, 17% and 
26%, respectively. For task B, i.e., event recogni-
tion, the system yields precision, recall and F-
measure values of 48%, 56% and 52%, respec-
tively. Event attribute identification shows the 
accuracies of 98%, 98%, 30%, 95% and 53% for 
polarity, mood, modality, tense, aspect and class, 
respectively. These systems are the baseline 
models, and the performance can further be im-
proved with a more carefully handcrafted set of 
robust rules. In further experiments, we would 
also like to apply machine learning methods to 
these problems.  
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Task  precision 
(in %)  

recall   
(in %) 

F-measure  
(in %) 

A 55% 17% 26% 
B 48% 56% 52% 
 
Table 1. Experimental results on tasks A and B 
 
  Evaluation results on the English datasets for 
tasks C, D, E and F are presented in Table 2. Ex-
periments show the accuracies of 63%, 80%, 
56% and 56% for tasks C, D, E and F, respec-
tively. Results show that our system performs 
best for task D, i.e., relationships between event 
and document creation time. The system 
achieves an accuracy of 63% for task C that finds 
the temporal relation between an event and a time 
expression in the same sentence. The system per-
forms quite similarly for tasks E and F. It is to be 
noted that there is still the room for performance 
improvement. In the present work, we did not 
carry out sufficient experiments to identify the 
most suitable feature templates for each of the 
tasks. In future, we would experiment after se-
lecting a development set for each task; and find 
out appropriate feature template depending upon 
the performance on the development set.  
 
 
Task  Accuracy (in %) 
C 63%  
D 80% 
E 56% 
F 56% 

 
Table 2. Experimental results on tasks C, D, E 
and F 
   

5 Conclusion and Future Works 

In this paper, we report very preliminary results 
of our first participation in the TempEval shared 
task. We participated in all the tasks of Tem-
pEval-2, i.e., A, B, C, D, E and F for English. 
We develop the rule-based systems for tasks A 
and B, whereas the remaining tasks are based on 
a machine learning approach, namely CRF. All 
our systems are still in their development stages. 
Evaluation results on the shared task English 
datasets yield the precision, recall and F-measure 
values of 55%, 17% and 26%, respectively for 
Task A and 48%, 56% and 52%, respectively for 
Task B (event recognition).  Experiments on the 
English datasets yield the accuracies of 63%, 

80%, 56% and 56% for tasks C, D, E and F, re-
spectively. 
  Future works include identification of more 
precise rules for tasks A and B. We would also 
like to experiment with CRF for these two tasks.  
We would experiment with the various feature 
templates for tasks C, D, E and F. Future works 
also include experimentations with other ma-
chine learning techniques like maximum entropy 
and support vector machine.          

References  
Boguraev, B. and R. K. Ando. 2005. TimeML 

Compliant Text Analysis for Temporal Rea-
soning. In Proceedings of Nineteenth Interna-
tional Joint Conference on Artificial Intelli-
gence (IJCAI-05), Edinburgh, Scotland, Au-
gust, pages 997–1003. 

Chambers, N., S., Wang, and D., Jurafsky. , 
2007. Classifying Temporal Relations between 
Events. In Proceedings of the ACL 2007 Demo 
and Poster Sessions, Prague, Czech Republic, 
June, pages 173–176. 

 Lafferty, J., McCallum, A., and Pereira, F. 
Conditional Random Fields: Probabilistic 
Models for Segmenting and Labeling Se-
quence Data. In Proceedings of 18th Interna-
tional Conference on Machine Learning, 
2001. 

Mani, I., B., Wellner, M., Verhagen, and J. 
Pustejovsky. 2007. Three Approaches to 
Learning TLINKs in TimeML. Technical Re-
port CS-07-268, Computer Science Depart-
ment, Brandeis University, Waltham, USA. 

Mani, I., Wellner, B., Verhagen, M., Lee C.M.,   
Pustejovsky, J. 2006. Machine Learning of 
Temporal Relation. In Proceedings of the 
COLING/ACL, Sydney, Australia, ACL. 

Mao, T., Li., T., Huang, D., Yang, Y. 2006. Hy-
brid Models for Chinese Named Entity Rec-
ognition. In Proceedings of the Fifth SIGHAN 
Workshop on Chinese Language Processing. 

Sha, F., Pereira, F. 2003. Shallow  Parsing  with  
Conditional Random Fields. In Proceedings of  
HLT-NAACL, 2003. 

Verhagen, M., Gaizauskas, R., Schilder, F., Hep-
ple, M., Katz, G., Pustejovsky, and J.: SemE-
val-2007 Task 15: TempEval Temporal Rela-
tion Identification. 2007. In Proceedings of the 
SemEval-2007, Prague, June 2007, pages 75-
80. 

350


