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Abstract 

Relation Extraction (RE) consists in detect-

ing and classifying semantic relations be-

tween entities in a sentence. The vast ma-

jority of the state-of-the-art RE systems re-

lies on morphosyntactic features and super-

vised machine learning algorithms. This 

paper tries to answer important questions 

concerning both the impact of semantic-

based features, and the integration of exter-

nal linguistic knowledge resources on RE 

performance. For that, a RE system based 

on a logical and relational learning algo-

rithm was used and evaluated on three ref-

erence datasets from two distinct domains. 

The yielded results confirm that the classi-

fiers induced using the proposed richer fea-

ture set outperformed the classifiers built 

with morphosyntactic features in average 

4% (F1-measure).  

1 Introduction 

Relation Extraction (RE) consists in detecting and 

classifying binary semantic relations between enti-

ties in a sentence. 

Many RE systems use statistical machine learn-

ing techniques, such as feature-based and tree ker-

nels-based methods (Choi et al., 2013) are based on 

a propositional hypothesis space for representing 

examples, i.e., they employ an attribute-value rep-

resentation achieving robust results. However, this 

representation is not able to effectively capture 

structural information from parse trees without loss 

of information (Choi et al., 2013). More recently, 

other RE systems using deep learning techniques, 

such as Convolution Neural Networks (Nguyen 

and Grishman, 2015) and Recurrent Neural Net-

works (Miwa and Bansal, 2016) have also been 

proposed. They are based on a dense vector repre-

sentation of the input words retrieved from word 

embeddings (Mikolov et al., 2013). 

Some other RE systems rely on natural language 

processing (NLP) techniques for extracting rele-

vant features from the text. They typically integrate 

shallow NLP tools for coping with lexical and syn-

tactic aspects of the texts such as POS tagging, lem-

matization, chunking, and syntactic parsing (Choi 

et al., 2013). However, according to Zouaq (2011), 

there are two main reasons to seriously consider 

deeper linguistic processing for RE: (i) it may pro-

vide deeper semantic meaning; (ii) NLP tools are 

becoming sufficiently robust to be considered as re-

liable tools for knowledge and model extraction.  

Contrarily to related work above, this work sub-

scribes to the idea of performing RE employing the 

Logical and Relational Learning (LRL) (de Raedt, 

2008) approach that can generate classification 

models from complex data structures such as 

graphs or multiple tables. More precisely, we rely 

on Inductive Logic Programming (ILP) (Muggle-

ton, 1991) as one of the most successful relational 

learning techniques because it employs a symbolic 

and declarative representation for the examples and 

the extraction models are both understandable and 

interpretable by humans. Moreover, ILP allows for 

many forms of prior knowledge, including seman-

tic resources, to be integrated into the induction of 

the extraction rules (de Raedt, 2018).  

In this paper, we try to answer experimental ques-

tions concerning not only the impact of semantic 

linguistic features but also the integration of exter-

nal knowledge resources on RE. For that, an ILP-

based RE system was employed and evaluated on 

three datasets from two distinct domains.  

The main contribution of this work consists in the 

experimental validation of our working hypothesis 

that a feature engineering step comprising a sub-
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stantial body of deep linguistic knowledge, in com-

bination with an expressive inductive learning 

technique, can generate effective RE models. 

2 Relational Learning and Inductive 

Logic Programming 

Relational Learning (RL) concerns the learning 

task from complex, heterogeneous examples repre-

sented by multirelational datasets. RL enables the 

development of applications in many fields includ-

ing bio-informatics, networks analysis, and drug 

design (de Raedt, 2008). LRL (DeRead, 2008) 

combines machine learning and logic-based for-

malisms to automatically induce first-order rules 

from multi-relational examples.  

ILP (Muggleton, 1991) is one of the most suc-

cessful LRL-based technique that can not only in-

duce symbolic rules from examples represented as 

multi-relational data, but also integrate background 

knowledge (BK) represented as logical clauses in 

first-order logic (FOL). Unlike traditional machine 

learning methods, classification models (rules) in 

ILP are both understandable and interpretable by 

humans. Most of the current ILP systems induce a 

set of Horn-clauses and employ Prolog as their core 

inference engine (Muggleton, 1991). 

3 Logical Relational Learning System 

for Relation Extraction 

The main contribution of this paper consists in the 

experimental validation of our working hypothe-

sis that a feature engineering step composed by a 

substantial body of deep linguistic knowledge in 

combination with an expressive inductive learn-

ing technique can generate effective RE models. 

For testing this hypothesis, a LRL RE system 

(Lima et al., 2017; Lima et al., 2019) was used. 

The remainder of this section describes the RE 

system, the rich feature engineering component, 

and the underlying model for representing seman-

tic features. 

3.1 System Architecture 

Fig. 1 shows the functional architecture our LRL 

system for RE. Its major components are high-

lighted as darker boxes and briefly presented next. 

Deep NLP Component. This component per-

forms the automatic annotation of the input docu-

ments in English. Its output is formed by XML 

files containing several layers of linguistics anno-

tations. Its distinguishing characteristic consists in 

various NLP analysis it performs, starting from 

tokenization, passing for shallow analysis, and 

finishing with more advanced semantic analysis. 
 

 
Figure 1. RE System architecture. 

 

Background Knowledge Generation compo-

nent. This component automatically generates 

and represents relevant features from an annotated 

set of documents. The generated features are con-

verted into a knowledge base implemented as a 

Prolog factual base. 

ILP rule learning component relies on an LRL 

system rooted on ILP that induces Horn-like ex-

traction rules from training data. The extraction 

rules follow the same syntax of a Prolog predicate. 

This learning component is based on GILPS, a 

general ILP system proposed by Santos (2010). 

Rule application component. It applies the in-

duced rules on the Prolog factual base generated 

from new documents not seen in the rule model 

learning phase. As a result, new instances of rela-

tions are identified and extracted. 

Due to their importance, the above first two com-

ponents will be detailed next. 

3.2 Feature Engineering via Deep NLP 

NLP technologies are of paramount importance in 

RE, since they can analyze unstructured texts and 

extracting their meaning. Indeed, the result of 

NLP analyses (or annotation process) is a richer 

version of the input text with further lexical, syn-

tactical, and semantic metadata seem as a normal-

ized representation of texts.  

Due to its inherent complexity, NLP is not car-

ried out in a single large stage. Instead, the anno-

tation process is carried out as a chain of processes 

in which the output of a previous process becomes 

the input to the next one. Accordingly, the NLP 

component in our RE architecture is composed of 

the three major components as depicted in Fig. 2. 

The first analysis provides the basic morphologi-

cal elements and lemmas, i.e., canonical base 

form of the words. In addition, categorical infor-

mation is attached to each lexical item as Part-of-

Speech (POS) tags (e.g., noun, verb, etc.). This fa-

cilitates the posterior task of determining groups 

of words (chunking analysis) that grammatically 

belong to the same category. Next, the syntactical 
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analysis (syntactic parsing) identifies the struc-

tural relationships holding between words at the 

sentence level. The final semantic analysis links 

words to lexical semantic resources, including 

WordNet (Fellbaum, 1998), SUMO ontology 

(Niles and Pease, 2003), and WordNet Domain hi-

erarchy (Bentivoli et al., 2004). Such semantic re-

sources offer a variety of semantic relations in-

cluding synonyms and hyponyms from WordNet, 

and additional semantic relations between verbs 

and their arguments considered here as predicates. 
 

 
Figure 2. Overview of the Deep NLP pipeline. 

 

The Deep NLP component relies on the Stanford 

CoreNLP1 for carrying out the following pipeline: 

tokenization, sentence splitting, POS tagging, 

lemmatization, NER, and dependency parsing. 

Chunking analysis is performed by Apache 

OpenNLP2, while morphological analysis, gazet-

teers look-up, and pronoun normalization were 

implemented as ad hoc programs. That is fol-

lowed by the Sense Learner (Mihalcea and 

Faruque, 2004) that disambiguates noun and 

verbs. Then, using the Java WordNet library3, the 

sense_id of nouns and verbs are found in Word-

Net, along with of all synonyms and hyponyms of 

a given word. In addition, Lin´s similar words da-

taset (Lin et al., 2003) is used for retrieving a list 

of N (N = 5) most similar words to a given word. 

Semantic Role Labeling (SRL) is performed on all 

verbs by ClearNLP4. Still, for verbs, the Super-

Sense Tagger5 (Ciaramita and Altun, 2006) finds 

their selectional preferences. It annotates text with 

41 broad semantic categories (WordNet super-

senses) for both nouns and verbs. Next, the map-

ping between all WordNet synsets and the SUMO 

ontology6 is exploited for retrieving the related 

class from the SUMO ontology. Finally, an ad-

                                                 
1 https://stanfordnlp.github.io/CoreNLP 
2 http://opennlp.apache.org 
3 https://sourceforge.net/projects/jwordnet 

hoc program maps words to labels from the Word-

Net Domains (Bentivogli et al., 2004). Table 1 

summarizes the entire pipeline.  

3.3 Relational Representation of Sentences 

The goal of the BK Generation Component is to 

extract and represent features according to a rela-

tional model consisting of documents, sentences, 

phrases, and tokens. They are converted into a 

Prolog factual base and used as input by the ILP-

based learner. There are the four main groups of 

features: 

Lexical features which concern word, lemma, 

length, and general morphological type infor-

mation at the token level. 

Syntactic features denote word POS tags; head 

word of nominal, prepositional or verbal chunk; bi-

grams and tri-grams of consecutive POS tags of 

words, chunking features that segment sentences 

into a noun, prepositional, and verb phrases, chunk 

head word, and its relative position to the main verb 

of the sentence. 

Semantic features include named entities, entity 

mentions provided by the corpus as well as all lex-

ical-based semantic features (sense/hypersense, 

4 https://github.com/clearnlp/clearnlp 
5 https://sourceforge.net/projects/supersensetag 
6 http://www.adampease.org/OP 
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synonyms, domain sense), and semantic roles of 

the verbs with their arguments. 

Structural features consist of the structural ele-

ments connecting all the above features according 

to our relational model. They denote (i) the se-

quencing of tokens preserving the token order in 

the input sentence; (ii) the part-whole relation be-

tween tokens and the chunk containing them; (iii) 

the sequencing of chunks is represented by edges 

between their head tokens; and (iv) the grammati-

cal dependency between two tokens in a sentence 

according to the typed dependencies between 

words. 

The relational representation of all the above 

types of features is straightforward: a unary pred-

icate in Prolog denotes identifiers, e.g., token(id), 

while binary predicates correspond to attribute–

value pairs and relations, e.g., rel(arg1, arg2). 
 

NLP Subtask Tool or Resource 

Tokenization  

Sentence Splitter Stanford CoreNLP 

POS  

Lemmatization  

Chunking OpenNLP Chunker 

NER Stanford CoreNLP 

Morphological Analysis  

Gazetteer Look-up ad hoc programs 

Pronoun Normalization  

Syntactic Parsing - Dependency Stanford CoreNLP 

Worde Sense Disambiguation Sense Learner 

WordNet Synsets (synonyms and 

hypernyms) 

WordNet 3.0 

Similar words Lin ́s database 

SRL with Propbank/VerbNet ClearNLP 

Selectional Preferences SuperSense Tagger 

Semantic mapping to Domains WordNet domains 

Semantic mapping to SUMO Ad hoc program 

Table 1. Complete pipeline of the Deep NLP 

tools component. 

4 Experiments 

This section reports the results of experiments per-

formed on three benchmark datasets from two dis-

tinct domains (newswire and biomedical). 

4.1 Experimental Questions 

We investigate the effectiveness of the proposed se-

mantic linguistic features used in the induction of 

the relation extraction rules by the our ILP system. 

More precisely, we want to answer the following 

experimental questions (EQ): 
 

EQ1. Do the features present a complementary 

contribution to the performance results? 

EQ2. What is the impact of the semantic linguistic 

features on the final induced set of extraction 

rules?  

EQ3. How well do the rules generalize among dif-

ferent datasets: either in the same domain or in dis-

tinct domains? 

4.2 Dataset and Evaluation Measures 

Three publicly available RE datasets from the 

newswire and the biomedical domain containing 

binary relations were selected for analysis: 
 

reACE 2004/2005. The reACE 2004/2005 datasets 

introduced by Hachey et al. (2011) are the result of 

several transformation steps (refactoring, prepro-

cessing, and reannotation) for normalizing the two 

original ACE datasets so that they adhere to a com-

mon notion of relation that is more intuitive and 

simpler: relation instance denotes a predicate over 

two arguments, where the arguments represent 

concepts in the real world.  

Table 2 shows the distributions of the relation 

types in reACE 2005 dataset, whereas Table 3 

shows some examples of them. 
 

reACE 2005 - Relation Types       Freq 

Employment 228 

Membership 36 
Located 280 
Citizen-Resident-Religion-Ethnic 39 
Business 16 
Family 42 
Geographical 119 
Subsidiary 47 

Table 2: reACE 2005 relation types. 
 

Relation type Example phrases 

business (John,  superiors) John´s superiors… 

Employ (Investors, “Wall Street”) Investors on Wall 

Street… 

citizen (voters,  Missouri) Some Missouri vot-

ers… 

Table 3.  Examples of reACE 2005 relations. 
 

IEPA. The Interaction Extraction Performance As-

sessment (IEPA) corpus (Ding et al.,2002) is a bio-

medical dataset comprising 303 abstracts retrieved 

by ten queries suggested by domain experts to the 

PUBMED repository. An interaction between two 

terms, i.e., a specific pair of co-occurring chemicals 

in the IEPA corpus, was defined as a direct or indi-

rect influence of one on the quantity or activity of 

the other (Ding et al., 2002). Examples of interac-

tions between terms A and B are "A increased B", 

and "A activated C, and C activated B".  

Evaluation Measures. The classical IR measures 

of Precision P, Recall R, and F1-measure (Baeza-

Yates and Ribeiro-Neto, 1999) were used for meas-

uring the effectiveness (impact) of the proposed en-

hanced features on the RE task. 
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4.3 Experimental Protocol 

We employed five-fold cross-validation which al-

lows both the maximal use of the available training 

data on all the datasets used in the experiments. 

Moreover, preliminary experiments were per-

formed for determining the optimal learning pa-

rameters according to the criteria of achieving high 

accuracy and preventing model overfitting. The 

best parameter setting for the ILP-based learning 

component found were: evalfn = coverage, i 

(depth) = 3, minpos = 5, and noise = 0.2. 

4.4 Results 

Table 4 summarizes the results of using several 

combinations of features on reACE 2004/2005 and 

IEPA datasets, while Tab. 5 conveniently displays 

the difference in performance between each pair of 

corresponding lines indexed by the column id. 

Starting from Line 2 in Tab. 4, a given group of 

features are incrementally added to the baseline 

(Line 1) which, in turn, includes the following 

group of features: lexical, syntactic and structural 

features, i.e., syntactical dependencies (Dep), 

chunk information (Chunk), POS tagging, and 

other chunk related features. The baseline setting 

corresponds to all the features that do not take into 

account the semantic features (i.e., lexical seman-

tics and mapping to semantic resources). The other 

lines (Line 2-4) in Tab. 4 integrate other groups of 

features (NER, Corpus types) to the baseline: NER 

denotes recognized named entities whereas Corpus 

types features denote the golden standard annota-

tions already available in the given corpus. For in-

stance, the reACE datasets provide named entities 

such as Organizations and Person, while the IEPA 

corpus only assigns the label protein to each term 

denoting a given protein. The last group of features 

(semantic), denotes the semantic features compris-

ing SRL, synonyms/hypernyms, and mapping of 

words to WordNet, WordNet Domains, SUMO on-

tology, similar words, and selectional preferences. 

The missing entries in IEPA column are due to the 

fact that typical named entities are useless in the 

IEPA biomedical corpus, and therefore, they were 

not considered.  

5 Discussion on Experimental Questions 

This section discusses both the impact of semantic 

linguistic features on RE, and related aspects on 

domain adaptability.  
 

On the Impact of Semantic Linguistic Features. 

EQ1 can be positively answered because by incre-

mentally incorporating new groups of features to 

the baseline, that contributed to the improvement 

of the scores for all datasets. Indeed, the perfor-

mance improves as more features are used, starting 

with the F-measure of 77.77 and reaching 81.80 for 

the reACE 2004 dataset. Analogously for the 

reACE 2005, the best overall F1 performance 

(71.86%) may indicate that this dataset is more dif-

ficult than the reACE 2004. One possible explana-

tion is that, in the reACE 2005 dataset, some rela-

tions (particularly Business) are very poorly repre-

sented with only 16 positive examples, which ham-

pers the overall score. More importantly, the over-

all F1 scores suggest that the proposed four groups 

of features have both a positive and complementary 

impact on the overall F1 scores for all the datasets 

evaluated. 

Concerning EQ2, one can notice that including 

semantic features into the RE process improves av-

erage performance in terms of F1 measure for all 

datasets. In fact, the boost in F1 measure was 4% 

in average for the reACE datasets, while for the 

IEPA dataset, the improvement was more than 3%. 

However, the impact on both P and R scores were 

unbalanced for the reACE corpora, since the se-

mantic features contributed relatively more in re-

call than in precision. This contrast with the results 

on the IEPA corpus that were very balanced. On the 

one hand, the highest difference in performance 

was achieved on the reACE 2005 corpus, as the se-

mantic features improved P in almost 12%. On the 

other hand, for two other combinations in this da-

taset (Line 5 and Line 7), adding semantic features 

to the learner in fact slightly hampered precision. 

Such impact on both P and R were expected since 

the effect of adding semantic features to the learner 

could not only improve R over P, but also provide 

to it an extended layer of categorization of all 

terms. Contrastingly, for the IEPA corpus, the use 

of semantic features slightly increased precision 

more than recall. After inspecting the final induced 

extraction rules, we found that this was mainly due 

to the semantic role labeling features. Actually, 

many verbs denoting the interaction between two 

proteins terms in IEPA corpus were correctly anno-

tated along with the roles of its arguments. As a re-

sult, the ILP-based learner is more precise when a 

given verb has semantic role features attached to it. 
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Table 4.  Results on reACE 2004/2005 and IEPA datasets. 

 

 
Table 5. Performance difference between RE 

models 

 

On Domain Adaptability. Some authors investi-

gated the domain adaptation problem on NER.  

Ciaramita et al. (2005) studied the effects of do-

main adaptation on NER using two distinct datasets 

for training and testing. They trained several NER 

classifiers on the CONLL 2003 dataset and evalu-

ated them on a manually annotated section from the 

Wall Street Journal portion of the Penn Treebank. 

They found that, even for such similar types of 

texts, the results of their supervised NER models 

dropped significantly. However, they had im-

proved scores (almost 5% in F1-measure) just by 

coupling their original NER system with both a do-

main-independent dictionary and a simple string 

similarity function. 

In (Pyysalo, 2008), very similar results were re-

ported when a general POS tagger was employed 

for tagging a dataset from the biomedical domain. 

In our work, this same trend was observed since 

our RE models trained with all the linguistic fea-

tures yielded, in average, a relative gain up to 4% 

in F1-measure. In fact, our RE models trained with 

deep semantic features outperformed the RE mod-

els that did not used them according to the statisti-

cal significant tests (Wilcoxon signed-rank) for the 

difference between F1 scores at α = 0.05 (95% con-

fidence interval). These results are very encourag-

ing and seem to validate the proposed features even 

in a more difficult application scenario handling the 

changing of domains. To conclude, the overall 

achieved results suggest that more accurate seman-

tic information about entity instances can contrib-

ute a great deal to RE. This is not surprising, given 

that semantic information, e.g., hypernyms, and 

classes from an ontology, typically impose strong 

constraints on the types of the entities participating 

in a relation, indicating that such kind of feature 

can have significant discriminative power in RE. 

Thus, we can also positively answer to EQ3. 

6 Conclusion and Future Work 

This paper presented a LRL system for RE em-

ployed to test of our hypothesis that a set of features 

based on a deep linguistic analysis can improve 

RE. This was demonstrated by experimental eval-

uation showing that automatic acquisition of a sub-

stantial body of linguistic knowledge in combina-

tion with an expressive inductive learning tech-

nique, it is possible to generate effective RE mod-

els. Moreover, such features significantly contrib-

uted to generalize the proposed RE to other do-

mains of interest. 

This research work can be improved in several 

ways. We intend to test our solution on larger da-

tasets aiming to promote future scalability. In addi-

tion, mechanisms for allowing the parallel execu-

tion of the IE process will enable the decomposi-

tion of the learning problem into smaller more 

manageable ones. Finally, the system will be 

adapted Event Extraction, a fundamental IE task in 

the biomedical domain (Björne and Salakoski, 

2015). 
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