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Abstract

Verbalization of non-lexical linguistic
units plays an important role in language
modeling for automatic speech recogni-
tion systems. Most verbalization methods
require valuable resources such as ground
truth, large training corpus and expert
knowledge which are often unavailable.
On the other hand a considerable amount
of audio data along with its transcribed
text are freely available on the Internet and
could be utilized for the task of verbaliza-
tion. This paper presents a methodology
for accurate verbalization of audio tran-
scriptions based on phone-level alignment
between the transcriptions and their cor-
responding audio recordings. Comparing
this approach to a more general rule-based
verbalization method shows a significant
improvement in ASR recognition of non-
lexical units. In the process of evaluating
this approach we also expose the indirect
influence of verbalization accuracy on the
quality of acoustic models trained on auto-
matically derived speech corpora.

1 Introduction

Automatic speech recognition (ASR) systems
transcribe utterances into sequences of linguistic
units. Linguistic units can be roughly character-
ized as either lexical (e.g. “house”, “seven”, “sec-
ond”) or non-lexical – units that have different ver-
bal and written form (e.g. “11”, “02.07.2017”,
“cm”). The form of the linguistic units output
from an ASR system depends on the units of the
language model (LM). In order for an ASR system
to be able to output certain linguistic units their
phonetizations have to be known. This poses a
problem because most LM training corpora con-

tain both lexical and non-lexical units and while
the phonetizations of most of the lexical units can
be found in a pronunciation lexicon, this is not the
case for the non-lexical units. Most of the meth-
ods addressing this issue follow one of two general
approaches.

The first approach aims to verbalize the lan-
guage model training corpus, i.e. to expand all
non-lexical units to their verbal forms, and then
train a verbal-domain language model on the re-
sulting text that contains only lexical linguistic
units (Chelba et al., 2010). Verbalization is often
done using finite-state rewrite rules and is a non-
trivial task since the choice of correct verbaliza-
tion is ambiguous as it depends on the context in
which the non-lexical unit is used. This approach
has several disadvantages. Writing verbalization
rules that make use of contextual information is a
very time consuming task. It often requires do-
main specific knowledge and even then in many
cases multiple correct verbalizations exist. On the
other hand, context-independent rules select a sin-
gle verbalization variant for each non-lexical unit
which is usually very inaccurate because of the
aforementioned ambiguities of written language.
Alumäe et al. (2017) show how a small amount of
verbalized text that serves as ground truth can be
used to mitigate the lack of verbalization variabil-
ity when using context-independent rules. Their
method chooses a verbalization for each sentence
by sampling from all of its possible verbalization
variants with probability that is proportional to the
probability of each individual variant. The prob-
ability of the variants is assigned by a language
model trained on the ground truth text. Neverthe-
less, the verbalization may still be inaccurate due
to the use of sampling.

The second approach is to train a written-
domain language model on the original corpus that
contains both lexical and non-lexical units and add
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to the pronunciation lexicon the phonetizations of
all non-lexical units from the language model vo-
cabulary. Sak et al. (2013) show how this can be
implemented without modifying the lexicon. They
construct a verbalizer transducer that maps vocab-
ulary items to verbal expansions and compose its
inverse with the written-domain language model
to produce a verbal-domain language model. This
approach, however, is applicable mainly for very
large training corpora where the size of the data al-
leviates the data sparsity issues caused by increas-
ing the size of the language model vocabulary.

The increase of available multimedia content on
the Internet and the development of speech and
language technology in recent years have made it
possible to significantly reduce the manual work
needed to prepare speech and language resources.
For example, the considerable amount of available
audio data along with its transcribed text (such
as audiobooks and recorded parliament plenary
sessions) has been used for the creation of ASR
corpora. The English ASR corpus LibriSpeech
(Panayotov et al., 2015) has been derived from
thousands of public domain audiobooks. Also,
parliament session recordings have been utilized
for building ASR corpora for Bulgarian (Geneva
et al., in press), Catalan (Miró et al., 2014) and
Icelandic (Helgadóttir et al., 2017).

In this paper we describe another way of tak-
ing advantage of such resources. We present a
methodology for verbalization of audio transcrip-
tions by decoding the corresponding audio with an
ASR system and choosing the transcription ver-
balization that best matches the ASR output pho-
netically. The idea of using phonetic similarity
is quite intuitive because it replicates what a hu-
man would do when faced with this task – to de-
termine the correct verbal expansion of a non-
lexical unit in a transcription he would have to
frequently resort to listening to the audio. Using
this methodology we aim to produce more accu-
rate verbalization without the requirements of hav-
ing large training corpora, ground truth or expert
knowledge. Improvements in verbalization accu-
racy may lead not only to superior language mod-
els but could also indirectly improve the quality
of acoustic models. Most of the ASR corpora de-
rived from transcribed audio are based on auto-
matic alignment of the audio with its transcription.
For such tasks, having a more accurate verbaliza-
tion method applied to the transcriptions would

lead to better alignments and improved quality of
the resulting speech corpus.

In the following sections we present the
methodology for text verbalization described
above and its application to the transcriptions of
the plenary sessions of the Bulgarian Parliament.
Section 2 describes the data available from the
Bulgarian Parliament and the speech corpora and
language resources we used to build an acoustic
model for ASR. In Section 3 we apply a base-
line verbalization method based on rewrite rules
to the transcriptions of parliament speeches. In
Section 4 we present the method of verbalization
based on audio alignment and the process of ap-
plying it to the dataset from the Bulgarian Parlia-
ment described in Section 2. Finally, in Section 5
we measure the impact on ASR accuracy of the
method described in Section 4 in comparison to
the method from Section 3. We also provide evi-
dence of the importance of verbalization accuracy
to the quality of automatically derived speech cor-
pora.

2 Data Preparation

2.1 Audio and Transcriptions

The website of the Bulgarian Parliament1 provides
video recordings of all plenary sessions since 2010
in mp4 format. The speeches are recorded us-
ing stationary directed microphones on the parlia-
ment’s platform. The format of the audio stream in
the video files is 44100 Hz mono compressed with
the AAC codec at 75 kb/s. Each recording is sep-
arated into parts by the pause breaks made during
the session. For each session the corresponding
manually transcribed texts are provided in a sin-
gle file. We downloaded the recordings and their
transcriptions from 2010 until July 2018.

The preprocessing of the video files consisted of
extracting the audio stream in 16 kHz PCM wav
format using the ffmpeg2 tool. The preparation of
the transcriptions had to overcome several specific
types of annotations that are present in the text but
are not spoken in the audio. We will briefly discuss
those issues. Geneva et al. (in press) treat them in
more detail.

Every speech in the transcriptions is preceded
by the name of the speaker and sometimes the
name of his or her party written in free text.

1https://www.parliament.bg/
2https://ffmpeg.org

https://www.parliament.bg/
https://ffmpeg.org
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The text files also contain annotations that in-
dicate what is happening in the room. All oc-
currences of both of those annotation types were
consistently formatted and contained specific key-
phrases which made it easy to construct regular ex-
pressions to remove them.

As mentioned above, for each session of the par-
liament there are several audio files but only one
text transcription. We used the semi-automatic ap-
proach described by Geneva et al. (in press) to
split the transcriptions so that they match the audio
session parts. Despite of that, occasional inaccu-
racies still remain in the alignment of the session
audio and text parts.

The resulting dataset consists of 1046 session
recordings (2261 parts) for a total of 4832 hours
of audio and 30 million words of text.

2.2 Acoustic Model

The Bulgarian ASR corpus BG-PARLAMA
(Geneva et al., in press) is a speech corpus built
from the speeches of the Bulgarian Parliament
members. Its training set consists of 148607
speech segments from 572 unique speakers (422
male and 150 female) with a total duration of 249
hours.

We used the Kaldi ASR Toolkit (Povey et al.,
2011) to train a time delay deep neural network
(TDNN) (Peddinti et al., 2015) acoustic model
with p-norm nonlinearities (Zhang et al., 2014) on
the BG-PARLAMA corpus. A speaker-adaptive
GMM model was also trained and used for gen-
erating state-level alignments for the TDNN train-
ing. We used the same parameters for the mod-
els as those in the LibriSpeech (Panayotov et al.,
2015) Kaldi recipe. The phonetic system that we
used is presented in (Mitankin et al., 2009; Hateva
et al., 2016) and the pronunciation lexicon is the
extended version (Geneva et al., in press) of the
lexicon from (Mitankin et al., 2009).

3 Verbalization Based on Rules

In this section we describe the application of the
verbalization method based on rewrite rules to the
transcriptions from the Bulgarian Parliament. We
use it as a baseline for comparison with the ver-
balization based on audio alignment described in
Section 4.

3.1 Rules for Non-Lexical Units
In the transcriptions several frequently occurring
types of non-lexical units are observed. They are
presented in Table 1 alongside their frequencies
and several example occurrences.

The verbalization of some of those units does
not require contextual information and is there-
fore accomplished using simple rewrite dictionar-
ies. The special symbols and some abbreviations
fall under this category. Example lines from their
rewrite dictionaries are shown below.

� −→ ïàðàãðàô

÷ë. −→ ÷ëåí

There are also non-lexical units that require
contextual information to uniquely determine their
correct verbalization. In Table 1 only the metric
units fall under this category. In general, the ver-
balization of a metric unit depends on the number
preceding it. The singular form is used if the num-
ber is “1” and the plural otherwise. For example

êì. −→ êèëîìåòúð/1

êì. −→ êèëîìåòðà/Digit∗ − 1

where A → B/L R denotes “replace A with B
when the left context is L and the right context is
R”.

The verbalization of the rest of the units from
Table 1 (numbers, dates and times) is ambiguous
because even though it requires contextual infor-
mation, the correct verbalization is not uniquely
determined by it. We will briefly discuss some of
the causes for those ambiguities.

In Bulgarian numbers have cardinal and ordinal
forms. Each form has three inflections based on
gender (some of which coincide). Often more than
one of these forms is a possible verbalization vari-
ant. For example, both the ordinal “àëèíåÿ ïúð-

âà” and the cardinal “àëèíåÿ åäíî” are correct
verbalizations of “àëèíåÿ 1”. Another source of
ambiguity is the fact that some numbers have dou-
blet forms (e.g. “äâàíàäåñåò” /dvanadeset/ and
“äâàíàéñåò” /dvanayset/).

In colloquial speech it is common to omit
whole parts of phrases. In date expressions the
word for “year” is often left out as well as the
words for “hours” and “minutes” in expressions
for time. For years after 2000 the word for “thou-
sands”(“õèëÿäè”) is often skipped as in “äâå è

âòîðà” compared to “äâå õèëÿäè è âòîðà”. For



42

Unit Type Example Occurrences Frequency
Arabic numbers “21”, “42” 865275
Roman numbers “II”, “XIV” 10200
Fractional numbers “3.5”, “25,03” 19488
Dates “07.06.2019”, “27 ìàðò 2019” 119209
Abbreviations “÷ë.”, “ïðîô.” 208216
Special symbols “�”, “�”, “+” 105437
Metric units “êì.”, “äêà.”, “ëâ.” 87770
Times “12 ÷. è 23 ìèí.”, “14,00 ÷.” 6229

Table 1: Most frequent non-lexical units found in the transcriptions.

years starting with “19” a shorter form is also ac-
cepted such as “äåâåòäåñåò è ÷åòâúðòà”(ninety-
fourth) for “1994”.

In spite of the above-mentioned ambiguities, we
verbalized numbers, dates and times using rewrite
rules by choosing only one of the possible verbal-
ization variants to expand all of their occurrences.

3.2 Recognition Errors

Before applying the verbalization rules described
in the previous subsection the out-of-vocabulary
words in the corpus were 4.97% using the ex-
tended lexicon from Section 2. After applying
them we covered more than 99.65% of the vocab-
ulary found in the transcriptions.

We trained a 3-gram modified Kneser-Ney
smoothed language model on the verbalized text
using the SRILM Toolkit (Stolcke, 2002). With
this language model and the acoustic model de-
scribed in Section 2 we decoded recordings of the
Bulgarian Parliament from 2019 that contain rel-
atively many non-lexical units. In the recognition
results we observed systematic mistakes caused by
the non-variability in the verbalization. The under-
lined words in the following snippet demonstrate
some of the most common mistakes.

... çà âðåìåòî îò øåñò äî îñåìíàé-

ñåòè þíè ... ãëàñóâàëè ñòî è åäíî

íàðîäíè ïðåäñòàâèòåëè ... ñúçäàâàò
ñå íîâà àëèíåÿ äâå è àëèíåÿ òðè ...
äåñåòè îêòîìâðè äâå õèëÿäè è ñå-

äåìíàéñåòà ãîäèíà ...

The first underlined word is an example of in-
correct usage of a cardinal instead of an ordinal
number form. The second is a number form that
should have agreed on gender with the word that
follows it. Even though the cardinal number form

in the third and the fourth underlined words is per-
mitted, it differs from the ordinal form that is spo-
ken in the audio recording. The last underlined
word should have been omitted because it is not
pronounced at all.

We suspect that all those mistakes are caused
by the language model. More specifically, because
of the lack of variability in the verbalization of its
training texts. The method presented in the next
section corrects most of those mistakes and thus
confirms our assumption.

4 Verbalization Based on Audio
Alignment

In this section we present a method for verbal-
ization of audio transcriptions based on phone-
level alignment with the audio. Subsection 4.1
presents the creation of a written-domain language
model from the transcribed texts and the exten-
sion of the pronunciation lexicon with all possi-
ble phonetizations of the non-lexical LM vocabu-
lary items. Subsection 4.2 is devoted to the algo-
rithm for phone-level alignment of the ASR out-
put with the audio transcriptions. The algorithm
is a modification of the classic algorithm for cal-
culating the Levenshtein distance between strings.
It allows to compute the Levenshtein distance be-
tween a given string and the concatenation of finite
sets of strings. We prove the correctness of this al-
gorithm in Appendix A.

4.1 Building Written-Domain LM and
Extending the Lexicon

First, we identify the non-lexical words whose ver-
balization could not be uniquely determined. We
tag them with special tags using rules based on
those from the previous section. As seen in Ta-
ble 1 the occurrences of time expressions are too
few so they are treated alongside the unambiguous
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non-lexical words as described in Section 3.
We aim to add all possible phonetizations of

those specially tagged units to the lexicon. How-
ever, this would lead to a major increase in the
lexicon size. In order to avoid this we sepa-
rate some of the tagged expressions into parts and
add their phonetizations instead. For example in-
stead of tagging whole date expressions such as
“TD02.07.2017TD” we tag the day, month and year
separately “TDD02TDD.TDM07TDM.TDY2017TDY”. Non-
integer numbers in decimal form are also sepa-
rated into their integer and fractional parts. The
different pronunciations of the decimal separator
are also taken into consideration.

In order to reflect the specifics of the language
more closely additional tags are introduced. Time
periods are tagged separately from ordinary dates
because “01–02 þíè 2017” could be also pro-
nounced with a “from-to” construction. In some
cases a word could be omitted (such as the “year”
word in date pronunciations) or a punctuation
mark could be pronounced (e.g.“dash” and “dot”).
Thus new tags were introduced to reflect those
specifics. Lastly, acronyms are also tagged sep-
arately because they have several pronunciation
variants including their expanded form and several
different letter-by-letter pronunciations.

The special tags, their frequencies and the ver-
balization variants that we deemed acceptable are
presented in Table 2. We automatically generated
the verbalization variants shown in the second col-
umn of Table 2 using rewrite rules compiled into
finite-state transducers. The verbalizations were
then processed using the phonetization rules from
the Bulgarian Text-to-Speech System (Andreeva
et al., 2005). The phonetization rules require ac-
cent information so the accent marks were manu-
ally added when needed. This resulted in the ex-
pansion of the lexicon with 31935 additional en-
tries.

A 3-gram language model with modified
Kneser-Ney smoothing was trained on the result-
ing tagged text and the updated lexicon. The Kaldi
ASR Toolkit was used to decode the downloaded
audio from the Bulgarian Parliament (see Sec-
tion 2) using this language model and the acoustic
model described in Section 2.

4.2 Phone-Level Alignment with Variants

The ASR system produces as output a sequence
of words along with their recognized phonetiza-

tions. Our aim is to align the specially tagged
words in the transcribed text with this output in
order to obtain their correct phonetizations (and
therefore verbalizations). The simplest alignment
scheme we could use is based on word-level Lev-
enshtein distance. This technique is expected to
align tagged units in the transcription with tagged
units in the ASR output. In practice, however, very
often an alternative written form is chosen by the
ASR system. The reason for this is that the phone-
tization of a linguistic unit frequently coincides
with a combination of the phonetizations of sev-
eral other units. For example, the phonetization
of “TN101TN” in the transcribed text is expected to
be aligned to “TN101TN” in the ASR output. How-
ever, one of the phonetizations of “TN101TN” (/sto i
edno/) coincides with phonetizations of “TN100TN è

TN1TN” and “ñòî è åäíî”. Because of this the ASR
system could choose any of them and not specifi-
cally “TN101TN”. This makes the word-level align-
ment inappropriate. Thus, we propose the use of
phone-level alignment.

Looking at the ASR system output as a se-
quence of phones we aim to find its best align-
ment to any of the possible phonetizations of the
transcribed text. Each phonetization is formed by
the concatenation of possible phonetizations of its
constituent words. If w1w2...wn is the transcribed
text and Φ(wi) is the set of all possible phonetiza-
tions of wi, then the resulting transcription phone-
tizations are Φ(w1) ◦ Φ(w2) ◦ · · · ◦ Φ(wn) where
◦ denotes concatenation (see Appendix A). This
could be used to solve the word-level alignment
problem – in the example above, regardless of the
word chosen by the ASR system, if the recognized
phones are /sto i edno/, then the alignment will se-
lect the correct phonetization from Φ(“TN101TN”).
The corresponding verbalization could then be
uniquely determined from the tagged unit and the
chosen phonetization.

The algorithm (see Algorithm 1) is a modifica-
tion of the Levenshtein distance algorithm (Wag-
ner and Fischer, 1974) and takes into account all
phonetization variants for each word in the tran-
scribed text. Given a sequence of phones from the
ASR system output α = a1a2 . . . an, a sequence
of words β = b1b2 . . . bm that represents a tran-
scription text and a function Φ which yields all
possible phonetizations of a given word, the algo-
rithm finds the best alignment between all possi-
ble phonetizations of the transcribed text Φ(b1) ◦
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Type Verbalization Variants Frequency
TN doublet forms; ordinal; cardinal; all genders 808836
TRN doublet forms; ordinal; cardinal; all genders 10194
TFN1 cardinal all genders 19488
TFN2 cardinal all genders; different decimal separator pronunci-

ations
19488

TDD doublet forms; ordinal masculine; optional leading zero 55765
TDM doublet forms; ordinal masculine; optional leading zero;

month name
2242

TDY doublet forms; optional “thousands” word 104562
TDYW optional 102136
TDDPERIOD TDD variants and optional “from-to” construction 497
TDYPERIOD TDY variants and optional “from-to” construction 4294
TPUNCT optional 53298
TAC expanded forms; different letter-by-letter pronunciations 67931

TN – arabic number, TRN – roman number, TFN1 – integer part of decimal non-integer, TFN2 – fractional part
of decimal non-integer, TDD – day, TDM – month, TDY – year, TDYW – year word, TDDPERIOD – time period
with dash between days, TDYPERIOD – time perid with dash between years, TPUNCT – some punctuation marks,
TAC – abbreviations and acronyms

Table 2: Tagged non-lexical units.

Φ(b2) ◦ · · · ◦ Φ(bm) and α. For each 0 ≤ i ≤ n
and 0 ≤ j ≤ m the best alignments between
Φ(b1) ◦ Φ(b2) ◦ · · · ◦ Φ(bi) and a1a2 . . . aj are
stored inM[i][j]. For each alignment inM[i− 1]
we choose the phonetization of bi which best ex-
tends it and write it at the corresponding position
in M[i]. This is done in the for loop on line 8.
LEVENSHTEINDISTANCE(ϕ, α,M [i−1]) fills the
dynamic programming table used for the compu-
tation of the Levenshtein distance between ϕ and
α. It implements the standard Levenshtein algo-
rithm described in (Wagner and Fischer, 1974). It
usesM[i− 1] as a first row, i.e. it extends the best
alignments so far. The selection of the best exten-
sions for each prefix of α is done in the for loop
on line 10. In the end,M[m][n] contains the best
alignment between Φ(b1) ◦ Φ(b2) ◦ · · · ◦ Φ(bm)
and α. The correctness of the algorithm is further
discussed in Appendix A.

The proposed method is then applied to the tran-
scribed texts. Since the agreement between the
audio and its transcription is not perfect, we con-
sider the different alignment situations between
each tagged unit and the section in the ASR out-
put it’s aligned to. If a possible phonetization of
the unit exactly matches its aligned section or is
a substring of it, then this phonetization is cho-
sen. Otherwise, we choose that phonetization of
the unit which is within a given threshold distance
(33% phone error rate in our case) to the aligned

section, if such exists. If none of those conditions
are met, we choose a default phonetization based
on the most frequent occurrences of the unit type.
In Table 3 the frequency of those choices is shown.

Alignment Type Frequency
Exact matches 919122
Substring matches 36132
Levenshtein distance ≤ 33% 95960
Remaining (default) 197517

Table 3: Frequency of phonetization choices based
on the phone-level alignment.

5 Results

During the preliminary tests with the verbalization
method from Section 4 we observed that many
of the recognition errors described in Section 3
were still present. For example, even though both
“àëèíåÿ åäíî” and “àëèíåÿ ïúðâà” occur in
the language model from Section 4, the ordinal
form “àëèíåÿ ïúðâà” was consistently recog-
nized as the cardinal “àëèíåÿ åäíî”. This lead us
to believe that the problem lies within the acoustic
model. The texts of the BG-PARLAMA training
set contain only occurrences of the cardinal form.
We supposed that non-variability in the verbaliza-
tion used for the preparation of BG-PARLAMA
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Algorithm 1 Pseudocode of the phone-level alignment algorithm with variants.
1: F ← phones in the phonetization system
2: D ← language model vocabulary
3: Φ← function that maps every word in D to a finite set of its phonetizations
4: α← sequence of phones a1a2 . . . an ∈ F∗ output from an ASR system
5: β ← sequence of words b1b2 . . . bm ∈ D∗ that represents a transcription text
6: M ← an (m + 1) × (n + 1) matrix such thatM[0][j] = j for 0 ≤ j ≤ n andM[i][j] = ∞ for

1 ≤ i ≤ m and 0 ≤ j ≤ n
7: for i← 1,m do
8: for all ϕ ∈ Φ(bi) do
9: M′ ← LEVENSHTEINDISTANCE(ϕ, α,M[i− 1])

10: for j ← 0, n do
11: M[i][j]← MIN(M[i][j],M′[|ϕ|][j])
12: end for
13: end for
14: end for

lead to mismatches between the audio and its text.
In order to test this hypothesis we removed all
speeches from the corpus which contain the word
“åäíî” and trained a new TDNN acoustic model
with the same parameters. Using this acoustic
model and the language model from Section 4 the
above-mentioned mistakes were corrected which
confirmed the hypothesis. Similar recognition er-
rors caused by the speech corpus were observed
between doublet forms of numbers.

Since the number of non-lexical units in the
transcriptions is significantly lower than the num-
ber of lexical units, we use a similar metric to
that in (Sak et al., 2013). Instead of word error
rate (WER) we compute non-lexical unit error rate
(NER) defined as:

ND +NI +NS

NN

where NN is the total number of non-lexical num-
ber and ND, NI and NS are respectively the num-
ber of deletions, insertions and substitutions of
non-lexical units. We compared the NER of two
ASR systems based on the acoustic model de-
scribed above that differ only in the language
model – the first uses the LM from Section 3,
while the second uses the LM from Section 4.
The test and dev sets of BG-PARLAMA contain
hardly any non-lexical units. This is why the
ASR systems were used to decode the specially
chosen parliament session from the 5th of June
2019. It contains 758 non-lexical units which we
manually transcribed. Examination of the recog-
nition results revealed that many of the mistakes

were caused by the system choosing the wrong
number doublet form. As we already mentioned,
those mistakes are the result of imperfections in
the speech corpus. Thus, they should not be in-
cluded in the verbalization performance compari-
son. The NER with the first and second LM are
shown in Table 4. As it can be seen, the ver-
balization method presented in Section 4 halved
the NER of the verbalization method described
in Section 3. Investigation of the recognition er-
rors proved that the alignment-based method is
able to correct many of the errors caused by the
non-variability of the rule-based method. In order
to achieve better estimate of the improvement the
aforementioned mismatches present in the speech
corpus would have to be reduced.

Verbalization Method NER
Based on rules 22.8%
Based on alignment 11.5%

Table 4: Non-lexical error rate on the parliament
session from the 5th of July 2019.

6 Conclusion

In this paper we described a method for text
verbalization based on phone-level alignment be-
tween transcriptions and their corresponding au-
dio recordings. We compared it to a general rule-
based verbalization method and showed signifi-
cant reduction in the recognition error rate of non-
lexical units. The comparison tests showed that
verbalization plays an important role not only in
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language modeling but it could indirectly affect
the quality of acoustic models as well. We plan
to further analyze the mistakes we discovered in
the BG-PARLAMA corpus and explore how more
accurate verbalization methods could lead to bet-
ter automatically derived speech corpora.
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β = b1b2 . . . bm, α ◦ β = a1a2 . . . anb1b2 . . . bm
and for the sets of strings A and B,A ◦B = {α ◦
β | α ∈ A ∧ β ∈ B}.

The Levenshtein distance between two strings
s1 and s2 is defined as the minimum number of
operations (insertions, deletions and substitutions)
that transform s1 into s2. This can be formalized
as follows.

Definition 1. Let Σ be an alphabet. We define the
set

op(Σ) := {(a, b) | a, b ∈ Σ∪{ε}∧(a, b) 6= (ε, ε)},

and the function w : op(Σ) → {0, 1} as
w((a, b)) = 0 iff a = b, for any (a, b) ∈ op(Σ).

Definition 2. Let Σ be an alphabet and α, β ∈
Σ∗. An alignment of α and β is a string γ ∈
op(Σ)∗, γ = (a1, b1)(a2, b2) . . . (an, bn) such that
α = a1 ◦ a2 ◦ . . . ◦ an and β = b1 ◦ b2 ◦ . . . ◦ bn.
The weight of γ is ŵ(γ) =

∑n
i=1w((ai, bi)). We

use ali(α, β) to denote the set of all alignments of
α and β.

Definition 3. The Levenshtein distance between
the strings α ∈ Σ∗ and β ∈ Σ∗ is defined as

lev(α, β) := min{ŵ(γ) | γ ∈ ali(α, β)}.

Definition 4. The Levenshtein distance between
a string α ∈ Σ∗ and a set of strings B ⊆ Σ∗ is
defined as

l̂ev(α,B) := min
⋃
β∈B
{ŵ(γ) | γ ∈ ali(α, β)}.

In our case we have an alphabet F – the phones
in the phonetization system, an alphabet D –
the words in the LM vocabulary, and a function
Φ: D → P(F∗) which maps every word in D to
a finite set (the phonetizations of the word). Given
the phone output of the ASR system α ∈ F∗, α =
a1a2 . . . an, and β ∈ D∗, β = b1b2 . . . bm –
the words in the transcription text, we look for
the Levenshtein distance between α and the set
Φ(b1) ◦ Φ(b2) ◦ . . . ◦ Φ(bm). We will use αi and
βi to denote the prefixes of respectively α and
β of length i. We will also write Φ(βi) instead
of Φ(b1) ◦ . . . ◦ Φ(bi). As already mentioned,
the LEVENSHTEINDISTANCE function from Al-
gorithm 1 implements the standard Levenshtein
algorithm using a predefined first row for the dy-
namic programming table. Its correctness follows
directly from the correctness of the Levenshtein
algorithm and is expressed in Proposition 1.

Proposition 1. Let ϕ ∈ Φ(bi+1). If
M′ = LEVENSHTEINDISTANCE(ϕ, α,X) where
X[j] = l̂ev(αj ,Φ(βi)) for 0 ≤ j ≤ n, then
M′[|ϕ|][j] = l̂ev(αj ,Φ(βi) ◦ {ϕ}).

Proof. Straightforward induction on |ϕ|.

In order to demonstrate the correctness of Algo-
rithm 1, i.e. to show that M[m][n] is the Leven-
shtein distance between α and Φ(βm), it is enough
to prove the following proposition.

Proposition 2. For every 0 ≤ i ≤ m at the end
of the i− th iteration of the for loop beginning on
line 7

(∀0 ≤ j ≤ n)(M[i][j] = l̂ev(αj ,Φ(βi)),

where for i = 0 we assume that Φ(βi) = {ε}.

Proof. We will prove it by induction on i.
For i = 0 the proposition becomes

(∀0 ≤ j ≤ n)(M[0][j] = l̂ev(a1a2 . . . aj , {ε})
= lev(a1a2 . . . aj , ε)).

SinceM[0][j] = j for 0 ≤ j ≤ n as defined on
line 6 and lev(a1a2 . . . aj , ε) = j by definition,
the base case holds. Let the proposition hold for
some 0 ≤ i ≤ m − 1. Let ϕ ∈ Φ(bi+1). Propo-
sition 1 implies thatM′[|ϕ|][j] = l̂ev(αj ,Φ(βi) ◦
{ϕ}). The for loop on line 10 takes the minimum
for each j. Therefore

M[i+ 1][j] = min
ϕ∈Φ(bi+1)

M′[|ϕ|][j]

= min
ϕ∈Φ(βi+1)

l̂ev(αj ,Φ(βi) ◦ {ϕ})

= min
ϕ∈Φ(βi+1)

⋃
λ∈Φ(βi)◦{ϕ}

{ŵ(γ) | γ ∈ ali(αj , λ)}

= min
⋃

λ∈Φ(βi+1)

{ŵ(γ) | γ ∈ ali(αj , λ)}

def
= l̂ev(αj ,Φ(βi+1)).


