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Abstract

The current state of the art for First Story
Detection (FSD) are nearest neighbour-
based models with traditional term vector
representations; however, one challenge
faced by FSD models is that the docu-
ment representation is usually defined by
the vocabulary and term frequency from
a background corpus. Consequently, the
ideal background corpus should arguably
be both large-scale to ensure adequate
term coverage, and similar to the target do-
main in terms of the language distribution.
However, given these two factors cannot
always be mutually satisfied, in this pa-
per we examine whether the distributional
similarity of common terms is more im-
portant than the scale of common terms
for FSD. As a basis for our analysis we
propose a set of metrics to quantitatively
measure the scale of common terms and
the distributional similarity between cor-
pora. Using these metrics we rank differ-
ent background corpora relative to a target
corpus. We also apply models based on
different background corpora to the FSD
task. Our results show that term distri-
butional similarity is more predictive of
good FSD performance than the scale of
common terms; and, thus we demonstrate
that a smaller recent domain-related cor-
pus will be more suitable than a very large-
scale general corpus for FSD.

1 Introduction

Given a stream of documents about news events in
a chronological order, the goal of First Story De-
tection (FSD) is to identify the very first story for
each event. Each story is processed in sequence,

john.d.kelleher}@dit.ie

and a decision is made for a given candidate doc-
ument on whether or not it discusses an event that
has not been seen in previous documents; crucially
this decision is made after processing the candi-
date document but before processing any subse-
quent documents (Allan et al., 1998; Yang et al.,
1998). The decision making process for each in-
coming document is normally based on a novelty
score; namely, if the novelty score of a new docu-
ment is higher than a given threshold, we say it is
a first story.

Hundreds of FSD models have been proposed
in prior research, and the nearest neighbour-based
models, in which the novelty score is defined as
the distance from the new story to the closest ex-
isting story, remain the state of the art (Wang
et al.,, 2018). In the implementation of nearest
neighbour-based FSD models, the first step is to
represent each story with a sound document repre-
sentation. Even though many deep learning-based
document representations have been shown to
achieve very good results in a range of NLP (Natu-
ral Language Processing) tasks (Goldberg, 2017),
the dominant document representation model for
FSD remains the traditional term vector models
in which each feature represents a term in the vo-
cabulary (Brants et al., 2003; Petrovié et al., 2010;
Wang et al., 2018; Kannan et al., 2018).

The majority of machine learning research as-
sumes that the data used for building a model and
making inference are sampled from the same dis-
tribution, i.e., the data generation process is sta-
tionary. However, because of its online character-
istic, one challenge faced by FSD models is that
the system’s vocabulary (and hence document rep-
resentation) cannot be derived from a target cor-
pus, but must instead be defined by the vocabulary
of a background corpus. The resultant potential
difference between the background and target cor-
pus demonstrates a non-stationary characteristic
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of FSD. To mitigate for potential differences be-
tween background and target data, the ideal back-
ground corpus should be both large-scale, so as to
ensure an adequate number of common terms be-
tween it and the documents in the target stream
(i.e., minimize unknown words), and similar in
the sense of language distribution. In many cases,
these two factors cannot be satisfied at the same
time, and thus the emphasis has to be placed on
the more informative one of the two, which leads
to a question of “bigger or similar?”. To the best
of our knowledge however, there is little research
addressing this question empirically, and no met-
rics have been proposed for the quantitative com-
parison of the scale and similarity between back-
ground corpora relative to a target corpus.

In this paper we examine whether the distribu-
tional similarity of common terms between cor-
pora (background and target story stream) is more
important than the scale of common terms for
FSD. As a basis for our analysis we propose a
set of metrics to quantitatively measure the scale
of common terms and the distributional similar-
ity between corpora. Using these metrics we rank
different background corpora relative to a target
FSD corpus. Finally, we apply the models based
on different background corpora to the FSD task to
determine the relative utility of different assump-
tions about the background corpus. Our contribu-
tions are thus two-fold: an investigation of back-
ground corpus similarity versus scale, and a met-
rics framework for making such an investigation.

2 First Story Detection

FSD as a challenge was initially defined within the
Topic Detection and Tracking (TDT) competition
series (Yang et al., 1998; Allan et al., 2000b); and
was considered to be the most difficult challenge
in all five TDT tasks (Allan et al., 2000a). Since
then, the need for accurate FSD models has been
greatly strengthened by the proliferation of digi-
tal content, and social media streams in particular.
One of the challenges of FSD is the undefinable
characteristic of a first story. We can never know
what the next first story will look like; instead, we
only know that it must be different to existing sto-
ries to some degree. Therefore, we normally con-
sider FSD as an unsupervised learning application,
and hence attempt to define and make use of a nov-
elty score in a similar fashion to how novelty-style
metrics are defined in other unsupervised learning

applications (Wang et al., 2017).

Based on different definitions of novelty scores,
it has been proposed that there are three categories
of FSD models (Wang et al., 2018): Point-to-
Point (P2P) models, Point-to-Cluster (P2C) mod-
els, and Point-to-All (P2A) models. P2P models,
in which the novelty score is defined as the dis-
tance from the incoming story to an existing story,
are normally nearest neighbour-based (Yang et al.,
1998; Allan et al., 2000b), or approximate near-
est neighbour-based (Brants et al., 2003; Petrovic¢
et al., 2010, 2012; Moran et al., 2016; Kannan
et al., 2018). In P2C models or P2A models, the
novelty score is defined respectively as the dis-
tance from the new story to a cluster of exist-
ing stories (also can be considered as the distance
to an existing event), or to all the existing sto-
ries. The former is usually clustering-based (Yang
et al., 1998; Allan et al., 2000b; Li et al., 2017),
and the latter uses all the existing data to build a
system, and applies this system to the incoming
story to generate a novelty score (Scholkopf et al.,
2001; Wurzer et al., 2015). Based on previous lit-
erature and research on FSD, it has been shown
that nearest neighbour-based P2P models perform
the best among all these three categories of FSD
models (Wang et al., 2018).

2.1 Term Vector Models for First Story
Detection

As presented above, the novelty score in a P2P
model is calculated by comparing the incoming
story to previous stories and then finding its (ap-
proximate) nearest neighbour and the correspond-
ing closest distance. When implementing a P2P
model, the first step is to convert the raw stories
to document representation vectors that can be fed
into the detection model; this is then followed by
the quantitative comparisons between these doc-
ument representations. The state of the art doc-
ument representation model for P2P FSD models
remains the traditional term vector models, due,
in part, to their specificity of terms (Wang et al.,
2018). In a term vector model, each feature (di-
mension) represents a term in the vocabulary, so
the dimensionality of each vector is generally the
same length as the corpus vocabulary.

TF-IDF is the most well-known term vector
model and also the most effective one used for
FSD (Brants et al., 2003; Petrovi¢ et al., 2010;
Kannan et al., 2018). A TF-IDF weight is calcu-
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lated for each term in a document vector as the
product of the TF (term frequency) and IDF (in-
verse document frequency) components. The TF
component captures the number of times a term
was encountered in the document, while the IDF
component discounts the term weights that are
very common in the corpus such that these are
judged to have little information relevant to the
distinction of documents. A TF-IDF model al-
ways stores a vocabulary as well as an IDF dic-
tionary in which the key is each term while the
value is the corresponding IDF component for that
term. When applying a TF-IDF model, it is nec-
essary to use some corpus to build the vocabu-
lary and the IDF dictionary before calculating the
TF-IDF weight for each term in a document using
some specific scheme. A widely-applied TF-IDF
weighting scheme is shown as follows:

tf-idf(t,d) = tf(t,d) x idf(t) (1)

N

idf (t) lOgdf(t)

where tf(t, d) represents the TF component, that

is just the number of times the term ¢ occurs in

document d, and idf (t) represents the IDF com-

ponent, in which /N denotes the total number of

documents and df (t) refers to the number of doc-
uments that contain the term ¢.

In the context of FSD, the labelled target cor-
pus is always unavailable before detection because
of the online characteristic of FSD, and thus a
background corpus is required to build the TF-IDF
model, i.e., the vocabulary and the IDF dictionary
in the model. As shown in Fig. 1, we assume that
a TF-IDF model is built with a background Cor-
pus B and is applied to the FSD task for a target
Corpus T. Set 2 is the overlapping term set that
contains the terms common to both Corpus B and
T, and Set 1 and 3 contain the terms that only exist
in Corpus B or T respectively. Consequently, Set
1 and 2 constitute all terms in Corpus B, while Set
2 and 3 constitute all terms in Corpus T.

(2)

2.2 Set Overlap and FSD Modelling

In a pre-built TF-IDF model, all the terms in the
vocabulary are from the background Corpus B,
i.e., the terms used to generate the term vector
space are those from Set 1 and 2, while those terms
in Set 3 will not appear in the TF-IDF model at
all. In other words, the terms in Set 3 are all the

Corpus B

AN /

v

Corpus T

Figure 1: Term Sets within a Background Corpus
B and a Target Corpus T

unknown terms with respect to the TF-IDF model.
However, when the TF-IDF model is applied to
FSD, all the documents to be analysed will be
from the target Corpus T, which means that all the
terms in Set 1 will not appear at all in the process
of FSD; as a result the TF components for these
terms are always zero and thus all the final TF-
IDF weights of these will always be zero as well.
It should be noted that we can look at all the terms
of the target corpus here because we are now do-
ing the analysis. However, during the real FSD
we will never know whether a term from the back-
ground corpus appears in the target corpus or not.
Therefore, we have to keep all the terms in Set 1
and 2 that are from the background corpus, even
though the weights of all the terms in Set 1 are
always zero.

The comparison between TF-IDF representa-
tions is usually based on cosine distance calcula-
tions for FSD (Allan et al., 2000b; Brants et al.,
2003). For such calculations, all representation
vectors are normalised so that the cosine dis-
tance is not sensitive to the specific weighting
schemes (Allan et al., 2000b). To clarify, given
an incoming story represented by @ and an exist-
ing story represented by b, the cosine distance be-
tween them is defined as:

QL
S

=,

cosine_distance(d,b) =1 —

3)

y
S

According to the definition of cosine distance,
in each document vector the terms whose weights
are always zero do not have any effect on the re-
sult of calculation, so they can be ignored when
we analyse the calculation. Hence, the valid terms
that make sense for FSD are only those in Set 2,
which are the common terms in both the back-
ground and target corpus. Given this, the effec-
tiveness of the TF-IDF model only depends on Set
2, and specifically, two factors of Set 2: the scale
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and the distributional similarity between the back-
ground and target corpus. The scale describes the
number of common terms between the corpora.
The larger the scale of Set 2, the more informative
terms are taken into account. The distributional
similarity of two corpora refers to similarity of the
frequencies of common terms. As the IDF compo-
nents of these common terms are calculated only
based on the background corpus, the more simi-
lar the background corpus is to the target corpus
in terms of the language distribution, the better
the generated weights can represent the common
terms for FSD in the target corpus.

Therefore, the ideal background corpus for FSD
should be both large-scale and similar in fre-
quency distribution to the assumed target corpus.
However, in many cases, these two factors cannot
always be satisfied at the same time, and so it can
be useful to determine which of these factors is
more predictive of good FSD performance.

3 Quantitatively Measuring Background
Corpus Suitability

To propose a method for evaluating the relative
importance of the quantity of shared terms versus
the similarity of language distributions between a
background and target corpus, in this section we
outline a set of quantitative metrics to make pair-
wise comparisons between different background
corpora relative to the target FSD corpus.

3.1 Measuring the Scale of Common Terms

As shown earlier in Fig. 1, the scale of common
terms relative to the target Corpus T can be quanti-
tatively measured using the proportion of common
terms of Set 2 relative to all the terms of Corpus
T; we refer to this as the overlapping rate of the
background Corpus B relative to the target Corpus
T. Given any specific target corpus, the bigger the
overlapping rate is for a background corpus, the
more informative terms are available to be taken
into account, and hence the less unknown terms
occur in the FSD process.

3.2 Measuring the Distributional Similarity

While measuring the scale of common terms is rel-
atively straightforward, the assessment of distribu-
tional similarity is somewhat more involved.

As we focus on the TF-IDF model, the distribu-
tion similarity between corpora should be based on
the document frequencies. If we order the terms

by document frequency for different corpora, each
term will likely have a different rank within each
corpus. Moreover, if we only look at the ranks
of common terms in both corpora (i.e., the terms
in Set 2 shown in Fig. 1), it is possible to mea-
sure the dissimilarity between two corpora based
on their different lists of term ranks.

Before making rank based similarity measure-
ments, some preparation is required. Firstly, the
common terms in both corpora (background and
target corpus) are extracted as the basis for the
comparisons. For each corpus, these common
terms are ordered in a descending order based on
their document frequencies calculated with only
this corpus, and then each term is assigned an in-
dex from 1 to n, where n is the number of com-
mon terms that are being taken into account. For
different corpora, the order of terms will be dif-
ferent, as well as the index of each term. If there
are no terms with the same document frequency
in an ordered term list, the index of each term can
be reasonably considered as its rank in this corpus.
However, the fact is that many terms have the same
document frequency in a corpus, so they should
have the same rank. Instead of assigning differ-
ent ranks to the neighbouring terms with the same
document frequency, we implement some extra
operations to make their ranks the same. Specif-
ically, for the terms with the same document fre-
quency, i.e., the terms with indices from i to j, we
assign the same average rank % to all of these,
such that this does not affect the rank of any other
term. If from the 1°! to the 4*" terms in the ordered
term list have the same document frequency, all of
them will be assigned a rank (1 +4)/2 = 2.5.

After pre-processing, we count the number of
inversions and calculate the distance between two
ordered same-length term lists to present the dis-
similarity between these two corpora:

1 Inversion count If the order of two different
terms in one corpus is not the same as that in the
other corpus, e.g., in one corpus, term X has a
rank smaller than term Y, while in the other cor-
pus, term X has a rank larger or equal to term
Y, we call this situation an inversion. The in-
version count metric is defined as the count of
all the inversions between two different ordered
rank lists.

2 Manhattan distance To calculate the dissim-
ilarity between two same-length rank lists we

1315



subtract the rank of each term in one list from
the rank of the same term in the other list and
sum the absolute value of each of these differ-
ences (Kelleher et al., 2015).

As both these dissimilarity metrics show the
degree to which a background corpus is differ-
ent from the target corpus, we expect that the
greater the metric the worse the subsequent model
is expected to perform on the FSD task. We
only evaluate the distributional similarity based
on the frequency ranks of the common terms,
rather than the quantitative frequency values, be-
cause the comparisons based on the quantitative
frequency values usually lead to more emphasis
on the terms with high frequency values, which
should be avoided. It is worth noting that in real
use both of these metrics are normalised to be-
tween 0 and 1 by being divided by n?, where n
is the length of the rank lists, i.e, the number of
common terms. The calculation of these two met-
rics requires time complexity of O(n?) and O(n)
respectively.

3.3 Comparison between Two Background
Corpora Relative to a Target Corpus

With the metrics proposed above, we can make
comparisons between different background cor-
pora relative to a target FSD corpus. For the com-
parison of the scale of common terms, the overlap-
ping rate can be applied to multiple background
corpora to rank them based on their rate values.
However, the situation for the comparison of the
distributional similarity is more involved.

As explained in their definitions, both two dis-
similarity metrics proposed above are calculated
based on the common terms of a background cor-
pus and a target corpus. If we want to compare
among multiple background corpora relative to a
target corpus, the calculation should be based on
the common terms of all the background and target
corpus to ensure the rank list for each background
corpus in the same length!. The situation of two
background corpora and a target corpus is depicted
in Fig. 2, in which the calculation of dissimilarity
metrics would be based on Common Set. Gen-
erally, the common terms shared by the three cor-

"We also tried designing metrics that can be generated
based on different terms, i.e., for each background corpus
using the terms shared only by the target corpus and itself,
rather than common terms shared by all corpora, but we failed
because we could not find any valid method to normalise the
metrics generated based on different numbers of terms.

Corpus B1 Corpus B2

[

Corpus T

Figure 2: Common Set among two Background
Corpora B1 and B2 and a Target Corpus T

pora will be less than those shared by only any two
of them. For each background corpus, the terms
used for the comparison (i.e., the terms in Com-
mon Set) will be less than those used in FSD (i.e.,
the terms in Common Set and Set 1 for Corpus
B1, and the terms in Common Set and Set 2 for
Corpus B2). This will lead to errors in the mea-
sures and comparisons, and the more background
corpora are being compared, the greater the errors
will be. In order to limit this kind of error, we re-
strict to pairwise comparison between background
corpora so that the number of terms used for com-
parisons are relatively large in comparison to the
terms used in FSD.

4 Experiment Design

In this section, we present our experiments for
comparing the scale of common terms and the
distributional similarity between different back-
ground corpora relative to a target FSD corpus,
and apply the models based on different back-
ground corpora to the FSD task in an attempt to
determine which factor is more predictive of good
FSD performance.

4.1 Corpora Used in the Experiments

The target corpus we use for FSD detection is the
standard T DT5 corpus?; the contents of which are
newswire stories generated from April to Septem-
ber 2003. The background corpora we are mak-
ing use of for the current investigation are sub-
sets of COH A (Corpus of Historical American
English) (Davies, 2012) and COCA (The Cor-
pus of Contemporary American English) (Davies,
2010). The former covers comprehensive histori-
cal English documents from 1810 to 2009 in dif-
ferent domains such as news, fiction, academia

*https://catalog.ldc.upenn.edu/LDC2006T18
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and so on, and the latter is similar to COH A in
themes but focuses only on the contemporary con-
tents from 1990 to present. The numbers of docu-
ments in T DT5, COHA and COCA are about
278,000, 115,000 and 190,000 respectively. As
mentioned we make use of subsets of COH A and
COC'A; specifically we mostly include data that
predates 2003, i.e., the year of T'DT'5 collection,
unless otherwise stated.

In order to answer our underlying research
question, i.e., whether bigger or similar back-
ground corpora provide the clearer benefit, we
carried-out three sets of experiments. In the first
set, comparisons are made between COC A and
COH A with the assumption that a contemporary
corpus will be more similar to the target corpus
than a historical one. The second set of experi-
ments supplement the first set and focus on cor-
pus temporality. Comparisons are made between
two subsets of the entire COCA corpus - COC A
and COC A_A fter_2003 that respectively include
only the documents before and after 2003, the year
when the target corpus was collected. We assume
that a corpus with future data is more similar to a
target corpus than that with prior data only>. The
last set of experiments establish comparisons be-
tween two subsets of COC' A - COC A_News and
COCA_FEzxcept_News, in which COCA_News
contains only the documents in the domain of
news, which is the same as the domain of the target
TDTS5 corpus, while COC A_Except_News con-
tains the documents in other domains except news.
We also assume that the domain-related corpus is
more similar to the target corpus than those in dif-
ferent domains.

4.2 Metric Calculation

In the implementation, we apply all the metrics
to each corpus mentioned above, and then make
comparisons in each pair of background corpora.
In addition, for the comparison of corpus similar-
ity, we examine whether the two proposed metrics,
inversion count and Manhattan distance, are con-
sistent with each other in deciding which corpus in
each pair is more similar to the target corpus, i.e.,
whether two metric values for a corpus are both
smaller or greater than those for the other corpus
in the comparison pair. We also verify whether
the results of comparisons correspond with our as-

3In real FSD, future data is always unavailable. This set
of experiments are only for the use of analysis.

sumptions about corpus similarity in Sect. 4.1.

4.3 FSD Evaluation

Following background corpus metric calculation,
we build TF-IDF models based on the background
corpora being compared and apply these models
to the FSD task.

The implementation of FSD is based on the
nearest neighbour algorithm with the TF-IDF rep-
resentations we described in Sect. 2.1. We also
adopt the cosine distance as the dissimilarity mea-
sure between document representations. In order
to reduce the effect of useless terms and differ-
ent term forms, for both the background and tar-
get corpus we remove terms with very high and
very low document frequency (stop words and ty-
pos), and stem all terms. Aligning with previ-
ous research (Yang et al., 1998), comparisons are
only implemented with the 2000 most recent sto-
ries for each incoming story. The output of each
FSD model is a list of novelty scores for each doc-
ument in the target corpus TDTS5. Based on these
outputs, the standard evaluation method for FSD
is to apply multiple thresholds to sweep through
all the novelty scores. For each threshold, a miss-
ing rate and a false alarm rate are calculated, and
then for all thresholds, the missing and false alarm
rates are used to generate a DET (Detection Er-
ror Tradeoff) curve (Martin et al., 1997), which
shows the trade-off between the false alarm error
and the missing error in the detection results. The
closer the DET curve is to the zero point, the bet-
ter the FSD model is said to perform. It happens
sometimes for the evaluation with DET curves that
many curves are in a tangle — making it is difficult
to figure out visually which model performs better.
Therefore, we calculate Area Under Curve (AUC)
for each FSD model, and the model with the low-
est AUC is judged to be best.

In order to achieve more comprehensive re-
sults for this evaluation, we implement tests for
set variants. Specifically, for each set of exper-
iments, we make comparisons not only between
the two background corpora being evaluated, but
also between each corpus and the union of both
corpora; for example for COCA vs. COHA,
we not only implement the comparison between
COCA and COHA, but also between COCA
and COCA + COH A and between COH A and
COCA + COHA, where COCA + COHA is
the union of COC' A and COH A. In this way, we
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Figure 3: Comparisons of Corpus Dissimilarity

have six more comparison results that can be used
for the evaluation of the relations between back-
ground corpus and model performance for FSD.

5 Results & Analysis

We first look at the comparisons between corpora
before looking at FSD performance for different
background corpora.

5.1 Results of the Comparisons of Corpus
Dissimilarity

We applied the two metrics, inversion count
and Manhattan distance, to the three sets of
comparisons: COCA vs. COHA, COCA
vs. COCA_After_2003 and COCA_News vs.
COCA_FEzxcept_News. The results are shown
in Fig. 3. We find firstly that in all compar-
ison sets that the results of the two evaluation
metrics are consistent with each other, i.e., the
metric values for COC' A are both smaller than
COHA, but greater than COCA_A fter_2003,
and those for COC A_N ews are both smaller than
COCA_Except_News. Secondly, we also find
that these comparison results all correspond with
our assumptions that more recent domain-related
corpora are more similar to the target corpus.
Given this, we conclude that both metrics are ef-
fective for the comparison of the distributional
similarity between background corpora relative to
the target corpus, and for the sake of simplicity, we

judge Manhattan distance as the most useful met-
ric due to its ease of calculation and interpretation.

5.2 Results of the Relations between
Background Corpus and Model
Performance for First Story Detection

Results are shown in Table 1, 2 and 3, where
the values of the overlapping rates and Manhat-
tan distances are the values for one correspond-
ing background corpus relative to the target cor-
pus. The cells in bold indicate the better results
in the comparisons of the scale of common terms
and the common term distributional similarity be-
tween each pair of background corpora, as well as
the better FSD performance. We find that all cor-
pora that are more similar (in terms of term dis-
tributions) to the target corpus lead to better per-
formance in FSD, except in the case of very sim-
ilar performance between COC'A and COC A +
COH A. However, it is worth noting that only six
in nine corpora that have a larger scale of common
terms correspond with better FSD performance
while the other three do not. For example, in Ta-
ble 3 although the corpus COC A has the much
larger scale of common terms, the FSD perfor-
mance based on it is still worse than that based on
COCA_News, because COCA_News is more
similar to the target corpus in terms of language
distribution.

Based on these results, it can be argued that
term distributional similarity is more predictive of
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coca vs. coha

coca vs. coca+coha

coha vs. coca+coha

coca coha coca coca+coha  coha coca+coha

Ovegzap‘“g 0.3771 03255 03771 04193 03255  0.4193

Manhattan 000 05000 01996 02068 02076 0.1949
Distance

AUC 0.1056 0.1100 0.1056  0.1056 _ 0.1100 _ 0.1056

Table 1: Comparisons between COC' A and COH A

coca vs. coca_after_2003

coca vs. coca_all

coca_after_2003 vs. coca_all

coca coca_after_2003 coca coca_all coca_after_.2003 coca_all

OveE:fep'“g 0.3771 0.4077 03771  0.4583 0.4077 0.4583

Manhattan oo 0.1928 0.1996  0.1950 0.1997 0.2009
Distance

AUC 0.1056 0.1008 0.1056  0.1020 0.1008 0.1020

Table 2: Comparisons between COC A and COC' A_A fter_2003

coca_news vs.
coca_except_news

coca,exceptmews
VS. coca

coca_news vs. coca

coca_news CcOoC a,except,news coca_news coca Coca,excep‘ulew coca
OveE:fep‘“g 0.2932 0.3184 02932  0.3771 0.3184 0.3771
Manhattan g 0.1943 0.1795  0.1996 0.1986 0.1880
Distance
AUC 0.1044 0.1078 0.1044  0.1056 0.1078 0.1056

Table 3: Comparisons between COCA_News and COCA_Except_News

good FSD performance than the scale of common
terms; and, thus we can give general guidance to
the selection of background corpus for FSD that a
smaller recent domain-related corpus will be more
suitable than a very large-scale general corpus for
FSD. Of course, our research is directed only at the
general situations, as the interpretations do not in-
clude extreme situations such as extremely large or
small scale of common terms. It is also worth not-
ing that we are purposefully focusing here on the
case of a static background corpus and not on the
case of updates being made to the TF-IDF model
as the FSD process unfolds.

6 Conclusion

We conclude with a highlight of our three main
contributions. We proposed a set of metrics for
the quantitative evaluation of the scale of common
terms and the term distributional similarity of a
background corpus relative to a target corpus, and

a pairwise comparison scheme between two dif-
ferent background corpora. We also applied the
proposed metrics and comparison scheme to the
comparisons between background corpora relative
to the target FSD corpus, and our results indicate
that term distributional similarity is more predic-
tive of good FSD performance than the scale of
common terms. Finally, we answered the research
question of whether bigger or similar corpus are
more useful for FSD by showing that a smaller re-
cent domain-related corpus will be more suitable
than a very large-scale general corpus for FSD.
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