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Abstract

Calculating the Semantic Textual Similar-
ity (STS) is an important research area in
natural language processing which plays a
significant role in many applications such
as question answering, document summar-
isation, information retrieval and informa-
tion extraction. This paper evaluates Sia-
mese recurrent architectures, a special type
of neural networks, which are used here to
measure STS. Several variants of the archi-
tecture are compared with existing meth-
ods.

1 Introduction

Measuring Semantic Textual Similarity (STS)
is the task of calculating the similarity between
a pair of texts using both direct and indir-
ect relationships between them (Rus et al.,
2013). Originally, the work on STS largely fo-
cused on similarity between short texts such as
abstracts and product descriptions (Li et al.,
2006; Mihalcea et al., 2006). The introduction
of the STS tasks at the International Work-
shops on Semantic Evaluation (SemEval) lead
to an increase of the interest that the field
received from the research community. The
SemEval tasks also led to the development
of standard datasets like the SICK corpus
(Bentivogli et al., 2016) and standardised the
similarity score as a numerical value between
1 and 5 (Agirre et al., 2014).

Having a good STS metric is very important
in many natural language processing (NLP)
applications. As an example, for certain types
of question answering systems, having an ac-
curate STS component is the key to success
since the questions with similar meanings can
be answered similarly (Majumder et al., 2016).
STS is also important in translation memories

retrieval and matching (Gupta et al., 2014b).
Translation memories help translators by find-
ing in the database they maintain previously
translated sentences, which are similar to the
one to be translated, and retrieving their
translations. Hence, accurate STS methods
are beneficial for translation memory.

Given the growing importance of having a
good STS metric and as a result of the Se-
mEval workshops, researchers have proposed
numerous STS methods. Most of the early
approaches were based on traditional machine
learning and involved heavy feature engineer-
ing (Béchara et al., 2015). With the advances
of word embeddings, and as a result of the suc-
cess neural networks have achieved in other
fields, most of the methods proposed in re-
cent years rely on neural architectures (Tai
et al., 2015; Shao, 2017). Neural networks
are preferred over traditional machine learn-
ing models as they generally tend to perform
better than traditional machine learning mod-
els. They also do not rely on linguistic fea-
tures which means they can be easily applied
to languages other than English. The ar-
chitecture employed in this paper is a spe-
cial class of neural networks called Siamese
neural networks. These networks contain two
or more identical sub-networks. The networks
are identical in the sense that they have the
same configuration with the same parameters
and weights. In addition, parameter updating
is mirrored across these sub-networks.

Siamese networks are popular among tasks
that involve finding similarity or a relation-
ship between two comparable things. They
have been proven successful in tasks like sig-
nature verification (Bromley et al., 1993), face
verification (Chopra et al., 2005), image sim-
ilarity (Koch et al., 2015) and have been re-
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cently used successfully in sentence similarity
(Neculoiu et al., 2016). Siamese architectures
are good in these tasks because, when the in-
puts are of the same kind, it makes sense to
use a similar model to process similar inputs.
In this way the networks will have represent-
ation vectors with the same semantics, mak-
ing them easier to compare pairs of sentences.
Given that the weights are shared across sub
networks there are fewer parameters to train,
which in turn means they require less training
data and less tendency to over-fit. Given the
amount of human labour required to produce
datasets for STS, Siamese neural networks can
prove the ideal solution for the STS task.

This paper explores the performance of sev-
eral architectures which use Siamese neural
networks for STS. The rest of the paper is
organized as follows. Section 2 briefly de-
scribes several approaches used to measure
sentence similarity focusing more on Siamese
neural networks. Section 3 contains informa-
tion about the settings of the experiments car-
ried out in this paper including the datasets
employed here and the different architectures
explored. The architectures are evaluated in
Section 4. The paper finishes with conclusions.

2 Related Work

Given that a good STS metric is required for
a variety of NLP fields, researchers have pro-
posed a large number of such metrics. Before
the shift of interest in neural networks, most
of the proposed methods relied heavily on fea-
ture engineering. A typical example is (Gupta
et al., 2014a) which employed 20 linguistic fea-
tures fed into a support vector machine re-
gressor. The top system (Zhao et al., 2014) in
task 1 in SemEval 2014 has used seven types
of features including text difference measures,
common text similarity measures etc. (Zhao
et al., 2014). Then they have fed it in to
several learning algorithms like support vec-
tor machine regressor, Random Forest, Gradi-
ent boosting etc (Zhao et al., 2014). With the
introduction of word embedding models, re-
searchers focused more on neural representa-
tion for this task. Many of the leading teams
in the STS task at Semeval 2017 used some
kind of neural network architecture which em-
ployed word embeddings (Shao, 2017). As an

example, Maharjan et al. (2017) used an en-
semble of traditional machine learning models
and deep learning models in their top perform-
ing system at Semeval 2017 STS task.

There are two main approaches which em-
ploy neural representation models: supervised
and unsupervised. Unsupervised approaches
use pretrained word/sentence embeddings dir-
ectly for the similarity task without train-
ing a neural network model on them. Such
approaches have used cosine similarity on
sent2vec (Pagliardini et al., 2018), InferSent
(Conneau et al., 2017), Doc2Vec (Le and
Mikolov, 2014) and smooth inverse frequency
with GloVe vectors (Arora et al., 2017).

Supervised approaches use neural networks
to project word embeddings to fixed dimen-
sional vectors which are trained to capture the
semantic meaning of the sentence. Recently,
many neural network architectures have been
used to calculate sentence similarity. He et al.
(2015) propose an elaborate convolutional net-
work (ConvNet) variant which infers sentence
similarity by integrating various differences
across many convolutions at varying scales.

Kiros et al. (2015) propose the skip-thoughts
model, which extends the skip-gram approach
of word2vec from the word to sentence level.
This model feeds each sentence into an Recur-
rent Neural Network (RNN) encoder-decoder
with Gated Recurrent Unit (GRU) activa-
tions. They attempt to reconstruct the im-
mediately preceding and following sentences.
For the sentence similarity task, they obtain
skip-thought vectors for sentence pairs. Then
a separate classifier is trained using features
derived from differences and products between
skip-thought vectors for each pair of sentences.

Tai et al. (2015) propose Tree-LSTMs
(Long short-term memory) which generalize
the order-sensitive chain-structure of stand-
ard LSTMs to tree-structured network topo-
logies. Each sentence is first converted into a
parse tree using a separately trained parser,
and the Tree-LSTM composes its hidden state
at a given tree node from the corresponding
word as well as the hidden states of all child
nodes. The hope is that by reflecting syn-
tactic properties of a sentence, the parse tree
structured network can propagate necessary
information more efficiently than a sequen-
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tially restricted architecture. The output from
Tree-LSTM can be used for sentence similar-
ity task as the same way as Kiros et al. (2015),
where representations of the input sentences
are now produced by Tree-LSTMs rather than
skip-thoughts.

Our proposed model also represents sen-
tences using neural networks whose inputs are
word vectors learned separately from a large
corpus. But unlike the models proposed by
Kiros et al. (2015) and Tai et al. (2015) the
sole target of our objective function is to cal-
culate sentence similarity. In order to have an
objective function that solely focus on similar-
ity we need an architecture which is capable of
handling two sentences parallelly. To do that
we use a special kind of neural network archi-
tecture: Siamese neural network architecture.

Siamese recurrent neural networks have
been recently used in STS tasks. The MAL-
STM architecture (Mueller and Thyagarajan,
2016) uses two identical LSTM networks try-
ing to project zero padded word embeddings of
a sentence to fixed sized 50 dimensional vec-
tors using Manhattan distance as the similar-
ity function between 2 sub networks. Mueller
and Thyagarajan (2016) report that it per-
forms better than other neural network mod-
els like Tree-LSTM (Tai et al., 2015). This in-
spired us to use this model and extend it. This
research proposes new variants of the MAL-
STM architecture for predicting STS 1.

3 Settings of the Experiments

3.1 Data Sets
The experiments presented in this paper were
carried out using the SICK dataset (Bentivogli
et al., 2016) and SemEval 2017 Task 1 data-
set (Cer et al., 2017) which we will refer as
STS2017 dataset.

The SICK data contains 9927 sentence pairs
with a 5,000/4,927 training/test split which
were employed in the SemEval tasks. Each
pair is annotated with a relatedness score
between [1,5] corresponding to the average re-
latedness judged by 10 different individuals.
In order to generate more training data we
used thesaurus-based augmentation (Miller,
1992) and added 10,022 additional training ex-

1The code is available on ”https://github.com/
TharinduDR/Siamese-Recurrent-Architectures”

amples. Evaluation was done with the SICK
test data. Mueller and Thyagarajan (2016)
uses the same thesaurus-based data augment-
ation in their research.

The STS2017 test datset had 250 sen-
tence pairs annotated with a relatedness score
between [1,5]. As the training data for the
competition, participants were encouraged to
make use of all existing data sets from prior
STS evaluations including all previously re-
leased trial, training and evaluation data 2.
Once we combined all datasets from prior STS
tasks we had 8277 sentence pairs for training.

3.2 Proposed Architectures
The basic structure of the Siamese neural net-
work architecture used in our experiments is
shown in Figure 1. It consists of an embed-
ding layer which represents each sentence as
a sequence of word vectors. This sequence of
word vectors is fed into a Recurrent Neural
Network (RNN) cell which learns a mapping
from the space of variable length sequences of
300-dimensional vectors into a 50 dimensional
vector. The sole error signal backpropag-
ated during training, stems from the similarity
between these 50 dimensional vectors, which
can be also used as a sentence representation.
Initially, the similarity function we used was
based on Manhattan distance. To make sure
that the prediction is between 0 and 1, we took
the exponent of the negative Manhattan dis-
tance between 2 sentence representations. The
similarity function was adopted from Mueller
and Thyagarajan (2016). The proposed vari-
ants of our architecture are:

1. LSTM - Block A in Figure 1 contains a
single LSTM cell. This is the architec-
ture suggested by Mueller and Thyagara-
jan (2016)

2. Bi-directional LSTM - Block A in Figure
1 contains a single Bi-directional LSTM
cell. Bi-directional LSTM tends to un-
derstand the context better than Uni-
directional LSTM (Schuster and Paliwal,
1997).

3. GRU - Block A in Figure 1 contains a
single GRU cell. GRUs have been shown

2http://alt.qcri.org/semeval2017/task1/
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Approach τ ρ MSE

Illinois-LH
(Lai and Hockenmaier, 2014) 0.7993 0.7538 0.3692

UNAL-NLP
(Jiménez et al., 2014) 0.8070 0.7489 0.3550

Meaning Factory
(Bjerva et al., 2014) 0.8268 0.7721 0.3224

ECNU
(Zhao et al., 2014) 0.8414 NA NA

Skip-thought+COCO
(Kiros et al., 2015) 0.8655 0.7995 0.2561

Dependency Tree-LSTM
(Tai et al., 2015) 0.8676 0.8083 0.2532

ConvNet
(He et al., 2015) 0.8686 0.8047 0.2606

Bi-directional LSTM† 0.8743 0.8251 0.2391
GRU + Capsule + Flatten† 0.8786 0.8286 0.2301
MALSTM (Baseline)
(Mueller and Thyagarajan, 2016) 0.8822 0.8345 0.2286

LSTM: Adagrad† 0.8831 0.8364 0.2195
GRU + Attention† 0.8843 0.8372 0.2163
LSTM + Attention† 0.8886 0.8386 0.2142
Bi-directional GRU† 0.8896 0.8390 0.2125
GRU† 0.8901 0.8396 0.2112

Table 1: Pearson correlation (τ), Spearman correlation (ρ), and Mean Square Error (MSE) for the SICK
test set.

Figure 1: Basic structure of the Siamese neural
network. Unit A is changed over the architectures.

to exhibit better performance on smaller
datasets (Chung et al., 2014).

4. Bi-directional GRU - Block A in Figure
1 contains a single Bi-directional GRU
cell. Bi-directional GRUs tend to under-

stand the context better than Unidirec-
tional GRUs (Vukotic et al., 2016).

5. LSTM + Attention - Block A in Figure
1 contains a single LSTM cell with self
attention (Bahdanau et al., 2014).

6. GRU + Attention - Block A in Figure 1
contains a single GRU cell with self atten-
tion (Bahdanau et al., 2014).

7. GRU + Capsule + Flatten - Block A
in Figure 1 contains a GRU followed
by a capsule layer and a flatten layer.
Dynamic routing used between capsules
performs better than a traditional max-
pooling layer (Sabour et al., 2017).

4 Evaluation Results

Table 1 shows the results obtained for the pro-
posed architectures on the SICK test set. The
table only reports the best results for each ar-
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chitecture 3. The first group of results are
top SemEval 2014 submissions and the second
group are recent neural network methods (best
result from each paper shown). † denotes the
experiments we conducted in this research.
All the models were evaluated using the three
evaluation metrics normally employed in the
STS tasks: Mean Square Error (MSE), Pear-
son correlation (τ) and Spearman correlation
(ρ).

MALSTM (Mueller and Thyagarajan, 2016)
is the baseline that we defined for this research.
The baseline is the best result achieved by
the architecture reported in Mueller and Thy-
agarajan (2016). Interestingly, we were able
to beat the baseline using the same architec-
ture using the Adagrad optimiser (Duchi et al.,
2011) (LSTM:Adagrad).

The best result was obtained when block A
in figure 1 contains a single GRU. As can be
seen in the table 1, the proposed architecture
outperformed both the benchmark and all the
other architectures in all 3 evaluation metrics.

As can be seen in Table 1, the architectures
with bidirectional GRU, LSTM with Attention
and GRU with Attention also surpassed the
benchmark. However uni-directional GRU out
performed them on all 3 evaluation metrics.

We experimented with other similarity func-
tions and other embedding models. Using Eu-
clidean distance for the similarity function in-
stead of Manhattan distance did not improve
the results for the model because semantically
different sentences could end up being repres-
ented by nearly identical vectors due to the
vanishing gradients of the Euclidean distance
(Chopra et al., 2005). Changing the embed-
ding model to GloVe (Pennington et al., 2014),
fastText (Mikolov et al., 2018) or concaten-
ating them with word2vec model did not im-
prove the results either. For this reason, none
of these results are presented here.

The Siamese neural network with GRU was
tested with a cyclical learning rate (Smith,
2015), which has the advantage of forcing the
model to find another local minimum if the
current minimum is not robust and makes the
model generalize better to unseen data. How-
ever, neither cyclical learning rate nor redu-
cing learning rate on plateau increased the per-

3These results are reported in Marelli et al. (2014)

Approach τ

FCICU
(Hassan et al., 2017) 0.8280

BIT
(Wu et al., 2017) 0.8400

ECNU
(Tian et al., 2017) 0.8518

DT Team
(Maharjan et al., 2017) 0.8536

Bi-directional LSTM† 0.8540
GRU + Capsule + Flatten† 0.8545
RTV 0.8547

MALSTM 0.8651
LSTM: Adagrad† 0.8692
GRU + Attention† 0.8725
LSTM + Attention† 0.8743
Bi-directional GRU† 0.8750
GRU† 0.8792

Table 2: Pearson correlation (τ) for STS2017 test
set.

formance further. We do not report these res-
ults too.

Table 2 shows the results obtained for
STS2017 test dataset comparing our experi-
ments with other top performing models in Se-
mEval 2017 Task 1 (Cer et al., 2017). † denotes
the experiments we conducted in this research.
As SemEval 2017 Task 1 used Pearson correla-
tion (τ) to evaluate the submissions, we evalu-
ated our models using Pearson correlation (τ)
too.

GRU based Siamese neural network per-
forms better than existing systems for
STS2017 dataset too, as it is shown in table
2.

4.1 Error Analysis

In order to understand better why the GRU
based architecture performed better than the
LSTM baseline, we compared sentences where
the GRU architecture was better. Table 3
shows examples of such sentences from the
SICK testset. Our analysis suggests that
the GRU based architecture handles the addi-
tional words better than LSTM. Mueller and
Thyagarajan (2016) report that their architec-
ture does not perform well with active-passive
equivalence. However, as shown in Table 4,
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Sentence 1 Sentence 2 GOLD LSTM GRU
The people are walking on the
road beside a beautiful water-
fall

The people are walking on the
road beside a waterfall, which
is beautiful

0.9750 0.5260 0.9569

The woman is frying a chop of
breaded pork

The woman is frying a
breaded pork chop

0.9250 0.5278 0.8561

A white dog is standing on the
leaves on the ground

A dog, which is white, is
standing on fallen leaves

0.9500 0.3611 0.7618

The man is erasing the other
man’s work from the board

The man is erasing the draw-
ing on the board

0.7500 0.5128 0.7584

Table 3: Example sentence pairs from the SICK test data. LSTM denotes the baseline and GRU the
best model

Sentence 1 Sentence 2 GOLD LSTM GRU
A man is mixing vegetables in
a pot

Vegetables are being mixed in
a pot by a man

0.9750 0.6684 0.8154

Carrots are being sliced by a
woman

A woman is slicing carrots 1.0000 0.6739 0.7206

The elephant is being ridden
by the woman

The woman is riding the ele-
phant

0.9500 0.2249 0.5939

Table 4: Example active-passive sentence pairs from the SICK test data.

our architecture performs slightly better than
the LSTM based architecture.

5 Conclusions
This paper evaluated several neural archi-
tectures based on Siamese recurrent neural
network for calculating semantic similarity
between pairs of texts. Most of these architec-
tures fared better than the approach proposed
in (Mueller and Thyagarajan, 2016). The vari-
ant with a GRU performed best, capitalising
on GRU’s ability to exhibit better perform-
ance on smaller datasets like the ones avail-
able for STS. Our architectures can be easily
ported to other languages which have training
data available, and we are currently experi-
menting with other languages.
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Hanna Béchara, Hernani Costa, Shiva Taslimi-
poor, Rohit Gupta, Constantin Orasan,
Gloria Corpas Pastor, and Ruslan Mitkov.
2015. Miniexperts: An svm approach for
measuring semantic textual similarity. In
SemEval@NAACL-HLT.

Luisa Bentivogli, Raffaella Bernardi, Marco
Marelli, Stefano Menini, Marco Baroni, and
Roberto Zamparelli. 2016. Sick through the
semeval glasses. lesson learned from the evalu-
ation of compositional distributional semantic
models on full sentences through semantic re-
latedness and textual entailment. Language Re-
sources and Evaluation, 50:95–124.

Johannes Bjerva, Johan Bos, Rob van der Goot,
and Malvina Nissim. 2014. The meaning fact-
ory: Formal semantics for recognizing textual
entailment and determining semantic similarity.
In SemEval@COLING.

Jane Bromley, Isabelle Guyon, Yann LeCun,
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