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Abstract

Language is used to describe concepts, and
many of these concepts are hierarchical.
Moreover, this hierarchy should be compati-
ble with forming phrases and sentences. We
use linear-algebraic methods that allow us to
encode words as collections of vectors. The
representations we use have an ordering, re-
lated to subspace inclusion, which we interpret
as modelling hierarchical information. The
word representations built can be understood
within a compositional distributional seman-
tic framework, providing methods for compos-
ing words to form phrase and sentence level
representations. The resulting representations
give competitive results on simple sentence-
level entailment datasets.

1 Introduction

Distributional semantics (Harris, 1954; Firth,
1957) is effective and important within the area
of computational modelling of language, partic-
ularly as regards to synonymy and paraphrasing.
Within the field, at least two additional properties
are desirable. Firstly, we would like a method
by which we can compose vectors to form rep-
resentations above the word level. Secondly, we
would like a notion of lexical entailment, or hy-
ponymy, with which we can capture a sense of
the generality of concepts, and the notion of one
concept being an instance of another. Further-
more, we would like these two properties to inter-
act nicely with one another, so that the hyponymy
relation is not lost when words are composed. In
Bankova et al. (2019) the authors provide the-
ory describing a notion of hyponymy that inter-
acts well with compositionality, but do not pro-
vide experimental support. In Balkır et al. (2016)
the authors suggest a measure of hyponymy based
on entropy which also interacts well with compo-
sitionality and provide experimental support. A

compositional version of the distributional inclu-
sion hypothesis (DIH) (Geffet and Dagan, 2005)
is examined in Kartsaklis and Sadrzadeh (2016).
In the current paper, we use the framework of
Bankova et al. (2019) to build positive operators
that represent words. The operators are built us-
ing GloVe vectors (Pennington et al., 2014) and
information about hyponym-hypernym relation-
ships, which may be sourced either from human-
curated resources like WordNet (Miller, 1995), or
unsupervised sources, via the use of pattern-based
methods. We give two new measures for graded
hyponymy that provide a wider range of compar-
isons than the entropy-derived measure developed
in Balkır et al. (2016) or the eigenvalue-related
measure of Bankova et al. (2019).

We test our word representations and measures
on a range of datasets. Three of the datasets
are single-word entailment and have been de-
signed to test directionality (BLESS) (Baroni and
Lenci, 2011), detection (WBLESS) (Weeds et al.,
2014), and both directionality and direction to-
gether (BIBLESS) (Kiela et al., 2015). We also
test our models on the compositional dataset of
Kartsaklis and Sadrzadeh (2016). This dataset
provides a test for entailment at the phrase and
sentence level. We find that our model performs
fairly well on BLESS and its variants, and very
well on the compositional dataset.

2 Background and Related Work

Vector space models of meaning often rely on
some form of the distributional hypothesis: that
words that occur in similar contexts have simi-
lar meanings. However, as well as deriving word
meanings, we also need to give meanings to sen-
tences and phrases. This means that we need some
method for composing vector representations of
words. Commonly-used methods include neural
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network methods, as seen in Socher et al. (2013);
Bowman et al. (2014), simpler element-wise com-
bination methods (Mitchell and Lapata, 2010),
and tensor-based methods (Baroni and Zampar-
elli, 2010; Coecke et al., 2010; Paperno et al.,
2014). Tensor-based methods operate by mod-
elling words of different grammatical types in dif-
ferent vector spaces, and viewing relational words
such as verbs and adjectives as linear maps that
operate on their arguments. This allows methods
from formal semantics to be more easily mapped
onto vector space representations, and thereby
gives us mechanisms for composing words, in line
with their grammatical types, to form phrases and
sentences.

We use an extension of the tensor-based ap-
proach, based on the methods given in Piedeleu
et al. (2015); Bankova et al. (2019); Balkır et al.
(2016). We represent nouns as positive operators,
which can be considered as representing collec-
tions of vectors. Functional words like adjectives
and verbs are now represented as completely posi-
tive maps, i.e. linear maps which preserve the pos-
itivity of their arguments. These can be thought of
as linear maps which take valid collections of vec-
tors to valid collections of vectors.

2.1 Related Work

Entailment is an important and thriving area of
research within distributional semantics. The
PASCAL Recognising Textual Entailment Chal-
lenge (Dagan et al., 2006) has attracted a large
number of researchers in the area and generated a
number of approaches. Previous lines of research
on entailment for distributional semantics investi-
gate the development of directed similarity mea-
sures which can characterize entailment (Weeds
et al., 2004; Kotlerman et al., 2010; Lenci and
Benotto, 2012). Geffet and Dagan (2005) intro-
duce a pair of distributional inclusion hypotheses,
where if a word v entails another word w, then
all the typical features of the word v will also oc-
cur with the word w. Conversely, if all the typi-
cal features of v also occur with w, v is expected
to entail w. Clarke (2009) defines a vector lattice
for word vectors, and a notion of graded entail-
ment with the properties of a conditional proba-
bility. Rimell (2014) explores the limitations of
the distributional inclusion hypothesis by exam-
ining the properties of those features that are not
shared between words. An interesting approach

in Kiela et al. (2015) is to incorporate other modes
of input into the representation of a word. Mea-
sures of entailment are based on the dispersion of
a word representation, together with a similarity
measure. All of these look at entailment at the
word level. Related to the current work are the
ideas in Balkır (2014); Balkır et al. (2016). In this
work, the authors develop a graded form of en-
tailment based on von Neumann entropy and with
links to the distributional inclusion hypotheses de-
veloped by Geffet and Dagan (2005). The au-
thors show how entailment at the word level car-
ries through to entailment at the sentence level.

More recent approaches involve specialising
word vectors for entailment Vulić and Mrkšić
(2018), using non-Euclidean geometries Nickel
and Kiela (2017); Nguyen et al. (2017); Le et al.
(2019), and using pattern-based hyponymy extrac-
tion Roller et al. (2018); Le et al. (2019).

Most approaches, however, provide only word-
word hyponymy. To test hyponymy in a composi-
tional setting, we refer to the dataset of Kartsaklis
and Sadrzadeh (2016) where a number of sentence
and phrase-level hyponymy relationships are built
from WordNet (Miller, 1995)

Another approach to detecting lexical entail-
ment is via the identification of certain text pat-
terns which indicate a hyponym-hypernym rela-
tionship. Examples are: y such as x, x is a type of y,
which allow us to pick out pairs (x, y) which stand
in the relation x is-a y. This approach was first
outlined in Hearst (1992) and has been recently
used in Roller et al. (2018) to build vectors able to
encode the required hierarchical relationships.

In the current paper we provide methods for
building word representations as positive opera-
tors, using hierarchical information either from
human-curated sources such as WordNet, or un-
supervised methods such as using Hearst patterns.
We will show how these word representations can
be composed, and how the hierarchical informa-
tion percolates to the phrase level. Our contri-
bution is to provide a means of building hierar-
chically ordered word representations, that can be
composed into phrases and sentences. Previous
work in this area has either concentrated on word-
level hyponymy or phrase-level hyponymy. In this
paper we combine the two in one framework.
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3 Methods

We model words as collections of vectors, as fol-
lows. For a given vector ~v ∈ V ,1 we can ‘lift’ this
vector into the larger space V ⊗ V , by taking the
outer product of the vector with itself. We use the
following notation:

v̄ := ~v~v> (1)

When ~v is a unit vector, the resulting matrix v̄ is
a projection operator. Multiplying another vector
~x by v̄ projects ~x onto the one-dimensional sub-
space spanned by ~v. A matrix of the form v̄ can be
thought of as a collection of just one vector, giving
sharp, unambiguous information.

To represent collections of more than one vec-
tor, we sum together their matrix representations,
resulting in another matrix:

{~v, ~w, ~x} 7→ v̄ + w̄ + x̄ ∈ V ⊗ V
= ~v~v> + ~w~w> + ~x~x> ∈ V ⊗ V

Matrices M built in this way are called positive
operators and have the following two properties:

• ∀v ∈ V.〈~v,M~v〉 ≥ 0

• M is self-adjoint.

If we additionally impose that M has trace 1, then
we can understand M as encoding a probability
distribution over ~v ∈ V (Nielsen and Chuang,
2010). In the present work, we do not impose
this condition, instead viewing M as representing
a collection of vectors.

The eigenvectors and eigenvalues of M can be
thought of as providing a summary of the infor-
mation contained in M . A matrix of the form
v̄ = ~v~v> will have one non-zero eigenvalue, cor-
responding to the normalized eigenvector ~v/||~v||.
When multiple vectors have been included in the
collection, the matrix M will have more than one
non-zero eigenvalue, and these will represent the
weights for their corresponding eigenvectors.

We take a kind of extensional stance. We con-
sider words to be modelled as collections of their
instances. To model a noun, we can consider
the collection of nouns that are hyponyms of that
noun, and form the matrix representation corre-
sponding to that collection.

1Throughout the paper, we assume that vector spaces are
Rn

Example 1 (Nouns). Consider the noun pet, and
suppose we have three types of pet: a pug, a gold-
fish, and a tabby cat. We give these values in a
distributional space spanned by the basis vectors
{
−−→
furry,

−−−−−→
domestic,

−−−−−→
working,

−−−−→
aquatic} as follows:

pug goldfish tabby
furry 3 0 5

domestic 4 5 5
working 0 0 0
aquatic 0 6 0

We form the representation of the noun pet by
summing over the matrix representations of each
vector:

JpetK = pug + goldfish + tabby

= −→pug −→pug> +
−−→
gfish

−−→
gfish> +

−−−→
tabby

−−−→
tabby>

=


34 37 0 0
37 66 0 30
0 0 0 0
0 30 0 36


Each of the matrices pug, goldfish, and tabby
has just one non-zero eigenvalue, which is ||−→v ||,
and corresponds to the normalised eigenvector
−→v /||−→v ||, for −→v = −→pug,

−−−−→
goldfish, and

−−−→
tabby re-

spectively.
The matrix JpetK, however, has three non-zero

eigenvalues of 100.52, 35.21, and 0.25, each cor-
responding to a combination of the basis vectors−−→
furry,

−−−−−→
domestic,

−−−−→
aquatic. The basis vector

−−−−−→
working

has an eigenvalue of 0, indicating that JpetK is or-
thogonal to the vector

−−−−−→
working.

3.1 Ordering Positive Operators
The set of positive operators on a vector space has
an ordering introduced by Löwner (1934). For
positive operators A and B, we define:

A v B ⇐⇒ B −A is positive

In Bankova et al. (2019) the authors introduce a
notion of graded hyponymy. The hyponymy rela-
tion may be true up to some error term, as follows.
IfA v B, thenB−A = D, whereD is some pos-
itive operator. If this does not hold, it is possible to
add in some error termE so thatA v B+E. This
is viewed as saying that A entails B to the extent
E. We wish to find the smallest such error term.

In Bankova et al. (2019), the error term was of
the form (1 − k)A and the scalar k ∈ [0, 1] gave
a graded notion of hyponymy. The effect of this
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scalar is to reduce the size of A until it ‘fits inside’
B, giving a notion of graded hyponymy that says
that A is a k-hyponym of B, A vk B if B − kA
is positive.

One of the drawbacks of this measure is that
if the space spanned by eigenvectors of A, called
Span(A), is not a subspace of Span(B), then the
value of k must be 0. We therefore consider two
new measures, which we now describe. If B − A
is not positive, it is possible to make it positive
by adding in a positive operator constructed in the
following manner.

1. Firstly diagonalize B−A, resulting in a real-
valued matrix, sinceB−A is real symmetric.

2. Construct a matrix E by setting all positive
entries of B − A to 0 and changing the sign
of all negative eigenvalues.

Then B − A + E will give us a positive matrix.
This E is our error term. The size of E is bounded
above by the size of A, since certainly B − A +
A is positive. We propose two different measures
related to this error term that give us a grading for
hyponymy.

The first measure is

kBA =

∑
i λi∑
i |λi|

(2)

where λi is the ith eigenvalue of B−A and | · | in-
dicates absolute value. This measures the propor-
tions of positive and negative eigenvalues in the
expression B − A. If all eigenvalues are nega-
tive, kBA = −1, and if all are positive, kBA =
1. This measure is symmetric in the sense that
kBA = −kAB .

Secondly, we propose

kE = 1− ||E||
||A||

(3)

where || · || denotes the Frobenius norm. This mea-
sures the size of the error term as a proportion of
the size of A. Since A = E in the worst case, this
measure ranges from 0 when E = A to 1 when
E = 0.

Example 2 (Full Hyponymy). Recall the example

JpetK = pug + goldfish + tabby

To determine whether a goldfish is a pet, we cal-
culate:

JpetK− goldfish = pug + tabby

Now, since pug and tabby are both positive, and
positivity is preserved under addition, we know
that JpetK − goldfish is also positive. Therefore,
under either of our graded measures, the extent to
which a goldfish is a pet is 1.

Example 3 (Graded Hyponymy). Now suppose
that we define JdogK = pug + collie, with −→pug and
−−−→
collie defined as below:

pug collie
furry 3 3

domestic 4 2
working 0 2
aquatic 0 0

Then to determine whether a dog is a pet, we cal-
culate:

JpetK− JdogK

=


34 37 0 0
37 66 0 30
0 0 0 0
0 30 0 36

−


18 18 6 0
18 20 4 0
6 4 4 0
0 0 0 0



=


16 19 −6 0
19 46 −4 30
−6 −4 −4 0
0 30 0 36


The eigenvalues of JpetK− JdogK are 75.38, 24.39,
-5.77, 0, i.e., they are not all positive. This is be-
cause the subspace corresponding to JdogK is not
a subspace of JpetK, in particular because JdogK is
not orthogonal to the basis vector

−−−−−→
working.

However, much of JdogK is included in JpetK.
Using our graded measures given in equations (2)
and (3), we can calculate that under kBA, dog is a
hyponym of pet to the extent 0.89 and under kE ,
dog is a hyponym of pet to the extent 0.86.

3.2 Composing Positive Matrices
To compose positive matrices, we combine the
methods outlined in Bankova et al. (2019) with the
type-lifting methods outlined in Kartsaklis et al.
(2012) to lift word representations into a higher-
dimensional space. The impact of these methods
are that we can define nouns and verbs within the
same distributional space, and then lift the verb
representations to a space that corresponds to a
completely positive map.

We have choices about how to implement this
type-lifting. One choice is composition, i.e. ma-
trix multiplication, of the two operators. This lat-
ter operation results in a matrix that is no longer
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self-adjoint, and so Piedeleu (2014) suggests using
the non-commutative and non-associative opera-

tor M
1
2
2 M1M

1
2
2 in its place. This operator can be

thought of as a kind of subspace projection, where
M1 is projected onto M2. Piedeleu (2014) also
notes that the pointwise multiplication of two pos-
itive operators is a completely positive map, giving
us another choice for composition.

Following Kartsaklis et al. (2012), this gives us
a method for building higher-level operators for
verbs from lower-level operators. Firstly, we as-
sume the noun space N ⊗ N to be equal to the
sentence space S ⊗ S, and refer to these both as
W ⊗W . Given a representation of an intransitive
verb JverbK ∈W⊗W , the effect of lifting the verb
to a higher order space and then composing with a
noun JnounK ∈ W ⊗W is to apply the Frobenius
multiplication to JnounK⊗ JverbK.

For intransitive verbs we can therefore combine
the noun and the verb via three operations which
we call Mult, MMult1 (for matrix multiplication),
and MMult2:

Mult: Jn verbK = JnK� JverbK (4)

MMult1: Jn verbK = JnK
1
2 JverbKJnK

1
2 (5)

MMult2: Jn verbK = JverbK
1
2 JnKJverbK

1
2 (6)

For transitive verbs there is one possibility for
pointwise multiplication of the operators, since
this is both commutative and associative. For the
second operation there are a number of composi-
tion orders. We will concentrate on two which re-
flect the difference between composing the verb
with the object first and composing with the sub-
ject first. We therefore have:

Mult: Js v oK = JsK� JvK� JoK (7)

MMultO: Js v oK = JsK
1
2 JoK

1
2 JvKJoK

1
2 JsK

1
2 (8)

MMultS: Js v oK = JoK
1
2 JsK

1
2 JvKJsK

1
2 JoK

1
2 (9)

4 Experimental Setting

We build representations of words as positive ma-
trices, and selected from a number of alterna-
tive embeddings including GloVe vectors (Pen-
nington et al., 2014), FastText (Bojanowski et al.,
2017), and distributional vectors built from the
concatenation of the UKWaC and Wacky cor-
pora using PPMI and dimensionality reduction,
all with 300 dimensions. To select the vec-
tor embeddings, we built word matrices as de-
scribed above and tested them using the word

Table 1: Performance of word matrices derived from
different word embeddings, using WordNet derived hy-
ponyms. Bold highlights the highest value of each row.

GloVe Count FastText
MC 0.8441 0.7124 0.8223
MEN 0.4836 0.2861 0.5090
RG 0.8460 0.6325 0.8387
SIMLEX-999 0.4426 0.2638 0.4272
SimVerb 0.3458 0.2158 0.3290
WS-353 0.3001 0.1677 0.3033
YP-130 0.5619 0.3465 0.5166

vector evaluation package provided by Faruqui
and Dyer (2014). We compared on the Rubin-
stein and Goodenough (Rubenstein and Goode-
nough, 1965), WordSim353, (Finkelstein et al.,
2002), Miller and Charles (Miller and Charles,
1991), SimLex999 (Hill et al., 2015), SimVerb
(Gerz et al., 2016), the Yang and Powers dataset
(Yang and Powers, 2006) and the MEN dataset
(Bruni et al., 2012). We did not inclue the rare
word dataset or the similarity/relatedness splits
of WS-353. Word matrices derived from GloVe
vectors score best overall when using WordNet-
derived hyponyms (table 1). This is also seen in
the validation settings of the non-compositional
datasets. When using Hearst-derived hyponyms,
the generated word matrices perform poorly, al-
though GloVe vectors still score most highly.

We compare our WordNet models to a sym-
bolic model called Symb. For this model we mark
two words w1 and w2 as being in the hyponym-
hypernym relationship if w1 is found in the transi-
tive closure of the hyponyms of w2.

4.1 Nouns
In order to build positive matrices for nouns, we
use information about hypernymy relations. This
information can be elicited using human built re-
sources such as WordNet Miller (1995), or us-
ing Hearst patterns Hearst (1992). These are pat-
terns like ‘y such as x’, which give markers for
hyponym-hypernym pairs (x, y). To collect the
hyponyms of a given word w from WordNet, we
traverse the WordNet hierarchy and collect every
word wi in the transitive closure of the hyponymy
relation.

For hyponyms generated by Hearst patterns,
we use the publicly available dataset described in
Roller et al. (2018), and refer the reader to that
paper for details of its creation. The dataset con-
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sists of a set of word pairs P = {(xi, yi)}i which
are in a hyponym-hypernym relationship, together
with the count w(x, y) of the number of times
that relationship has been seen in the text. As de-
scribed in Le et al. (2019), the relationships thus
extracted are both noisy and sparse, containing
cycles and inconsistencies. As one example of
this, the dataset contains the pair (rome, european
country). To mitigate these phenomena, we apply
a ppmi weighting to the counts. The weighting is
as described in Roller et al. (2018), specifically

ppmi(x, y) = max

(
0, log

p(x, y)

p−(x)p+(y)

)
,

where, letting W =
∑

(x,y)∈P , we have:

p(x, y) = w(x, y)/W

p−(x) =
∑

(x,y)∈P

w(x, y)/W

p+(x) =
∑

(y,x)∈P

w(y, x)/W

These equations give, respectively, the probability
that the pair (x, y) is chosen from P , the proba-
bility that x appears as a hyponym, and the proba-
bility that x appears as a hypernym. This sets the
weighting of various unwanted pairs, such as the
aforementioned (rome, european country), to 0.

To collect the set of hyponyms of a noun,
we use only those hyponyms with a non-zero
ppmi weighting, and take one transitive step. So
the set of hyponyms of a given word x is the
union of the sets {yi|ppmi(x, yi) > 0}i and
{zij |ppmi(yi, zij) > 0}ij . We limit to one tran-
sitive step to again mitigate the noisiness of the
dataset.

4.2 Verbs
WordNet contains verb hyponymy relationships,
and therefore we can use similar methods to ex-
tract lists of hyponyms. However, we cannot use
Hearst patterns to collate verb hyponymy relation-
ships. As a proxy, we represent verbs as col-
lections of their arguments. The intuition behind
this is that of the extensional approach in formal
semantics, mapped to distributional semantics in
Grefenstette and Sadrzadeh (2011). We can think
of both nouns and verbs as predicates, and con-
sider the instances that the predicate applies to.

To collect the arguments of the verbs, we use the
concatenation of the dependency parsed ukWaC

and WaCky corpora (Ferraresi et al., 2008), and
collect those arguments that appear at least 300
times in the corpus.

4.3 Building Matrices
Finally, having collected instances of nouns and
verbs, we take the vectors −→w i corresponding to
each of these instances, take the outer product of
each with itself, and add these together, i.e.:

JwK =
∑
i

−→w i
−→w>i ∈W ⊗W (10)

We have discarded weighting information. Words
which have more instances are both more widely
dispersed in terms of their eigenvalues, and also
larger in terms of their matrix norm.

4.4 Datasets
We evaluate single word representations on the
non-compositional BLESS hyponymy subset (Ba-
roni and Lenci, 2011), WBLESS (Weeds et al.,
2014), and BIBLESS (Kiela et al., 2015) datasets.
We test our models using the hypernymy suite pro-
vided by Roller et al. (2018). The BLESS dataset
requires the model to infer the direction of a hy-
pernym pair. All pairs in the model are indeed
in the hyponym-hypernym relationship, and the
model must identify that this is the case. WB-
LESS consists of a set of pairs which may be in
the hyponym-hypernym relationship, or unrelated.
Each pair is assigned a value of 1 or 0 based on
whether or not there is a hyponymy relationship.
The software provided performs 1000 random it-
erations in which 2% of the data is used as a val-
idation set to learn a classification threshold, and
tests on the remainder of the data. Average ac-
curacy across all iterations is reported. The BIB-
LESS dataset assigns values of 1, 0, and -1 based
on whether the first word is a hyponym of the sec-
ond, whether there is no relationship, or whether
the second is a hyponym of the first. The soft-
ware firstly tunes a threshold using 2% of the data,
identifying whether a pair exhibits hypernymy in
either direction. Secondly, the relative comparison
of scores determines which direction is predicted.
Again, the average accuracy over 1000 iterations
is reported.

We further test on the compositional datasets
from Kartsaklis and Sadrzadeh (2016). This is
a series of three datasets, covering simple in-
transitive sentences, transitive sentences, and verb
phrases. The intransitive verb dataset consists of
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paired sentences consisting of a subject and a verb.
In half the cases the first sentence entails the sec-
ond, and in the other half of cases, the order of the
sentences is reversed. For example, we have:

summer finish, season end, T

season end, summer finish, F

The first sentence is marked as entailing, whereas
the second is marked as not entailing. The dataset
is created by selecting nouns and verbs from
WordNet that stand in the correct relationship.

To test our models, we build the basic word
representations as in equation (10). We then use
the compositional methods outlined in section 3.2
to create the sentence representations. We calcu-
late the graded entailment value between the com-
posed sentence representations, and in results re-
port area under ROC curve for comparison with
previous literature. In particular, we compare with
the best model from Kartsaklis and Sadrzadeh
(2016), which uses a metric based on the distribu-
tional inclusion hypothesis, together with a tensor-
based compositional model.

4.5 Significance Testing

To test significance of our results, we use boot-
strapping Efron (1979) to calculate 100 values of
the test statistic (either accuracy or AUC) drawn
from the distribution implied by the data. We com-
pare with figures from the literature using a one-
sample t-test, and compare between models using
a paired t-test. We apply the Bonferroni correction
to compensate for multiple model comparisons.

5 Results

5.1 BLESS Variants

We present results on variants of the BLESS
dataset in terms of accuracy, for comparison with
other models, presented in table 2. Our best per-
foming model is the WordNet based model with
metric kE . Althoough this model does not out-
perform the best supervised model (the differences
in score are significant), the differences are fairly
minimal (0.01 accuracy). Our methods (and those
of others) outperform the symbolic baseline for the
BLESS dataset. Our WordNet-based model does
outperform the earlier model HyperVec with sig-
nificance. Hearst-pattern based representations do
not perform so strongly.

Table 2: Accuracy on the variants of the BLESS
dataset. HyperVec figures are from Nguyen et al.
(2017), Hearst from Roller et al. (2018), HypeCones
from Le et al. (2019), LEAR from Vulić and Mrkšić
(2018). Entries tagged with WN use WordNet.

Model BLESS WBLESS BIBLESS
HyperVec - WN 0.92 0.87 0.81
Hearst 0.96 0.87 0.85
HypeCones 0.94 0.90 0.87
LEAR - WN 0.96 0.92 0.88
Symb - WN 0.91 0.93 0.91
kBA - WN 0.95 0.88 0.84
kE - WN 0.95 0.91 0.87
kBA - Hearst 0.91 0.84 0.76
kE - Hearst 0.91 0.86 0.80

Table 3: Area under ROC curve on the KS2016 datasets
using kE and WordNet derived hyponyms. For the SV
and VO datasets, MMult1 refers to the model described
in equation (5) and MMult2 refers to the model de-
scribed in equation (6). For SVO, MMult1 refers to the
model described in equation (8) and MMult2 refers to
the model described in equation (9). ∗ indicates statisti-
cally significantly higher than the previous best perfor-
mance Kartsaklis and Sadrzadeh (2016). + indicates
significantly higher than the additive baseline.

Model SV VO SVO
KS2016 best 0.84 0.82 0.86
Verb only 0.870∗ 0.944∗ 0.908∗

Addition 0.941∗ 0.948∗ 0.972∗

Mult 0.975∗+ 0.981∗+ 0.978∗

MMult1 0.970∗+ 0.971∗+ 0.965∗

MMult2 0.967∗+ 0.969∗+ 0.971∗

Table 4: Area under ROC curve on the KS2016
datasets, using kBA and WordNet derived hyponyms.
Refer to Table 3 for explanations.

Model SV VO SVO
KS2016 best 0.84 0.82 0.86
Verb only 0.902∗ 0.967∗ 0.931∗

Addition 0.970∗ 0.964∗ 0.978∗

Mult 0.974∗ 0.984∗+ 0.982∗

MMult1 0.987∗+ 0.985∗+ 0.995∗+

MMult2 0.987∗+ 0.985∗+ 0.995∗+

Table 5: Area under ROC curve on the KS2016
datasets, using kE and Hearst-pattern derived hy-
ponyms. Refer to Table 3 for explanations.

Model SV VO SVO
KS2016 best 0.84 0.82 0.86
Verb only 0.714 0.808 0.716
Addition 0.877∗ 0.807 0.912∗

Mult 0.887∗ 0.808 0.864
MMult1 0.902∗+ 0.824+ 0.883∗

MMult2 0.903∗+ 0.800 0.877∗
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Table 6: Area under ROC curve on the KS2016
datasets, using kBA Hearst-pattern derived hyponyms.
Refer to Table 3 for explanations.

Model SV VO SVO
KS2016 best 0.84 0.82 0.86
Verb only 0.719 0.819 0.716
Addition 0.880∗ 0.811 0.909∗

Mult 0.867∗ 0.792 0.843
MMult1 0.909∗+ 0.842∗+ 0.930∗+

MMult2 0.904∗+ 0.830∗+ 0.924∗+

5.2 Compositional Datasets
On the KS2016 compositional datasets results are
reported in terms of area under ROC curve. Our
measures perform particularly well with WordNet
derived hypernyms (Tables 3 and 4). This is likely
to be due to the fact that both the dataset and
our word representations were constructed from
WordNet, and hence the high performance is to be
expected. More interestingly, the word represen-
tations built using unsupervised methods also out-
perform previous best scores on this dataset, (ta-
bles 5 and 6), based on a form of the distributional
inclusion hypothesis for tensor-based composition
(Kartsaklis and Sadrzadeh, 2016), despite not per-
forming so strongly on the single-word datasets.

6 Discussion and Further Work

We have suggested a mechanism for building the
positive operators needed for the theory presented
in Bankova et al. (2019), together with two novel
measures of graded hyponymy. We tested these
representations and measures on a number of well-
known datasets, looking at similarity at the word
level, hyponymy at the word level and one of
which gives hyponymy at the phrase and sen-
tence level. The representations and the mea-
sures we have developed perform competitively on
these datasets. We have used both human-curated
information and unsupervised methods to build
the word representations. Unsurprisingly, human-
curated information gives better performance.

A nice comparison is with the symbolic model.
The fact that our WordNet-based models outper-
form this baseline shows that the models we pro-
pose can provide a ‘smoothed’ representation that
allows hyponymy relationships to be inferred. For
example, one of the hyponymy relationships not
picked up in WordNet is (oven, device). How-
ever, there are a number of other instances such as
(electric appliance, device) that are similar enough
to oven that device can be understood as includ-

ing oven. What cannot be remedied, however, is
where a term has no hyponyms in WordNet. For
example, herbivore has no hyponyms in WordNet.
This means that the WordNet-based representa-
tions have no way of forming a wide representa-
tion of herbivore thatincludes any of its instances.

As well as performing well on single-word hy-
ponymy datasets, the representations we build sit
within a compositional framework that allows us
to form phrases and sentences and to reason about
their entailment relationships. The WordNet-
based representations behaved particularly well on
this dataset, due to the fact that the dataset is built
from WordNet. However, it is still an interesting
set of results in that our graded measures interact
well with the compositional methods we have pro-
posed. Note that the measures we propose result
in high baseline values to beat - i.e. for the verb-
only and addition models. Again, this is likely
due to the construction of the dataset. The dataset
is formed from upwardly-monotone contexts, so
computing entailment based only on the verb will
still perform extremely well. Again, although this
is due to the construction of the dataset, is is inter-
esting to note that the measures and word repre-
sentations we developed can model this structure
so well. Furthermore the Hearst-pattern derived
representations also outperformed previous work,
indicating that these representations interact nicely
with compositionality.

Similarities to our approach can be found in the
notion of words being represented as Gaussians
(Jameel and Schockaert, 2017; Vilnis and McCal-
lum, 2014). The positive operators we build have
the same structure as covariance matrices and, if
appropriately normalized, are interpreted as rep-
resenting a probability distribution over vectors.
Representing words as Gaussians does not come
with a given mechanism for composing words as
we do. Exploring these connections is an area of
further work.

Finally, a crucial extension to this whole ap-
proach is to be able to model hyponymy, compo-
sition, and their interaction in more contexts, for
example using the natural logic introduced in Bar-
wise and Cooper (1981).
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