
Proceedings of the 5th International Workshop on Semantic Evaluation, ACL 2010, pages 321–324,
Uppsala, Sweden, 15-16 July 2010. c©2010 Association for Computational Linguistics

HeidelTime: High Quality Rule-based Extraction and Normalization of
Temporal Expressions

Jannik Strötgen
Institute of Computer Science

University of Heidelberg
Heidelberg, Germany

stroetgen@uni-hd.de

Michael Gertz
Institute of Computer Science

University of Heidelberg
Heidelberg, Germany
gertz@uni-hd.de

Abstract

In this paper, we describe HeidelTime, a
system for the extraction and normaliza-
tion of temporal expressions. HeidelTime
is a rule-based system mainly using regu-
lar expression patterns for the extraction of
temporal expressions and knowledge re-
sources as well as linguistic clues for their
normalization. In the TempEval-2 chal-
lenge, HeidelTime achieved the highest F-
Score (86%) for the extraction and the best
results in assigning the correct value at-
tribute, i.e., in understanding the seman-
tics of the temporal expressions.

1 Introduction

Temporal annotation of documents, i.e., the ex-
traction and chronological ordering of events, is
crucial to many NLP applications, e.g., text sum-
marization or machine translation. In this paper,
we describe our system HeidelTime for the extrac-
tion and normalization of temporal expressions in
English documents. It was the best-performing
system in Task A for English of the TempEval-
2 challenge1. The purpose of this challenge was
to evaluate different systems for temporal tagging
as well as event and temporal relation extraction
since a competitive evaluation helps to drive for-
ward research, and temporal annotation is impor-
tant for many NLP tasks (Pustejovsky and Verha-
gen, 2009). The annotation scheme for tempo-
ral expressions, events, and relations is based on
TimeML, the ISO standard for temporal annota-
tion2.

Before using temporal information in other ap-
plications is possible, the first task to solve is to ex-
tract and normalize temporal expressions (Task A
of the challenge, annotated as Timex3). There

1http://semeval2.fbk.eu/
2http://www.timeml.org/

are two types of approaches to address this prob-
lem: rule-based and machine learning ones. We
decided to develop a rule-based system since nor-
malization can then be supervised in a much eas-
ier way. Furthermore, respective systems allow for
modular extensions.

Although we only participated in Task A, we do
not consider the extraction and normalization of
temporal expressions in isolation, but use temporal
information in combination with other extracted
facts, e.g., for the exploration of spatio-temporal
information in documents (Strötgen et al., 2010).
One of our primary objectives is therefore to de-
velop a system that can be used in other scenar-
ios without any adaptations. Thus, we implement
HeidelTime as a UIMA3 (Unstructured Informa-
tion Management Architecture) component to in-
tegrate the system into our existing document pro-
cessing pipeline. Another advantage of our tem-
poral tagger is that the user can choose between
a precision- and a recall-optimized rule set. In
the TempEval-2 challenge, both rule sets achieved
top scores in the extraction (F-scores of 86%) and
the precision-optimized set achieved the best re-
sults for assigning the correct value attributes to
the temporal expressions (85% accuracy).

The remainder of the paper is structured as fol-
lows: The system architecture is outlined in the
next section. In Section 3, we present the evalua-
tion results of HeidelTime in comparison to other
systems that participated in the challenge. We con-
clude our paper in Section 4.

2 System Architecture

In this section, the system architecture of Heidel-
Time is explained. First, UIMA and our UIMA-
based document processing pipeline are detailed,
followed by a description of the extraction and
normalization tasks, the functionality of the rules

3http://uima.apache.org/

321

TempEval­2
data

 rule design workflow task workflow

Collection Readers

TempEval­2
 Reader

other heterogeneous
sources

other
Collection Readers

Analysis Engines

Sentence Splitter

Tokenizer

POS Tagger

HeidelTime

CAS Consumers

TempEval­2
File Writer

TempEval­2
Evaluator

other
Consumers

U
IM

A
 D

oc
um

en
t

P
ro

ce
ss

in
g

P
ip

el
in

e

other Analysis Engines

Figure 1: UIMA pipeline with two workflows, one
for rule design and one for using HeidelTime.

and the post-processing steps.

2.1 Document Processing Pipeline
HeidelTime is developed as a UIMA component
so that we are able to integrate our temporal tagger
into our existing document processing pipeline. It
is an extension of the temporal tagger we already
use for the extraction and exploration of spatio-
temporal information in documents (Strötgen et
al., 2010). UIMA is widely used for process-
ing unstructured content such as audio, images, or
text. Different components can be combined to
create a pipeline of modular tools, and all com-
ponents use the same data structure, the Common
Analysis Structure (CAS). This allows to combine
tools that were not originally built to be used to-
gether, an advantage we are using for preprocess-
ing tasks as well.

In general, a UIMA pipeline consists of three
types of components, a Collection Reader for ac-
cessing the documents from a source and initializ-
ing a CAS object for each document. The analy-
sis of the documents is performed by Analysis En-
gines that add annotations to the CAS objects. Fi-
nally, CAS Consumers are used for final process-
ing, e.g., for storing the annotated information in
a database or performing an evaluation.

In Figure 1, the document processing pipeline
for designing and using our temporal tagger Hei-
delTime is depicted. The design workflow (left
arrows) contains the TempEval-2 Reader, which
reads the TempEval-2 data, initializes a CAS ob-
ject for each textual document and adds the anno-
tated data to the CAS. For the test set of the tem-

poral expression task, these include the sentence
and token information, and for the training set
also the gold standard Timex3 entities. Next, the
OpenNLP part-of-speech tagger4 is used, which
assigns the corresponding part-of-speech (POS)
tag to each token. The information about sen-
tences, tokens, and POS tags is then used by
our temporal tagger HeidelTime for extracting and
normalizing temporal expressions mentioned in
the documents. The CAS Consumer TempEval-
2 File Writer is used for creating the files needed
for applying the scorer and which had to be sub-
mitted for evaluation. During the rule develop-
ment phase of HeidelTime, the CAS Consumer
TempEval-2 Evaluator was used, which compares
the gold standard Timex3 annotations with the
Timex3 annotations extracted by HeidelTime, re-
sulting in lists of true positives, false positives,
and false negatives. These lists were then used for
adapting existing or creating new rules.

On the right-hand side of Figure 1, a workflow
for using HeidelTime in other scenarios is shown.
This workflow reflects the fact that temporal tag-
ging is just one intermediate component of our
document processing pipeline. Here, the docu-
ments have to be split into sentences and tokens
using the two analysis engines Sentence Splitter
and Tokenizer. The POS tagger and HeidelTime
are used in the same way as described for the other
workflow. In addition, other Analysis Engines can
be used, e.g., for combining the extracted tempo-
ral information with spatial information. Finally,
CAS Consumers are used, e.g., for storing the
spatio-temporal information in a database.

2.2 Extraction and Normalization Tasks

Every temporal expression te can be viewed as
a three-tuple tei = 〈ei, ti, vi〉, where ei is the
expression itself as it occurs in the textual docu-
ment, ti represents the type of the expression, and
vi is the normalized value. There are four possi-
ble types, namely Date, Time, Duration, and Set.
The normalized value represents the temporal se-
mantics of an expression as it is specified by the
markup language TimeML, regardless of the ex-
pression used in the document. The goal of Hei-
delTime is to extract for every temporal expression
the expression ei and to correctly assign the type
and value attributes ti and vi, respectively.

For this, HeidelTime uses hand-crafted rules,

4http://opennlp.sourceforge.net

322

Expression
resources

reMonth = “(. . . |June|July|. . .)”
reSeason = “(. . . |summer|. . .)”

Normalization
functions

normMonth(“June”) = “06”
normSeason(“summer”) = “SU”

Table 1: Examples for extraction and normaliza-
tion resources for months and seasons.

which are grouped into four types, namely the four
possible types of temporal expressions. More pre-
cisely, every rule is a triple of an expression rule,
a normalization function and the type information.
The extraction rules mainly consist of regular ex-
pression patterns. However, other features can be
used as well, e.g., a constraint what part-of-speech
the previous or next token has to have. Heidel-
Time contains resources for both the extraction
and the normalization tasks of the rules. For in-
stance, there are resources for weekdays, months,
or seasons, which are realized as regular expres-
sions and can be accessed by multiple extraction
rules. In addition, there are knowledge resources
for the normalization of such expressions. Exam-
ples are given in Table 1.

Algorithm 1 illustrates how rules are used in
HeidelTime. First, the rules are applied to ev-
ery sentence of a document, and extracted timexes
are added to the CAS object. Then, two post-
processing steps are executed to disambiguate un-
derspecified values and to remove invalid tempo-
ral expressions from the CAS. This functionality
is detailed in the next sections with a focus on the
linguistic clues for the normalization task.

Algorithm 1 ApplyRules.
foreach sentence in document

addDatesToCAS(date rules, CAS);
addTimesToCAS(time rules, CAS);
addDurationsToCAS(dur rules, CAS);
addSetsToCAS(set rules, CAS);

end foreach
foreach timex3 in CAS

disambiguateValues(CAS);
end foreach
removeInvalidsFromCAS(CAS);

2.3 Functionality of HeidelTime

There are many ways to textually describe tem-
poral expressions, either explicitly, implicitly or
relatively (Schilder and Habel, 2001). The extrac-
tion for all temporal expressions works in the same
way, but assigning the value attributes has to be
done differently. Explicit temporal expressions are
fully specified, i.e., the value attribute can directly

explicit temporal expressions
date r1 = (reMonth)g1 (reDay)g2, (reFullY ear)g3

norm r1(g1,g2,g3) = g3-normMonth(g1)-normDay(g2)
implicit temporal expressions
date r2 = (reHoliday)g1 (reFullY ear)g2

norm r2(g1,g2) = g2-normHoliday(g1)

Table 2: Extraction parts and normalization parts
of two sample rules.

be assigned using the corresponding normalization
function of the rule. For example, the explicit ex-
pression March 11, 1982 can be extracted with the
rule date r1 of Table 2 containing the resources
reMonth, reDay, and reFullY ear (regular ex-
pressions for possible month, day and year tokens
of a date phrase, respectively). The matched to-
kens can be accessed using the group ids so that
the normalization function can be called with the
extracted tokens resulting in the value 1982-03-11.

The value attribute of implicit expressions can
be assigned once the implicit temporal semantics
of such expressions is known. Holidays, for ex-
ample, can be extracted using date r2 with the
resource reHoliday and normalized using the
knowledge resource for normalization as shown in
Table 2. An example is Independence Day 2010
to which the value 2010-07-04 is assigned.

The normalization of relative expressions for
which a reference time is needed is the most chal-
lenging task. Examples are last June, just June
in phrases such as in June, or year-earlier in the
year-earlier results. To such expressions, Hei-
delTime assigns the values in an underspecified
format depending on the assumed reference time
and disambiguates them in a post-processing step.
The underspecified values for the examples are
UNDEF-last-June, UNDEF-June, and UNDEF-
REF-last-year, respectively. For the first two ex-
amples, the document creation time (dct) is as-
sumed to be the reference time while for the last
example the previously mentioned date is used for
reference. In news texts (as used in TempEval-2)
the dct is meaningful while other documents may
not contain such a reference time. Then, the previ-
ously mentioned date is used for all underspecified
values. The disambiguation of such expressions is
detailed in the next section.

2.4 Post-Processing

The first post-processing step is to disambiguate
underspecified value attributes (see Algorithm 1).
If the value starts with UNDEF-REF, the pre-

323

viously mentioned date is used for disambigua-
tion, otherwise the document creation time (dct)
if meaningful. The value UNDEF-last-June of
the previous section is disambiguated by calcu-
lating the June before the dct. More complex
are even less underspecified values like UNDEF-
June. Here, linguistic knowledge is used to dis-
ambiguate which June is meant: The tense of the
sentence is determined by using the part-of-speech
information of the tokens and checking the seman-
tics of the verbs in the sentence. This method iden-
tifies whether a sentence is past, present, or fu-
ture tense. E.g., the tense of the sentence In June,
new results will be published will be determined
to be future tense and the new value UNDEF-next-
June can be assigned instead of UNDEF-last-June
if past tense was identified. Such values are then
disambiguated using the methods described above.

If the reference time is assumed to be the
previously mentioned date all previous extracted
Timex3 are checked to be of the type Date. The
value vref of the closest previously mentioned
date is then used for further disambiguation. For
example, UNDEF-REF-last-year is calculated by
subtracting one year from vref . This can result in
a specific day but also in a specific quarter if the
last mentioned timex was a quarter.

The last post-processing step is to remove all
extracted timex annotations that are invalid. In-
valid are all expressions that are included in other
expressions. For instance, having the phrase June
11 the whole phrase is found by a rule as well as
just June. Since June is in June 11, it is removed.

3 Evaluation

In this section, we outline the evaluation of Hei-
delTime and compare our results with other sys-
tems that participated in the TempEval-2 challenge
Task A for English. For this challenge, we devel-
oped two rule sets, one precision- and one recall-
optimized set, reflecting the user’s choice between
precision and recall. The first set consists of 43
rules, 25 for dates, and 6 for times, durations, and
sets, respectively. The recall-optimized rule set
contains two more rules, one for dates and one for
durations. These rules are very general and thus
negatively influence precision.

Our results for the extraction in the two runs are
shown in Figure 2 together with the results of the
other participating systems. As one can see, both
our runs achieved the best F-score results (86%)

 50

 60

 70

 80

 90

 100

 50 60 70 80 90 100

Precision [%]

R
ec

al
l [

%
]

Figure 2: Performance of participating systems
with an F-score contour for reference. Our runs
are shown as full circles.

with a precision of 90% (82%) and a recall of 82%
(91%) for the two sets.

HeidelTime, with the precision-optimized rule
set, was the best system in assigning the value at-
tributes (85% values are assigned correctly). In
addition, the type attribute was correctly assigned
to 96% of the extracted expressions.

4 Conclusions

HeidelTime achieves high quality results for the
extraction and normalization of temporal expres-
sions. The precision-optimized rule set achieved
the best results for interpreting the semantics of
the temporal expressions. In our opinion, this as-
pect, i.e., assigning the correct value attribute, is
crucial since the value is used for further analysis
of the documents, e.g., when ordering events or
doing a temporal analysis of documents.

The rule-based approach makes it possible to in-
clude further knowledge easily, e.g., to assign tem-
poral information directly to historic events.

References
James Pustejovsky and Marc Verhagen. 2009.

SemEval-2010 Task 13: Evaluating Events, Time
Expressions, and Temporal Relations (TempEval-2).
In Proceedings of the Workshop on Semantic Evalu-
ations (SEW-2009), pages 112–116. ACL.

Frank Schilder and Christopher Habel. 2001. From
Temporal Expressions to Temporal Information: Se-
mantic Tagging of News Messages. In Proceedings
of the ACL-2001 Workshop on Temporal and Spatial
Information Processing, pages 65–72. ACL.

Jannik Strötgen, Michael Gertz, and Pavel Popov.
2010. Extraction and Exploration of Spatio-
Temporal Information in Documents. In GIR ’10,
pages 1–8. ACM.

324

