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Abstract 

 
Self-attention networks (SAN) have shown 

promising performance in various Natural Lan-

guage Processing (NLP) scenarios, especially in 

machine translation. One of the main points of 

SANs is the strength of capturing long-range 

and multi-scale dependencies from the data. In 

this paper, we present a novel intent detection 

system which is based on a self-attention net-

work and a Bi-LSTM. Our approach shows im-

provement by using a transformer model and 

deep averaging network-based universal sen-

tence encoder compared to previous solutions. 

We evaluate the system on Snips, Smart 

Speaker, Smart Lights, and ATIS datasets by 

different evaluation metrics. The performance 

of the proposed model is compared with LSTM 

with the same datasets. 

 

1 Introduction and Related Work 

 

Spoken dialogue systems are agents that are in-

tended to help users to access information effi-

ciently by speech interactions (Liu, et al., 2006). In 

doing so, spoken dialogue systems categorize most 

of the major fields of spoken language technology, 

including speech recognition and speech synthesis, 

language processing, and dialogue system 

(McTear, 2002).  There are different areas of re-

search in the field of spoken dialogue systems. 

Spoken language understanding (SLU) is one of 

the essential components of spoken dialogue sys-

tems, and it aims to form a semantic frame that 

captures the semantics of user utterances or que-

ries. Intent detection is one of the main tasks of 

SLU system. It can be treated as a semantic utter-

ance classification task; since the dialogue system 

is created to answer a limited range of questions, 

there is a predefined finite set of intents (Balodis 

and Deksne, 2019). This task focuses on classify-

ing the user’s intent and extracting semantic con-

cepts as constraints for natural language. For ex-

ample, the utterance “Switch off the garage lights” 

is related to switching the light off, as shown in Ta-

ble 1. 

 

Table 1. Example of utterance and a correspond-

ing intent label. 

Utterance Intent 

Switch off the garage 

lights. 

SwitchLightOff 

Get the room brighter, 

please. 

IncreaseBrightness 

Skip this song and go on 

to the next one. 

NextSong 

 

    Intent detection has been an ongoing field of re-

search in SLU, and similar to most NLP tasks, 

there are two main approaches to identify the intent 

of an utterance: rule-based and statistical methods 

(Hashemi, et al., 2016). The rule-based systems 

use predefined rules to match new utterances to 

their intents, and these rules need to be carefully 

engineered by human experts. Thus, the advance-

ment of these systems requires a huge amount of 

human effort.  

Statistical models, like conditional random field 

(CRF) and Support Vector Machines, were inves-

tigated for this task (Mendoza and Zamora, 2009; 

Chen et al., 2018). Another important task of SLU 

is slot filling, which can be formulated as a se-

quence labelling task. The combination of intent 

detection and slot filling models was investigated 

(Mendoza and Zamora, 2009; Kim, 2016).  

     Furthermore, neural network-based models 

have also been investigated by (Liu, 2017). Con-

volutional neural networks (CNN) were applied 

for classifying intents in (Hashemi, et al., 2016). 

The combination of CNN and the triangular CRF 

model (TriCRF) was proposed for the intent labels 

and the slot filling in (Kim, et al. 2016). During 
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training, the features are learned through CNN lay-

ers and shared by the intent detection and slot fill-

ing tasks. With this approach, for intent detection, 

the error on the ATIS dataset was 5.91%, and F1-

score was 95.42% for slot filling.  

      In recent years, neural network-based solutions 

and word embeddings have gained growing popu-

larity for intent detection (Balodis and Deksne, 

2019; Kim, et al. 2016). The enriching word em-

beddings with semantic lexicons can be helpful in-

tent detection, and it is combined with bidirec-

tional LSTM in (Kim, et al., 2016).  

     The encoder-decoder neural architectures have 

achieved remarkable success in various tasks (e.g., 

speech recognition, text-to-speech synthesis and 

machine translation). This type of networks has 

also been enhanced with attention mechanism (Xu, 

et al., 2015; Luong, et al., 2015). Those models 

have also been used for intent detection and other 

SLU tasks (Liu and Lane, 2016; Schumann and 

Angkititrakul, 2018). The combination of atten-

tion-based encoder-decoder architecture and align-

ment-based methods was studied in (Liu and Lane, 

2016) for joint intent detection and slot filling. 

Self-attention networks (SANs) have shown out-

standing performance in various NLP tasks, such as 

machine translation (Vaswani et al. 2017), and sen-

timent analysis (Letarte, et al., 2018) stance classi-

fication (Xu, et al., 2018; Raheja and Tetreault 

2019). It is a special attention mechanism for se-

lecting specific parts of an input sequence by relat-

ing its elements at different positions (Vaswani et 

al. 2017). With a well-designed architecture, SANs 

are capable of multi-scale modelling. Inspired by 

(Xu, et al., 2018), we propose the Self-Attention 

Network (SAN) architecture for intent detection. In 

our approach, the self-attention is applied to utter-

ances (input), and it is combined with Bi-LSTM (or 

LSTM). For evaluation, we used Natural Language 

Understanding benchmark dataset (Snips) (Goo, et 

al., 2018), Smart Speaker and Smart Lights dataset 

(Saade, et al., 2018), and ATIS (Hemphill, et al., 

1990). We show the effectiveness of this approach 

in different experimental settings. The application 

of pre-trained Word2vec (Mikolov, et al., 2013), 

and FastText (Bojanowski, et al., 2017) embed-

dings also helps to get competitive results.  The re-

maining part of the paper is organized as follows. 

In Section 2, we introduce word embedding meth-

ods. Section 3 presents the proposed approach. In 

Section 4, we describe the datasets, which were 

used in this work and discuss the experimental 

setup and the results. 

2 Word Embedding 

Word embeddings map the words to vectors of real 

numbers. This approach has been widely used as 

the inputs to neural network-based models for NLP 

tasks. Word embedding models can be trained with 

several different tools, such as Word2vec (skip-

gram and continuous bag-of-words (CBOW)) 

(Mikolov, et al., 2013), GloVe (Pennington, et al., 

2014), FastText (Bojanowski, et al., 2017). Contin-

uous Bag-of-Words (CBOW) and Continuous 

Skip-gram models are both powerful techniques for 

creating word vectors. FastText is one of the recent 

advances in word embedding algorithms. The main 

contribution of FastText is to introduce the idea of 

modular embeddings, which computes a vector for 

sub-word components, usually n-grams, instead of 

computing an embedded vector per word. These n-

grams are later combined by a simple composition 

function to compute the final word embeddings. In 

pre-trained word embedding models, the word em-

bedding tool is trained on large corpora of texts in 

the given language and highly useful in different 

NLP tasks. One of the latest embedding methods is 

Universal Sentence Encoder models (Cer, et al., 

2018), which is a form of transfer learning. In (Cer, 

et al., 2018), it was introduced two encoding mod-

els. One of them is based on a Transformer model 

(TM) and the other one is based on Deep Averaging 

Network (DAN). They are pre-trained on a large 

corpus and can be used in a variety of tasks (senti-

mental analysis, classification, etc.). Both models 

take a word, sentence or a paragraph as input and 

generate a 512-dimensional output vector. The 

transformer-based encoder model targets high ac-

curacy at the cost of greater model complexity and 

resource consumption (Cer, et al., 2018). But DAN 

targets performance efficient inference with 

slightly reduced accuracy. 

In this work, we used 300-dimension Word2vec 

and FastText word embeddings, which were pre-

trained on the English Wikipedia corpus. We also 

investigated TM and DAN based universal encoder 

models, and each embedding is combined LSTM 

and Bi-LSTM. 
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3 Proposed Model 

In this section, we introduce two models for intent 

detection: 

1. SAN and LSTM (SAN + LSTM) 

2. SAN and Bi-LSTM (SAN + Bi-LSTM) 

Both proposed models encode each word to its em-

bedding first. We carried out experiments with dif-

ferent embeddings, as discussed in Section 4.3. As 

the next step, the contextual information in the in-

put sentences (utterances) is encoded. In the first 

model, LSTM, in the second one, a Bi-LSTM was 

used to capture the left and right contexts of each 

word in the input. In the second model, Bi-LSTM 

combines two unidirectional LSTM layers that pro-

cess the input from left-to-right and right-to-left, re-

spectively.  Both models are followed by the SAN 

(see Figure 1), which is based on an attention 

mechanism for selecting specific parts of a se-

quence by relating its elements at different posi-

tions (Vaswani, et al., 2017). In our work, we only 

perform input-input attention with self-attention. 

By using the self-attention, the semantics of the en-

tire utterance can be extracted, and it can be helpful 

for the better classified. To score attention weight 

vectors we applied the method of (Xu, et al., 2018). 

 

 
Figure 1. The architecture of the proposed model. 

  

The goal of training is to minimize the loss 

function. For this purpose, we use multi-class 

cross-entropy loss, 

 

𝐽 = − ∑ ∑ 𝑦𝑗
𝑖𝑙𝑜𝑔�̂�𝑗

𝑖 +  𝛾‖𝜃‖2

𝑗𝑖

          (1) 

where 𝑖 is the index of utterance and 𝑗 is the in-

dex of the intent label. 𝛾 is the 𝐿2 regularization co-

efficient and 𝜃 is the parameter set. 𝑦𝑗
𝑖 is the 

ground-truth label indicator for 𝑖-th utterance, and 

�̂�𝑗
𝑖 is the predicted probability output of 𝑖-th utter-

ance. At the output of the network, softmax func-

tion was used to predict probabilities. 

4 Experiments 

4.1. Dataset 

 

We used Natural Language Understanding bench-

mark dataset (Snips) (Goo, et al., 2018), Spoken 

Language Understanding research datasets (Saade, 

et al., 2018) and Airline Travel Information System 

(ATIS) dataset (Hemphill, et al., 1990). Snips is a 

balanced dataset and collected from the Snips per-

sonal voice assistant; the number of samples for 

each intent is approximately the same. The training 

set contains 13,084 utterances, the test and valida-

tion (development set) set consist of 700 - 700 ut-

terances. Vocabulary size is 11,241 and intent types 

are 7, as shown in Table 2. 

 

Table 2. The intent labels and the number of ut-

terances in each label in Snips. 

Type of intent Number 

PlayMusic 1914 

GetWeather 1896 

BookRestaurant 1881 

RateBook 1876 

SearchScreeningEvent  1851 

SearchCreativeWork 1847 

AddToPlaylist 1818 

 

Smart Lights has 6 intents allowing to turn on or 

off the light or change its brightness or colour, as 

shown in Table 3. It has a vocabulary size of ap-

proximately 400 words. Smart Speaker dataset has 

9 intents and vocabulary size is approximately 

1,270. The number of utterances in each intent la-

bel is presented in Table 4. In these two datasets, 

we have split the data into 90 % training and 10% 

test sets. The validation dataset consists of 10% 

proportion of the training set. 

 

Table 3. The intent labels and the number of utter-

ances in each label in Smart Lights. 

Type of intent Number 

Decrease Brightness 296 

Increase Brightness 296 

Set Light Brightness 296 

Set Light Color 306 

Switch Light Off 299 

Switch Light On 278 
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Table 4. The intent labels and the number of utter-

ances in each label in Smart Speaker. 

Type of intent Number 

GetInfos  199 

NextSong 200 

PlayMusic 1508 

PreviousSong 199 

ResumeMusic 200 

SpeakerInterrupt 172 

VolumeDown 215 

VolumeSet  100 

VolumeUp 260 

 

ATIS contains audio recordings of people making 

flight reservations. The training set contains 4,478 

utterances, the test set contains 893 utterances; 

500 utterances were used as development set. The 

intent types in ATIS are unbalanced. For example, 

the intent atis_flight equals about 73.8 % of the 

training data, while the number of some intents 

were less than 10. 

 

4.2 Training setup 

 

Data preprocessing may include data normali-

zation, tokenization, lower-casing, removal of 

punctuation, grammar correction, feature extrac-

tion etc., by depending on the task and given da-

taset. We have done tokenization, have removed 

punctuation and have converted the numbers to 

words for all investigated datasets. The word em-

beddings are initialized with the pretrained 300-

dimension Word2Vec or FastText word vectors 

and these are fixed during training. We also inves-

tigated TA and DAN Universal Encoder model-

based utterance vectors. The number of units in 

LSTM and Bi-LSTM is 64.  

The L2-regularization coefficient λ in the loss is 

0.01.  

 

Table 5. Result of proposed models 

ADAM (Kingma and Ba, 2015) is used as the op-

timizer, with a learning rate of 0.001, and with the 

baseline values of β1, β2 and ε (0.9, 0.999 and 1e-

08, respectively). The batch size is 16, the number 

of epochs is 25. 

  
4.3 Evaluation and Results 

 

We evaluated the performance of the models by 

accuracy, precision, recall, F1-score.  The results 

are presented in Table 5. 

By micro and macro averaged, overall F1-

scores were computed, and their average was used 

(Sokolova and Lapalme, 2009). In Table 5, the 

first column describes the proposed models, and 

other columns show the overall accuracy and F1-

score for each dataset. 

For all datasets, SAN + Bi-LSTM consequently 

have shown better results than SAN + LSTM, as 

expected. For Snips, the accuracy of FastText + 

SAN +Bi-LSTM and TM +SAN +Bi-LSTM is al-

most the same. The result of Word2Vec + SAN + 

Bi-LSTM, FastText + SAN + Bi-LSTM, and TM 

+ SAN + Bi-LSTM is almost the same for Smart 

Speaker. The lowest accuracy score for Smart 

Lights was produced by DAN + SAN + LSTM, 

which is 90.2%. The highest accuracy score for 

ATIS was produced by TM + SAN + Bi-LSTM, 

which is 96.81. This result is comparable with 

(Goo, et al., 2018; Hakkani-Tür, et al., 2016). We 

observed that TM based universal encoder can 

help to improve accuracy.  

Furthermore, Figure 2 and Figure 3 show the 

confusion matrix of Smart Lights and Snips test 

dataset by using DAN and TM universal encoder 

vectors with SAN + Bi-LSTM. SAN + Bi-LSTM 

based DAN correctly classified 30 intents labels 

out of 31 for SetLightBrightness and 29 tokens out 

of 30 for SwitchLightOff, which is the same in 

SAN + Bi-LSTM based TM.  

 

Model Snips Smart Lights Smart 

Speaker 

ATIS 

Acc(%) F1-s. Acc (%) F1-s. Acc(%) F1-s. Acc(%) F1-s. 

Word2Vec + SAN + LSTM 94.2 0.94 91.8 0.90 94.9 0.94 93.93 0.92 

FastText + SAN + LSTM 94.6 0.94 92.1 0.92 95.1 0.95 94.51 0.94 

DAN + SAN + LSTM 94.1 0.94 90.2 0.90 91.7 0.90 93.56 0.93 

TM + SAN + LSTM  94.2 0.94 93.6 0.93 94.2 0.93 94.81 0.94 

Word2Vec+SAN+Bi-LSTM 95.6 0.96 93.8 0.94 97.7 0.98 94.49 0.93 

FastText + SAN + Bi-LSTM 96.1 0.96 93.4 0.92 97.7 0.97 95.77 0.94 

DAN + SAN + Bi-LSTM 94.2 0.94 93.2 0.93 94.7 0.95 94.91 0.93 

TM + SAN + Bi-LSTM 96.5 0.97 96.6 0.97 97.7 0.98 96.81 0.95 
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Figure 3. Confusion matrix of Snips test dataset by using DAN and TM Universal encoder vectors with 

SAN + Bi-LSTM. 

 

The intent of IncreaseBrightness was predicted 

correctly in case of 24 out of 30, while 4 intent 

labels were misclassified to the SwitchLightOn by 

SAN + Bi-LSTM based DAN.  

For Snips, SAN + Bi-LSTM based DAN cor-

rectly classified 88 intent labels out of 105 

SearchScreeningEvent, while the TM-based ap-

proach classified 93 intent labels correctly. The 

AddToPlaylist, GetWeather, RateBook labels 

achieved almost the same accuracy from both 

models. SearchCreativeWork intent labels were 

better predicted by TM based SAN + Bi-LSTM.  

As reasons for the misclassification are that 

some words can belong to both intent classes, de-

pending on the context, and the size of training 

data is not large enough. 

 

Conclusion  

 

In this paper, the combination of SAN and Bi-

LSTM for intent detection were proposed. 300-di-

mensional Word2Vec and FastText embeddings 

pretrained on English Wikipedia were used as 

word representations.  Utterance vectors of DAN 

and TM based Universal sentence encoders were 

investigated. The results were evaluated with the 

help of accuracy and confusion matrices. Experi-

ments were also carried out with SAN + LSTM, 

however, the accuracy was worse than with SAN 

+ Bi-LSTM. 

Generally, comparison of these models shows that 

SAN + Bi-LSTM with TM embeddings performs 

better than other models on all the investigated da-

tasets. In the future, we would like to carry out 

more comprehensive analysis and investigate other 

Figure 2. Confusion matrix of Smart Light test dataset by using DAN and TM Universal encoder vectors 

with SAN + Bi-LSTM. 
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attention mechanisms such as directional self-at-

tention and bi-directional block self-attention 

(Shen, et al., 2018) for this task. 
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