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Abstract 
We submitted four systems to the Japanese 
dictionary-based lexical-sample task of 
SENSEVAL-2. They were i) the support 
vector machine method ii) the simple Bayes 
method, iii) a method combining the two, and 
iv) a method combining two kinds of each. The 
combined methods obtained the best precision 
among the submitted systems. After the 
contest, we tuned the parameter used in the 
simple Bayes method, and it obtained higher 
preciSIOn. An explanation of these systems 
used in Japanese word sense disambiguation 
was provided. 

1 Introduction 
We participated in the Japanese dictionary­
based lexical-sample task of the SENSEVAL-2 
contest. We used machine learning approaches 
and submitted four systems. After the con­
test, we tuned the parameter used in the simple 
Bayes method and carried out additional exper­
iments. In this paper, we explain the systems 
and their experimental results. 

2 Task Descriptions 
The test data included 10,000 instances for eval­
uation. The RWC corpus (Shirai et al., 2001) 
was given as the training data. It was made 
from 3000 articles published in the Mainichi 
Newspaper. The nouns, verbs, and adjectives 
(the total number of which was about 150,000) 
were assigned sense tags defined on the basis 
of the Iwanami dictionary. The purpose of this 
task was to estimate the sense of a word by us­
ing its context. 

3 Methods 
Because the word sense assigned to each word 
is dependent on the word itself, estimations 
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were conducted using machine learning meth­
ods for each word. That is, we constructed as 
many learning machines as there were individ­
ual words. 

We used the simple Bayes and support vec­
tor machine methods as the machine learning 
method. 1 In this section, we explain each of the 
machine learning methods and then explain the 
method combining several of them. 

3.1 Simple Bayes Method 
This method estimates probability based on the 
Bayes theory. The category (i.e., the sense tag) 
with the highest probability is judged to be the 
desired one. This is a basic approach to the 
disambiguation of word sense. The probability 
of category a appearing in context b is defined 
as: 

p(alb) 
p(a) 
p(b) p(bla) (1) 

p(a) IT-
p(b) . p(f;ia), (2) 

' 
where context b is a set of features fj ( E F, 1 ~ 
j ~ k) that is defined in advance. p(b) is the 
probability of context b, which is not calculated 
because it is a constant and is not dependent 
on category a. p(a) and jj(fila) are the prob­
abilities estimated by using the training data 
and indicate the probability of the occurrence 
of category a in the examples of the training 
data and the probability of feature fi occur­
ring, given category a, respectively. When we 
use the maximum likelihood estimation to cal­
culate p(fiia), which often has a value of 0 and 
is therefore difficult to estimate the desired cat­
egory, smoothing process is used. We used this 

1 We made preliminary experiments using various 
methods: the simple Bayes, the decision list, the max­
imum entropy, and the support vector machine. The 
results showed that the simple Bayes and support vector 
machine methods were better than the other two (M u­
rata et al., 2001). We used these two methods in the 
contest. 
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Figure 1: Maximizing the margin 

equation for smoothing: 

_(!·I ) _ freq(f;, a)+ E * freq(a) 
p,a- ()' freq(a) + E * freq a 

(3) 

where freq(Ji, a) is the number of events that 
have the feature fi and whose category is a and 
freq(a) is the number of events whose category 
is a. E is a constant set by experimentation. In 
this study, we used 0.01 and 0.0001 as E. 2 

3.2 Support Vector Machine Method 

In this method, data consisting of two categories 
is classified by using a hyperplane to divide a 
space. When the two categories are, for exam­
ple, positive and negative, enlarging the margin 
between the positive and negative examples in 
the training data (see Figure 13) reduces the 
possibility of incorrectly choosing categories in 
test data. The hyperplane that maximizes the 
margin is thus determined, and classification is 
carried out using that hyperplane. Although 
the basics of this method are the same as those 
described above, in the extended versions of 
the method, the region between the margins 
through the training data can include a small 
number of examples, and the linearity of the 
hyperplane can be changed to a non-linearity 
by using kernel functions. The classification in 
the extended versions is equivalent to the classi­
fication using the following function (Equation 
( 4)), and the two categories can be classified on 
the basis of whether the value output by the 
function is positive or negative ( Cristianini and 
Shawe-Taylor, 2000; Kudoh, 2000): 

2 In the SENSEVAL-2 contest, we used 0.01 as t:. After 
the contest, we tested several values (0.1 to 0.00000001) 
as E. We confirmed that E = 0.0001 produced the best 
results using 10-fold cross validation in the training data. 

3 In the figure, the white and black circles indicate 
positive and negative examples, respectively. The solid 
line indicates the hyperplane that divides the space, and 
the broken lines indicate the planes that mark the mar­
gins. 
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f(x) 'gn ( t ";y;J((x;, x) + /,) (4) 

max;,y;=-tb; + mini,y;=tb; 
b 

2 
l 

b; - I:>'iYiK(xj, x;), 
j=l 

where x is the context (a set of features) of 
an input example, Xi indicates the context of 
a training datum, Yi (i = 1, ... ,l,yi E {1,-1}) 
indicates its category, and the function sgn is 

sgn(x) = 1 (x 2: 0), (5) 

-1 (otherwise). 

Each O:i ( i = 1, 2 ... ) is fixed as the value of O:i 

that maximizes the value of L(a) in Equation 
(6) under the conditions set by Equations (7) 
and (8). 

l l 

L(a) 2:: a;-~ 2:: a;O:jYiYjK(x;, Xj) (6) 
i=l i,j=l 

0 S: a; S: C (i = 1, ... ,l) 

l 

L a;y; = 0 
i=l 

(7) 

(8) 

Function K is called a kernel function and var­
ious functions are used as kernel functions. We 
have used the following polynomial function ex­
clusively. 

K(x,y) =(x·y+l)d (9) 

C and d are constants set by experimentation. 
For all of the experiments reported in this pa­
per, C was fixed as 1 and d was fixed as 2. 

A set of Xi that satisfies O:i > 0 is called a 
support vector (SVs) 4. The summation portion 
of Equation ( 4) was calculated using only the 
examples that were support vectors. 

Support vector machine methods are capable 
of handling data consisting of two categories. In 
general, data consisting of more than two cate­
gories is handled by using the pair-wise method 
(Kudoh and Matsumoto, 2000). 

In this method, for data consisting of N cat­
egories, pairs of two different categories (N (N-
1)/2 pairs) are constructed. The better cate-

1rn Figure 1, the circles in the broken lines indicate 
support vectors. 



gory is determined by using a 2-category clas­
sifier (in this paper, a support vector machine5 

was used as the 2-category classifier), and the 
correct category is finally determined by "vot­
ing" on the N(N-1)/2 pairs that result from 
analysis using the 2-category classifier. 

The support vector machine method is, in 
fact, performed by combining the support vec­
tor machine and pair-wise methods described 
above. 

3.3 Combined Method 
Our combined method changed the used 
machine-learning method for each word. The 
used method for each word was the best one 
for the word in the 10-fold cross validation6 on 
the training data among the given methods for 
combination. 

We used the following three kinds of combi­
nations. 

• Combined method 1 
a combination of the simple Bayes and support 
vector machine methods 

• Combined method 2 
a combination of two kinds of the simple Bayes 
method and two kinds of the support vector 
machine method 
(Here, "the two kinds" indicate an instance 
where all features were used and where the syn­
tactic feature alone were not). 7 

• Combined method 3 
a combination of two kinds of the simple Bayes 
method 
(Here, "the two kinds" indicate instance where 
E = 0.0001 and another where E = 0.01). 

4 Features (information used in 
classification) 

In this paper, the following are defined as fea­
tures. 

• Features based on strings 

- strings in the analyzed morpheme 
- strings of 1 to 3-grams just before the an-

alyzed morpheme 

5We used Kudoh's TinySVM software (Kudoh, 2000) 
as the support vector machine. 

6 In the 10-fold cross validation, we first divide the 
training data into ten parts. The answers of the in­
stances in each part are estimated by using the instances 
in the remaining nine parts as the training data. We then 
use all the results in the ten parts for evaluation. 

7We used a case where the syntactic feature alone 
was not used because it obtained a higher precision than 
when all the features had been used in our preliminary 
experiments. 

- strings of 1 to 3-grams just after the ana­
lyzed morpheme 

• Features based on the morphological in­
formation given by the RWC tags 

- the part of speech (POS), the minor POS, 
and the more minor POS of the analyzed 
morpheme 8 

- the previous morpheme, its 5-digit cate­
gory number, its 3-digit category number, 
its POS, its minor POS, and its more mi­
nor POS9 

the next morpheme, its 5-digit category 
number, its 3-digit category number, its 
POS, its minor POS, and its more minor 
POS 

• Features based on the morphological in­
formation given by JUMAN 
The corpus was analyzed using the Japanese 
morphological analyzer, JUMAN (Kurohashi 
and Nagao, 1998), and the results were used 
as features. 

the POS, the minor POS, and the more 
minor POS of the analyzed morpheme, 
which were determined from the results of 
JUMAN. 
the previous morpheme, its 5-digit cate­
gory number, its 3-digit category number, 
its POS, its minor POS, and its more mi­
nor POS 

- the next morpheme, its 5-digit category 
number, its 3-digit category number, its 
POS, its minor POS, and its more minor 
POS 

• Features based on syntactic information 
The corpus was analyzed using the Japanese 
syntactic analyzer KNP (Kurohashi, 1998), and 
the results were used as features. 

- the bunsetsu, 10 including the analyzed 
morpheme information on whether or not 

8 The POS, the minor POS, and the more minor POS 
of a morpheme are the items in the third, fourth, and 
fifth fields of the RWC corpus, respectively. 

9 A Japanese thesaurus, the Bunrui Goi Hyou dictio­
nary (NLRI, 1964), was used to determine the category 
number of each morpheme. This thesaurus is of the 'is­
a' hierarchical type, in which each word has a category 
number, which is a 10-digit number that indicates seven 
levels of an 'is-a' hierarchy. The top five levels are ex­
pressed by the first five digits, the sixth level is expressed 
by the next two digits, and the final level is expressed by 
the final three digits. 

10 Bunsetsu is a Japanese grammatical term. A bun­
setsu is similar to a phrase in English, but is a slightly 
smaller component. Eki-de "at the station" is a bun­
setsu, and sono, which corresponds to "the" or "its," is 
also a bunsetsu. A bunsetsu is, roughly, a unit of items 
that refers to entities. 
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Table 1: Experimental results 

Method Precision 
Baseline method 0.726 
Support vector machine (CRL1) 0.783 
Simple Bayes method, t = 0.01 (CRL2) 0.778 
Simple Bayes method, t = 0.0001 0.790 
Combined method 1 (CRL3) 0.786 
Combined method 2 (CRL4) 0.786 
Combined method 3 0.793 
The best method in the contest 0.786 

the bunsetsu was a noun phrase, the POS 
of the bunsetsu's particle, the minor POS 
of the particle, and the more minor POS 
of the particle 

the main word that the bunsetsu modifies, 
including the analyzed morpheme and its 
5-digit category number, 3-digit category 
number, POS, minor POS, and more mi­
nor POS 

the main words of the modifiers of the 
bunsetsu including the analyzed mor­
pheme and their 5-digit category numbers, 
3-digit category numbers, POSs, minor 
POSs, and more minor POSs (In this case, 
the information on the particle, such as ga 
or o, was used as well). 

• Features of all words co-occurring in the 
same sentence 
The corpus was analyzed using the Japanese 
morphological analyzer JUMAN (Kurohashi 
and Nagao, 1998), and lists of the results were 
used as features. 

each morphology in the same sentence, its 
5-digit category number, and its 3-digit 
category number 

• Features of the UDC code in a document 
In the RWC corpus, each document has a uni­
versal decimal code (UDC), indicating its cat­
egory. 

the first digit, the first two-digits, and the 
first three-digits of the UDC in the docu­
ment 

5 Experiments 

We submitted the four systems ( CRL1 to 
CRL4), the support vector machine method, 
the simple Bayes method (E = 0.01), Combined 
method 1, and Combined method 2. After the 
contest, we carried out the experiments using 
the simple Bayes (E = 0.0001) and Combined 
method 3. Their experimental results are shown 

in Table 1. "Baseline method" selected the cate­
gory that most frequently occurred in the train­
ing data as the answer. "The best method in 
the contest" was the best among all the sys­
tems submitted to the contest, which was CRL4 
(0.786483). The precisions shown in the table 
are the mixed-grained scores calculated by soft­
ware "scorer2", which was given by the com­
mittees of SENSEVAL-2. (In our systems, all 
the instances were attempted, so the recall rate 
was equal to its precision rate.) 

We found the following items from the results. 

• All the methods produced higher precision than 
the baseline method. 

• Among the four submitted systems (CRL1 to 
CRL4), Combined method 2 was the best. 

• The simple Bayes method using E = 0.0001 
and Combined method 3 (the combination of 
the two simple Bayes methods) obtained higher 
precision. This indicates that the simple Bayes 
method was effective. 

6 Conclusion 
Our methods combining the simple Bayes and 
support vector machine methods obtained the 
best precision among all the submitted systems. 
After the contest, we tuned the parameter used 
in the simple Bayes method using the 10-fold 
cross validation in the training data, and it ob­
tained higher precision. The best method was 
the combination of the two simple Bayes, whose 
precision was 0.793. 
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