ETNLP: A Visual-Aided Systematic Approach to Select Pre-Trained
Embeddings for a Downstream Task

Xuan-Son Vu!, Thanh Vu?, Son N. Tran?, Lili Jiang'
'Ume4 University, Sweden
>The Australian E-Health Research Centre, CSIRO, Australia
3 The University of Tasmania, Australia;

{sonvx,

lili.jiang}@cs.umu.se

thanh.vul@csiro.au, sn.tran@Qutas.edu.au;

Abstract

Given many recent advanced embedding mod-
els, selecting pre-trained word embedding
(ak.a., word representation) models best fit for
a specific downstream task is non-trivial. In
this paper, we propose a systematic approach,
called ETNLP, for extracting, evaluating, and
visualizing multiple sets of pre-trained word
embeddings to determine which embeddings
should be used in a downstream task.

We demonstrate the effectiveness of the pro-
posed approach on our pre-trained word em-
bedding models in Vietnamese to select which
models are suitable for a named entity recogni-
tion (NER) task. Specifically, we create a large
Vietnamese word analogy list to evaluate and
select the pre-trained embedding models for
the task. We then utilize the selected embed-
dings for the NER task and achieve the new
state-of-the-art results on the task benchmark
dataset. We also apply the approach to another
downstream task of privacy-guaranteed em-
bedding selection, and show that it helps users
quickly select the most suitable embeddings.
In addition, we create an open-source system
using the proposed systematic approach to fa-
cilitate similar studies on other NLP tasks. The
source code and data are available at https:
//github.com/vietnlp/etnlp.

1 Introduction

Word embedding, also known as word represen-
tation, represents a word as a vector capturing
both syntactic and semantic information, so that
the words with similar meanings should have
similar vectors (Levy and Goldberg, 2014). Al-
though, the classical embedding models, such as
Word2Vec (Mikolov et al., 2013), GloVe (Pen-
nington et al., 2014), fastText (Bojanowski et al.,
2017), have been shown to help improve the per-
formance of existing models in a variety of Nat-
ural Language Processing (NLP) tasks like pars-

ing (Bansal et al., 2014), topic modeling (Nguyen
et al., 2015), and document classification (Taddy,
2015; Vu et al., 2018b). Each word is associated
with a single vector leading to a challenge on us-
ing the vector across linguistic contexts (Peters
et al., 2018). To handle the problem, recently, con-
textual embeddings (e.g., ELMO of Peters et al.
(2018), BERT of Devlin et al. (2018)) have been
proposed and help existing models achieve new
state-of-the-art results on many NLP tasks. Dif-
ferent from non-contextual embeddings, ELMO
and BERT can capture different latent syntactic-
semantic information of the same word based on
its contextual uses. Therefore, for completeness,
in this paper, we incorporate both classical em-
beddings (i.e., Word2Vec, fastText) and contextual
embeddings (i.e., ELMO, BERT) to evaluate their
performances on NLP downstream tasks.

Given the fact that there are many different
types of word embedding models, we argue that
having a systematic pipeline to evaluate, extract,
and visualize word embeddings for a downstream
NLP task, is important but non-trivial. However,
to our knowledge, there is no single comprehen-
sive pipeline (or toolkit) which can perform all
the tasks of evaluation, extraction, and visualiza-
tion. For example, the recent framework called
flair (Akbik et al., 2018) is used for training and
stacking multiple embeddings but does not pro-
vide the whole pipeline of extraction, evaluation
and visualization.

In this paper, we propose ETNLP, a system-
atic pipeline to extract, evaluate and visualize
the pre-trained embeddings on a specific down-
stream NLP task (hereafter ETNLP pipeline). The
ETNLP pipeline consists of three main compo-
nents which are extractor, evaluator, and visual-
izer. Based on the vocabulary set within a down-
stream task, the extractor will extract a subset of
word embeddings for the set to run evaluation
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and visualization. The results from both evaluator
and visualizer will help researchers quickly select
which embedding models should be used for the
downstream NLP task. On the one hand, the eval-
uator gives a concrete comparison between multi-
ple sets of word embeddings. While, on the other
hand, the visualizer will give the sense on what
type of information each set of embeddings pre-
serves given the constraint of the vocabulary size
of the downstream task. We detail the three main
components as follows.

o Extractor extracts a subset of pre-trained
embeddings based on the vocabulary size of a
downstream task. Moreover, given multiple sets of
pre-trained embeddings, how do we get the ad-
vantage from a few or all of them? For instance,
if people want to use the character embedding to
handle the out-of-vocabulary (OOV) problem in
Word2Vec model, they have to implement their
own extractor to combine two different sets of
embeddings. It is more complicated when they
want to evaluate the performance of either each
set of embeddings separately or the combination
of the two sets. The provided extractor module in
ETNLP will fulfill those needs seamlessly to elab-
orate this process in NLP applications.

e Evaluator evaluates the pre-trained embed-
dings for a downstream task. Specifically, given
multiple sets of pre-trained embeddings, how do
we choose the embeddings which will potentially
work best for a specific downstream task (e.g.,
NER)? Mikolov et al. (2013) presented a large
benchmark for embedding evaluation based on a
series of analogies. However, the benchmark is
only for English and there is no publicly available
large benchmark for low resource languages like
Vietnamese (Vu et al., 2014). Therefore, we pro-
pose a new evaluation metric for the word analogy
task in Section 3.

e Visualizer visualizes the embedding space of
multiple sets of word embeddings. When having
a new set of word embeddings, we need to get
a sense of what kinds of information (e.g., syn-
tactic or semantic) the model does preserve. We
specifically want to get samples from the embed-
ding set to see what is the semantic similarity be-
tween different words. To fulfill this requirement,
we design two different visualization strategies to
explore the embedding space: (1) side-by-side vi-
sualization and (2) interactive visualization.

The side-by-side visualization helps users com-
pare the qualities of the word similarity list be-
tween multiple embeddings (see figure 5). It al-
lows researchers to “zoom-out” and see at the
overview level what is the main difference be-
tween multiple embeddings. Moreover, it can vi-
sualize large embeddings up to the memory size
of the running system. Regarding implementation,
we implemented this visualization from scratch
running on a lightweight webserver called Flask
(flask.pocoo.orq).

For the interactive visualization, it helps re-
searchers “zoom-in” each embedding space to ex-
plore how each word is similar to the others.
To do this, the well-known Embedding Projector
(projector.tensorflow.org) is employed
to explore the embedding space interactively. Un-
like the side-by-side visualization, this interactive
visualization can only visualize up to a certain
amount of embedding vectors as long as the ten-
sor graph is less than 2GB. This is a big limitation
of the interactive visualization approach, which
we plan to improve in the near future. Finally, it
is worth to mention that the visualization module
is dynamic and it does not require to change any
codes when users want to visualize multiple pre-
trained word embeddings.

To demonstrate the effectiveness of the ETNLP
pipeline, we employ it to a use case in Vietnamese.
Evaluating pre-trained embeddings in Vietnamese
is a challenge as there is no publicly available
large' lexical resource similar to the word anal-
ogy list in English to evaluate the performance of
pre-trained embeddings. Moreover, different from
English where all word analogy records consist of
a single syllable in one record (e.g., grandfather |
grandmother | king | queen), in Vietnamese, there
are many cases where only words formulated by
multiple syllables can represent a word analogy
record (e.g., dng ndi | ba ngoai | vua | nii_hoang).

We propose a large word analogy list in Viet-
namese which can handle the problems. Having
that word analogy list constructed, we utilize dif-
ferent embedding models, namely Word2Vec, fast-
Text, ELMO and BERT on Vietnamese Wikipedia
data to generate different sets of word embeddings.
We then utilize the word analogy list to select
suitable sets of embeddings for the named entity
recognition (NER) task in Vietnamese. We achieve

!There are a couple of available datasets (Nguyen et al.,
2018b). But the datasets are small containing only 400 words.
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the new state-of-the-art results on VLSP 20162, a
Vietnamese benchmark dataset for the NER task.
Here are our key contributions in this work:

e Propose a systematic pipeline (ETNLP) to
evaluate, extract, and visualize multiple sets of
word embeddings on a downstream task.

e Release a large word analogy list in Viet-
namese for evaluating multiple word embeddings.

e Train and release multiple sets of word em-
beddings for NLP tasks in Vietnamese, wherein,
their effectiveness is verified through new state-
of-the-art results on a NER task in Vietnamese.

The rest of this paper is organized as fol-
lows. Section 2 describes how different embedding
models are trained. Section 3 shows how to use
ETNLP to extract, evaluate, and visualize word
embeddings. Section 4 explains how the word em-
beddings are selected for the NER task using the
word analogy task. Section 5 concludes the paper
followed by future work.

2 Embedding Models

This section details the word embedding models
incorporated in our systematic pipeline.

e Word2Vec (W2V) (Mikolov et al., 2013): a
widely used method in NLP for generating word
embeddings.

e W2V_C2V: the Word2Vec (W2V) model
faces the OOV issue on unseen text, therefore, we
provide a character2vec (C2V) (Kim et al., 2015)
embedding for unseen words. When the C2V is not
available, it can be easily calculated from a W2V
model by averaging all vectors where a character
occurred. Our experiments further confirm this av-
eraging approach is efficient.

o fastText (Bojanowski et al., 2016): it asso-
ciates embeddings with character-based n-grams,
and a word is represented as the summation of
the representations of its character-based n-grams.
Based on this design, fastText attempts to capture
morphological information to induce word embed-
dings, and hence, deals better with OOV words.

o ELMO (Peters et al., 2018): a model gener-
ates embeddings for a word based on the context
it appears. Thus, we choose the contexts where

http://vlsp.org.vn/vlsp201l6/eval/ner

AN
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Extracted Embeddings
for Target NLP Tasks
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Evaluation Results

Visualization of
Embedding Space

2.1 Extractor

2.2. Evaluator

2.3. Visualizer

1. Pre-processing

Figure 1: General process of the ETNLP pipeline where
S is the set of extracted embeddings for Evaluation and
Visualization of multiple embeddings on a downstream
NLP task.

the word appears in the training corpus to gener-
ate embeddings for each of its occurrences. Then
the final embedding vector is the average of all its
context embeddings.

e BERT_{Base, Large} (Devlin et al., 2018):
BERT makes use of Transformer, an attention
mechanism that learns contextual relations be-
tween words (or sub-words) in a text. Different
from ELMO, the directional models, which reads
the text input sequentially (left-to-right or right-
to-left), the Transformer encoder reads the entire
sequence of words simultaneously. It, therefore,
is considered bidirectional. This characteristic al-
lows the model to learn the context of a word
based on all of its surroundings (left and right of
the word). BERT comes with two configurations
called BERT_Base (12 layers) and BERT_Large
(24 layers). To get the embedding vector of a word,
we average all vectors of its subwords. Regarding
contexts, similar to the ELMO model above, we
choose the contexts where the word appears in the
training corpus.

3 Systematic Pipeline

Figure 1 shows the general process of the ETNLP
pipeline. The four main processes of ETNLP are
very simple to call from either the command-line
or the Python API.

e Pre-processing: since we use Word2Vec
(W2V) format as the standard format for the whole
process of ETNLP, we provide a pre-processing
tool for converting different embedding formats to
the W2V format.

e Extractor: to extract embedding vectors at
word level for the specific target NLP task (i.e.,
NER task in our case). For instance, the popular
implementation of Reimers and Gurevych (2017)
on the sequence tagging task allows users to set lo-
cation for the word embeddings. The format of the
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$python3 etnlp_api.py -input "<emb_in#l>;<emb_in#2>"
-input_c2v <emb_in#3>
-vocab <file>
-output <out_file.gz>
-args extract;solveoov:1l

Figure 2: Run extractor to export single or multiple em-
beddings for NLP tasks.

file is text-based, i.e., each line contains the em-
bedding of a word. The file then is compressed in
.gz format. Figure 2 shows a command-line to ex-
tract multiple embeddings for an NLP task. The
argument “-vocab” is the location to a vocabu-
lary list of the target NLP task (i.e., the NER task)
which is extracted from the task training data. The
option “solveoov:1” informs the extractor to use
Character2Vec (C2V) embedding to solve OOV
words in the first embedding “<emb_in#1>". The
“-input_c2v” can be omitted if users wish to sim-
ply extract embeddings from the embedding list
given after the “-input_embs” argument. Output of
this phase is a set of embeddings S to run on the
next evaluation phase.

¢ Evaluator evaluates multiple sets of embed-
dings (i.e., §) on the word analogy task. Based on
the performance of each set of embeddings in S,
we can decide what embeddings are used in the
target NLP task. To do this evaluation, users have
to set the location of the word embeddings and the
word analogy list. For more convenience to rep-
resent the compound words, we use “ | ” to sep-
arate different part of a word analogy record in-
stead of space as in the English word analogy list.
Figure 3 shows an example of two records in the
word analogy in Vietnamese (on the left) and their
translation (on the right). The lower part shows a
command-line to evaluate multiple sets of word
embeddings on this task. Regarding this evalua-
for, it is worth to note that with a huge number of
possible linguistic relations (and different objec-
tives, e.g., modeling syntactic vs. semantic prop-
erties), no embedding model is able to hold all re-
lated words close in the vector space. Therefore,
only one testing schema (i.e., word analogy test)
is not enough to evaluate multiple pre-trained em-
beddings. Thus, ETNLP is designed with the ca-
pability to be easily plugged in more tests, which
makes evaluator more robust. However, in this pa-
per, our experimental results showed that, word
analogy task is sufficient to select good embed-
dings for the NER task in Vietnamese.

e Visualizer: to visualize given word embed-
dings in the argument “-input_embs” in both

Vietnamese English
6ng ndi | ba ngoai | 6ng | ba
6ng ndi | ba ngoai | vua | nir_hoang

grandfather | grandmother | grandpa | grandma
grandfather | grandmother | king | queen

$python3 etnlp api.py -input "<emb_in#l>;<emb_in#2>"
-analoglist <file>
-output <eval_ results> -args eval

Figure 3: Run evaluator on multiple word embeddings
on the word analogy task.

$python3 etnlp api.py -input "<emb_in#l>;<emb_in#2>"
-args visualizer

Figure 4: Run visualizer to explore given pre-trained
embedding models.

zoom-out (the side-by-side visualization) and
zoom-in (the interactive visualization) manners.
For the zoom-out, users type a word that they want
to compare the similar words in different embed-
ding models (see Figure 5). For the zoom-in, after
the executions, embedding vectors are transformed
to tensors to visualize with the Embedding Pro-
jector. Each word embedding will be set to differ-
ent local port from which, users can explore the
embedding space using a Web browser. Figure 6
shows an example of the interactive visualization
of “Ha_No6i” fanoi using ELMO embeddings. See
Figure 4 for an example command-line.

4 Evaluations: A Use-Case in Vietnamese
4.1 Training Word Embeddings

We trained embedding models detailed in Section
2 on the Wikipedia dump in Vietnamese®. We then
apply sentence tokenization and word segmenta-
tion provided by VnCoreNLP (Vu et al., 2018a;
Nguyen et al.,, 2018a) to pre-process all docu-
ments. It is noted that, for BERT model, we have to
(1) format the data differently for the next sentence
prediction task; and (2) use SentencePiece (Kudo
and Richardson, 2018) to tokenize the data for
learning the pre-trained embedding. It is worth

*https://goo.gl/8WNEy?Z

Table 1: Evaluation results of different word embed-
dings on the Word Analogy Task. P-value column
shows significance test results using Paired r-tests. “*’
means significant (p-value < 0.05) to the rest.

Model MAP@10 | P-value

W2V_C2V 0.4796 *

FastText 0.4970 See [1] & [2]

ELMO 0.4999 vs. FastText: 0.95 [1]
BERT_Base | 0.4609 *

BERT _Large | 0.4634 -

MULTI 0.4906 vs. FastText: 0.025 [2]
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Search:

heo
W2Vv_C2V.vec FastText.vec ELMO.vec Bert_Base.vec Bert_Large.vec MULTI_WC_F_E_B.vec
lon - 0.726785 lon - 0.753654 lon - 0.586639 lon - 0.684323 c8c - 0.709453  lon - 0.68785
bo - 0.656218 thit - 0.641311 dé - 0.565894 trau - 0.597879 mia - 0.708231  trau - 0.59112
trau - 0.654822 bo - 0.630567 vit - 0.555309 meéo - 0.555861 bu - 0.70599 bo - 0.586154
dé - 0.619299 lgn_sira - 0.622741 trau - 0.547681 vit - 0.529021 chao - 0.681808 dé - 0.55521
ga - 0.58956 lgn_rirng - 0.58894 ga - 0.534429 bo - 0.528555 bun - 0.680691  lon_rirng - 0.539919
bé - 0.586929 trau - 0.564098 bo - 0.529275 hé - 0.522032 nhim - 0.666975 BO - 0.536671
lon_rirng - 0.582494 lam_thit - 0.558245 huou - 0.517515 lgn_rirng - 0.516756com - 0.666813 ga - 0.533239
thd - 0.569316 tiét_canh - 0.530056 chén - 0.490474 dé - 0.513264 rom - 0.666156 vit - 0.528247
vit - 0.557603 ruéc - 0.523055 nai - 0.485284 lon_sira - 0.511283 mong - 0.664997 lon_sira - 0.51864
cop - 0.556743 dé - 0.522382 meo - 0.471694 nai - 0.50473 trau - 0.664983 bé - 0.511314
hé - 0.547407 bam - 0.519374 lon_rirng - 0.471486 cho - 0.500337 uét - 0.655739  tho - 0.489024
ché - 0.535855 bé - 0.518342 séu - 0.470808 ga - 0.493196 chién - 0.649632 Bé - 0.48542
luon - 0.534943 ga - 0.515768 bé - 0.465396 Ilra - 0.491342 uéng - 0.648324 Ga - 0.481977

voi - 0.529714
lgn_sira - 0.516231
ngua - 0.512039
meo - 0.506954
thit - 0.498706

khi - 0.486718 lgn_néi - 0.5017
tom - 0.482625 14_16t - 0.497209
16¢ - 0.480256

bo_sira - 0.473558 gio - 0.49108

ga_cong_nghiép - 0.471 914nu‘é‘nJg -0.489811
hu_tiéu - 0.489641

tép - 0.470847

gia_cam - 0.515663
X0 - 0.511748

16¢c - 0.511132
giét_m§ - 0.507487
v6_béo - 0.503098

ga_céng_nghiép - 0.491963cua_déng - 0.446736

luon - 0.461051
lon_nai - 0.459563

ché_bién - 0.448032
beo - 0.446768

ngua - 0.446257
khoai - 0.444877
tho - 0.443274

logn_nai - 0.48803
tho - 0.486533

heo_hat - 0.469236 chdn - 0.640625
thi - 0.467634
khi - 0.462566
chén - 0.458857
gau - 0.451809
chudt - 0.451453

meéo - 0.479475
ché - 0.470739

rau - 0.647789
nuét - 0.647439

ba_ba - 0.452818 heo_may - 0.481929dau - 0.645377  nai - 0.468952
8c - 0.45106 bé - 0.474589 mang - 0.645161 ho - 0.46623
chd - 0.44876 trau_bo - 0.471632 duc - 0.642367 lon_nai - 0.464761

thit - 0.464236
huou - 0.463589
H& - 0.46083

Ché - 0.449362
Thit - 0.449105
bo_sira - 0.447263

diu - 0.638489
muot - 0.638248
ché - 0.637392
théi - 0.637124
keo - 0.636731

Figure 5: Side-by-side visualization for the word “heo pig” with multiple embeddings. From this visualization, we
get the sense that W2V_C2V, ELMO, and Bert_Base mainly capture the categorical information (i.e., “heo pjg” is
surrounded by names of other animals, e.g., "bO ¢ow'', "traU pugalo) While “FastText* captures both categorical in-
formation (i.e., surrounded by names of other animals) and related verbs to “pig” such as “Xa0 grying”, “NUGNG grin”.
Bert_Large, on the other hand, does not converge well due to the short training steps mentioned in section 4,
therefore, many irrelevant words (e.g., “cbe cup’> “diu fioppy”") are surrounded the input word “heo pig”, “keogiue .

Table 2: Example of five types of semantic and four (out of nine) types of syntactic questions in the word analogy
list. “NOT AVAILABLE® means that the syntactic phenomena do not apply in Vietnamese in comparison to the

list of Mikolov et al. (2013).

Type of relationship Word Pair 1 Word Pair 2

capital-common- Athens | Hy_Lap Greek | Baghdad | Irac

countries

Semantic | capital-world Abuja | Nigeria | Thé Nhi Ky Turkey | Turkey
currency Algeria | dinar | Canada | d6 1a gojjar
city-in-zone Hoa Binh g0, Binh | Ty Bac BO wesiNortn | | Ha  Giang gaGiang | DOng  Bac
B@ East Northern

family cau bé poy | €0 gdi gin | anh trai proher | €M g4l gigter

graml-adjective-to- NOT AVAILABLE

adverb

gram2-opposite chap nhin dugc secepable | Khong thé | | nhan thidc gyare | KhOng biét ypaware
Chép nhan ypacceptable

Syntactic | gram3-comparative t€ pad | t€ hon worse | 16n pig | 16n hon pigeer

gram4-superlative 16n ;g | 16n nhat pigges; | sang pright | sdng nhat prightest

gram5-present-participle | NOT AVAILABLE

gram6-nationality- Albania | Tieng Albania ajpanian | Argentina | Tiéng Argentina argentinean

adjective

gram7-past-tense NOT AVAILABLE

gram§-plural-nouns NOT AVAILABLE

gram9-plural-verbs NOT AVAILABLE
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Sdim_san

Vientiane

Ha_Tinh

Bac_Lic

Trang_Tign . .
Bong_Ha Trang_Bi
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' Hué! Wiing_T
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HalLong \

EBién_Hod

Ha_thanh Phnarm_Pent

wiYork Gia_Bin SoC_Trdng

Lim Bbng
Figure 6: Interactive visualization for the word
“Ha_No6i” with ELMO embeddings where near
“Ha_Noi” are the names of many other cities in Viet-
nam (e.g., “Hai_Phong mai phong” as well as capital of
other countries (e.g., Tokyo).

Table 3: Grid search for hyper-parameters.

Hyper-parameter Search Space

cemb dim (char embedding) | 50 100 500
drpt (dropout rate) 0.3 0.5 0.7
Istm-s (LSTM size) 50 100 500
Irate (learning rate) 0.0005 | 0.001 | 0.005

noting that due to the limitation in computing re-
sources, we can only run BERT_Base for 900,000
update steps and BERT_Large for 60,000 update
steps. We, therefore, do not report the result of
BERT_Large for a fair comparison. We also cre-
ate MULTI embeddings by concatenating four sets
of embeddings (i.e., W2V_C2V, fastText, ELMO
and BERT_Base) *.

4.2 Dataset

The named entity recognition (NER) shared task
at the 2016 VLSP workshop provides a dataset of
16,861 manually annotated sentences for training
and development, and a set of 2,831 manually an-
notated sentences for test, with four NER labels
PER, LOC, ORG, and MISC. The data was pub-
lished in 2016 and recently reported in Nguyen
et al. (2019). It is a standard benchmark on the
NER task and has been used in (Vu et al., 2018a;
Dong and Nguyen, 2018). It is noted that, in the
original dataset, each word representing a full per-
sonal name are separated into syllables that consti-
tute the word. Because this annotation scheme re-

*We do not use W2V here because W2V_C2V is W2V
with the use of character embedding to deal with OOV.

sults in an unrealistic scenario for a pipeline eval-
uation (Vu et al., 2018a), therefore, we tested on a
“modified” VLSP 2016 corpus where we merge
contiguous syllables constituting a full name to
form a word. This similar setup was also used
in (Vu et al., 2018a; Dong and Nguyen, 2018), the
current state-of-the-art approaches.

4.3 Word Analogy Task

To measure the quality of different sets of em-
beddings in Vietnamese, similar to Mikolov et al.
(2013), we define a word analogy list consist-
ing of 9,802 word analogy records. To create the
list, we selected suitable categories from the En-
glish word analogy list and then translated them to
Vietnamese. We also added customized categories
which are suitable for Vietnamese (e.g., cities and
their zones in Vietnam). Different from (Mikolov
et al., 2013), five categories: “Adjective to ad-
verb”, “Present Participle”, “Past tense”, “Plural
nouns”, “Plural verbs” were not used to be trans-
lated in Vietnamese since the same syntactic phe-
nomena does not exist in Vietnamese. Table 2
shows the list of categories and their examples of
the constructed word analogy list in Vietnamese.
Since most of this process is automatically done, it
can be applied easily to other languages. To know
which set of word embeddings potentially works
better for a target downstream task, we limit the
vocabulary of the embeddings similar to vocabu-
lary of the task (i.e., the NER task). Thus, only
3,135 word analogy records are being evaluated
for the NER dataset (Section 4.2).

Regarding the evaluation metric, Mikolov et al.
(2013) used accuracy metric to measure the qual-
ity of word embeddings on the task in which only
when the expected word is on top of the predic-
tion list, then the model gets +1 for true posi-
tive count. However, this is not a well-suited met-
ric in low resource languages where training cor-
pus is relatively small, i.e., 233M tokens in Viet-
namese Wiki compared to 6B tokens in Google
News corpus. Therefore, we change to use mean
average precision (MAP) metric to measure qual-
ity of the word analogy task. MAP is widely used
in information retrieval to evaluate results based
on the topK returned results (Vu et al., 2019). We
use MAP@10 in this paper. Table 1 shows evalua-
tion results of different sets of embeddings on the
word analogy task. The evaluator of ETNLP also
shows P-value using the paired t-tests on the raw
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Table 4: Performance of the NER task using different embedding models. The MULTIyw ¢ r g p is the concate-
nation of four embeddings: W2V_C2V, fastText, ELMO, and Bert_Base. “wemb dim” is the dimension of the
embedding model. VnCoreNLP* means we retrain the VnCoreNLP with our pre-trained embeddings.

F1 wemb dim | cemb dim | drpt | Istm-s | Irate

BiLC3 (Ma and Hovy, 2016) 88.28 | 300 - - - -
VNER (Dong and Nguyen, 2018) 89.58 | 300 300 0.6 | - 0.001
VnCoreNLP (Vu et al., 2018a) 88.55 | 300 - - - -
VnCoreNLP () 91.30 | 1024 - - - -
BiLC3 + W2V 89.01 | 300 50 0.5 | 100 0.0005
BiLC3 + BERT-Base 88.26 | 768 500 0.3 | 100 0.0005
BiLC3 + W2V_C2V 89.46 | 300 100 0.5 | 500 0.0005
BiLL.C3 + fastText 89.65 | 300 500 0.3 | 100 0.001
BiLC3 + ELMO 89.67 | 1024 100 0.7 | 500 0.0005
BiLC3 + MULTlwc r E B 91.09 | 2392 100 0.7 | 100 0.001

® MAP@10 (No dpUGC)
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Figure 7: Evaluation results of different word embeddings trained using dpUGC and No dpUGC (i.e., one option
in dpUGC to train embeddings without privacy guarantee for comparison) on the Word Analogy Task.

MAP@10 scores (i.e., before averaging) between
different sets of embeddings. The P-values (Ta-
ble 1) show that the performances of the top three
sets of word embeddings (i.e., fastText, ELMO,
and MULTYI), are significantly better than the re-
mainders but there is no significant difference be-
tween the three. Therefore, these sets of embed-
dings will be selected for NER task.

4.4 NER Task

Model: We apply the current most well-known
neural network architecture for NER task of Ma
and Hovy (2016) with no modification in its
architecture, namely, BiLSTM-CRF+CNN-char
(BiLC3). Only in the embedding layer, a different
set of word embeddings is used to evaluate their
effectiveness. Regarding experiments, we perform
a grid search for hyper-parameters and select the
best parameters on the validation set to run on the
test set. Table 3 presents the value ranges we used
to search for the best hyper-parameters. We also

follow the same setting as in (Vu et al., 2018a) to
use the /ast 2000 records in the training data as the
validation set. Moreover, due to the availability of
the VnCoreNLP code, we also retrain their model
with our pre-trained embeddings (VnCoreNLP*).

Main Results: Table 4 shows the results of
NER task using different word embeddings. It
clearly shows that, by using the pre-trained em-
beddings on Vietnamese Wikipedia data, we can
achieve the new state-of-the-art results on the task.
The reason might be that FastText, ELMO and
MULTI can handle OOV words as well as cap-
ture better the context of the words. Moreover,
learning the embeddings from a formal dataset like
Wikipedia is beneficial for the NER task. This also
verified the fact that using our pre-trained embed-
dings on VnCoreNLP helps significantly boost its
performance. Table 4 also shows the F1 scores
of W2V, W2V_C2V and BERT_Base embeddings
which are worse than three selected embeddings
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Table 5: P-values of the paired t-tests between embeddings obtained using dpUGC at different learning step

(Emb@L). “-” denotes values of these entries in the upper triangular matrix are the values of the transposed

entries in the lower triangular matrix. P-values in bold font are statistical significance at the level of 0.05.
Emb@L | 20 200 500 1000 5000 10000 | 20000 | 50000 | 90K 100K
20 1 - - - - - - - -
200 0.0578 | 1 - - - - - - -
500 0.0074 | 0.1809 | 1 - - - - - -
1000 0.0053 | 0.169 | 0.9031 1 - - - - -
5000 0.0178 | 0.0009 | 6.992 1.6242 - - - - -
10000 2.543 | 6.9872 | 2.25867 | 9.3987 | 0.001 1 - - - -
20000 0.0016 | 0.0001 | 1.757 9.6053 | 0.112 | 0.1819 | 1 - - -
50000 0.5077 | 0.9023 | 0.73137 | 0.7003 | 0.031 | 5.0673 | 0.0001 | 1 - -
90K 0.1205 | 0.2878 | 0.5127 | 0.5323 | 0.0049 | 2.4211 | 0.0001 | 0.2688 | 1 -
100K 0.3777 | 0.6822 | 0.9932 | 0.9764 | 0.0357 | 8.2638 | 0.0019 | 0.7274 | 0.2758 | 1

(i.e., fastText, ELMO and MULTI). This might in-
dicate that using word analogy to select embed-
dings for downstream NLP tasks is sensible.

4.5 Privacy-Guaranteed Embedding
Selection Task

In this section, we show how to apply ETNLP
to another downstream task of privacy-guaranteed
embedding selection. Vu et al. (2019) introduced
dpUGC to guarantee privacy for word embed-
dings. The main intuition behind dpUGC is that,
when the embedding is trained on very sensi-
tive text corpus (e.g., medical text data), it has to
guarantee privacy at the highest level to prevent
privacy leakage. However, among many embed-
dings at different learning steps of dpUGC, how
to choose a suitable embedding to achieve a good
trade-off between data privacy and data utility is
a key challenge. To this end, we propose to apply
ETNLP into this scenario to select good embed-
dings for knowledge sharing using dpUGC.
Similar to Vu et al. (2019), we trained 20 differ-
ent embeddings from 10 different learning steps
while training on the same Vietnamese Wikipedia
dataset as used in Section 4.1 with (dpUGC)
and without privacy-guarantee (No dpUGC) to
evaluate their performances. Figure 7 shows that
the pre-trained embedding at learning_step 1000
(Emb@1000) seems to be a good word embbed-
ding candidate to have a good trade-off between
privacy guarantee and data utility. Emb@ 1000
was in favor because of two reasons. Firstly, in
training privacy-guaranteed embeddings, we try
to stop as early as possible since the more train-
ing steps we run, the higher privacy we have to
sacrifice (Vu et al., 2019). Secondly, its perfor-

mance in the Word Analogy Task was more or
less similar to the other good embedding at the
learning step 90K (i.e., Emb@90K). In fact, from
Table 5 we know that the performance between
Emb@1000 and Emb@90K learning steps are not
significant difference. Therefore, selecting the pre-
trained embedding at the learning step 1000 is the
best option for privacy-guaranteed embedding us-
ing dpUGC. In summary, in this task, we showed
how ETNLP can be used to select a good word em-
bedding candidate for privacy-guaranteed knowl-
edge sharing. Normally, this selection process is
very time consuming, however, it is much easier
with ETNLP since it allows users to import multi-
ple embeddings for running evaluations.

5 Conclusions

We have presented a new systematic pipeline,
ETNLP, for extracting, evaluating and visualiz-
ing multiple pre-trained embeddings on a specific
downstream task. The ETNLP pipeline was de-
signed with three principles in mind: (1) easy to
apply on any language processing task, (2) bet-
ter performance, and (3) be able to handle un-
known vocabulary in real-world data (i.e., using
C2V (char to vec)). The evaluation of the approach
in (1) Vietnamese NER task and (2) privacy-
guaranteed embedding selection task showed its
effectiveness.

In the future, we plan to support more em-
beddings in different languages, especially in low
resource languages. We will also support new
ways to explore the embedding spaces including
at phrase and subword levels.
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