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Abstract

This paper presents proof-of-concept ex-
periments for combining orthographic and
semantic information to distinguish cog-
nates from non-cognates. To this end, a
context-independent gold standard is de-
veloped by manually labelling English-
Dutch pairs of cognates and false friends
in bilingual term lists. These annotated
cognate pairs are then used to train and
evaluate a supervised binary classification
system for the automatic detection of cog-
nates. Two types of information sources
are incorporated in the classifier: fifteen
string similarity metrics capture form sim-
ilarity between source and target words,
while word embeddings model semantic
similarity between the words. The ex-
perimental results show that even though
the system already achieves good results
by only incorporating orthographic infor-
mation, the performance further improves
by including semantic information in the
form of embeddings.

1 Introduction

In general linguistics, the term cognate is defined
as a “language or a linguistic form which is his-
torically derived from the same source as another
language/form” (Crystal, 2008, page 83). The
assumption of common etymology is, however,
often disregarded in the literature, because cer-
tain research areas such as psycho-linguistics or
natural language processing (NLP) tend to shift
their focus from diachronic to perceptual related-
ness (Shlesinger and Malkiel, 2005; Mitkov et al.,
2007; Schepens et al., 2013; Hansen-Schirra et al.,
2017). We follow this second strand of research in
that we define cognates as words with high formal
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and semantic cross-lingual similarity. Conversely,
false friends are words which have similar forms,
but which differ in their meaning.

The ability to distinguish cognates from non-
cognates (and especially) false friends is an im-
portant skill for second language learners. Simi-
larly, source language interference is a problem of-
ten experienced by translators that is partly caused
by the influence of cognates and false friends.
Research in natural language processing can ad-
dress these bottlenecks by, for instance, develop-
ing computer tools that aid second language users.

Nevertheless, most studies have mainly focused
on the detection of cognates (Bergsma and Kon-
drak, 2007; Hauer and Kondrak, 2011; Ciobanu
and Dinu, 2014; Rama, 2016), while relatively
little attention has been devoted to false friends
(Frunza and Inkpen, 2007; Mitkov et al., 2007;
Ljubesi¢ and Fiser, 2013; Castro et al., 2018).
Mitkov (2007) explains that the main goal of in-
vestigation is often the cross-lingual identification
of equivalent lexical items, as such knowledge can
be integrated in other applications. Automatic
cognate detection has indeed proven very useful
for NLP, e.g. to boost the performance of auto-
matic alignment between related languages or to
compile bilingual lexicons (Smith et al., 2017).

The aim of this research is twofold: (1) we
introduce a context-independent gold standard
which can be used to classify English-Dutch pairs
of cognates and non-cognates (among which false
friends); (2) we develop a supervised binary clas-
sifier able to identify cognates across the English-
Dutch language pair on the basis of orthographic
and semantic information. Since our focus lies
on the detection of cognates for these proof-of-
concept experiments, no distinction is made be-
tween false friends and non-equivalent words.

The remainder of this paper is organized as fol-
lows. In Section 2, we give a brief overview of
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the existing research and methodologies to cog-
nate detection. Section 3 describes the data and
annotation process used to create the context-
independent gold standard for English-Dutch cog-
nate pairs, while Section 4 gives an overview of
the experimental setup and the two types of in-
formation sources, viz. orthographic and semantic
similarity features, that were used. In section 5, we
report on the results of our classifier (1) incorpo-
rating only orthographic features and (2) combin-
ing orthographic and semantic similarity features.
Section 6 concludes this paper and gives directions
for future research.

2 Related Research

Extensive lists of known cognates and false friends
are hard to find and expensive to compose, since
they require a considerable amount of time and ef-
fort from trained lexicographers (Schepens et al.,
2012). Especially for low resource languages,
this constitutes a serious issue. Therefore, most
NLP research on cognates has mainly focused
on the automatic detection of such cognate pairs.
In the literature, there are three main methods
to identify cognates: orthographic, phonetic and
semantic approaches. The oldest approaches to
tackle this task involve simple string similarity
metrics as the longest common subsequence ra-
tio (Melamed, 1999) or the normalized Leven-
shtein distance (Levenshtein, 1965). More re-
cently, however, the attention has been drawn to
machine learning techniques. For instance, Frunza
et al. (2007) combine several orthographic simi-
larity measures to train a machine classifier, while
Gomes et al. (2011) design a new similarity met-
ric that is able to learn spelling differences across
languages.

Different types of approaches can also be com-
bined to distinguish cognates, e.g. Kondrak et
al. (2004) join orthographic and phonetic informa-
tion to distinguish between similar drug names.
In order to capture the phonetic similarity be-
tween words, Konrak (2000) further developed a
software package, called ALINE, which portrays
phonemes as vectors of phonetic features, thus
creating a phonetic similarity measure. Neverthe-
less, Heeringa et al. (2010) find that simple pho-
netic transcriptions still seem to outperform pho-
netic similarity metrics that are based on phonetic
features. Hence, Schepens et al. (2013) propose to
calculate a substitution cost for each pair of pho-
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netically transcribed words by taking the edit dis-
tance between them. For this research, we opted
to only focus on the orthographic proximity, as
sound metrics require an additional phonetic tran-
scription, thus making them less-likely to be ap-
plied on large data sets. Moreover, Schepens et
al. (2013) find that there is a high consistency be-
tween orthographic and phonetic similarity mea-
sures for Dutch-English cognate pairs.

Whereas orthographic and phonetic features
have often been employed to model the similar-
ity between candidate cognate pairs, semantic in-
formation has often been ignored. Mitkov (2007)
beliefs that this is another result of the main fo-
cus of investigation, which is the identification of
cognates rather than distinguishing cognates from
false friends. Semantic evidence is, however, an
important information source, as it can not only
be used to represent the semantic (dis)similarity
between word pairs, but it can also further in-
crease the accuracy of cognate detection systems.
In his own research, Mitkov (2007) distinguishes
between two types of semantic approaches: taxo-
nomic and distributional semantic similarity mea-
sures. Whereas the first group relies on the tax-
onomic structure of a resource such as WordNet
(Miller, 1995), the second approach relies on large
corpora. The latter methods are based on the
Distributional Hypothesis (Harris, 1954), which
states that words that appear in similar contexts
tend to share similar meanings. The different ap-
proaches that leverage this principle are typically
divided into two categories: count-based meth-
ods, such as Latent Semantic Analysis, and pre-
dictive methods, such as neural probabilistic lan-
guage models, which have gained a lot of popular-
ity in today’s NLP community. On the one hand,
count-based models count how often a given target
word co-occurs with its neighbor words in a large
text corpus, after which the resulting counts are
mapped to a dense vector for each word. On the
other hand, predictive models directly try to pre-
dict a word from its neighbors in terms of learned
dense embedding vectors (Baroni et al., 2014).
Word2vec (Mikolov et al., 2013) is a particularly
computationally-efficient and popular example of
predictive models for learning word embeddings
from raw text. In this research, we will incorpo-
rate the more recent fastText word embeddings as
implemented by Bojanowski et al. (2017).



3 Data Creation

To train and evaluate the cognate detection system,
we created a novel context-independent gold stan-
dard by manually labelling English-Dutch pairs of
cognates and false friends in bilingual term lists.
In this section, we describe how the lists of candi-
date cognate pairs were compiled on the basis of
the Dutch Parallel Corpus (Macken et al., 2011)
and how a manual annotation was performed to
create a gold standard for English-Dutch cognate
pairs.

3.1 List of Candidate Cognate Pairs

To select a list of candidate cognate pairs, unsu-
pervised statistical word alignment using GIZA++
(Och and Ney, 2003) was applied on the Dutch
Parallel Corpus (DPC). This high-quality paral-
lel corpus for Dutch, French and English consists
of more than ten million words and is sentence-
aligned. It contains five different text types and is
balanced with respect to text type and translation
direction. The automatic word alignment on the
English-Dutch part of the DPC resulted in a list
containing more than 500,000 translation equiva-
lents. A first selection was performed by applying
the Normalized Levenshtein Distance (NLD) (as
implemented by Gries (2004)) on this list of trans-
lation equivalents and only considering equiva-
lents with a distance smaller than or equal to 0.5.
This resulted in a list with 28,503 Dutch-English
candidate cognate pairs, which was manually la-
beled.

3.2 Creation of Gold Standard

To create the gold standard for cognate detection,
an extensive set of guidelines was established (La-
bat et al., 2019). The guidelines propose a clearly
defined method for the manual labeling of the fol-
lowing six categories:

1. Cognate: words which have a similar form
and meaning in all contexts. Conform with
our working definition for cognates, the
source and target words do not need to be et-
ymologically related.

2. Partial cognate: words which have a simi-
lar form, but only share the same meaning in
some contexts.

3. False friend: words which have a similar
form but a different meaning.

4. Proper name: proper nouns (e.g. persons,
companies, cities, countries, etc.) and their
derivations (e.g. American).

5. Error: word alignment errors and compound
nouns of which one part is a cognate but the
other part is missing in one of the languages
(e.g. peripherals - aansturingsperipherals).

6. No standard: words that do not occur in the
dictionary (e.g. num_connectors) and num-

bers (e.g. admi12006e, VI).

To decide on the correct label, we adopted a
context-independent approach applying the fol-
lowing procedure: (1) for every candidate cognate
pair, the dictionary Grote Van Dale' (henceforth:
VD) was consulted; (2) the English word is looked
up in the VD, e.g. salon, (3) the Dutch translation
is inspected in the VD, e.g. salon: “nice room”
and salon: “(room for) gathering of people (e.g.
from the literary world)”.

Based on the previously obtained information,
a decision is made: in case all meanings of the
Dutch word correspond with the English word,
we consider them ‘“‘cognates”, in case only part
of the Dutch meanings correspond with the En-
glish word, we consider them “partial cognates”,
in case the words have different meanings, we con-
sider them “false friends”. An example of par-
tial cognates is the pair agent-agent: the Dutch
agent refers both to (1) a police man and to (2)
a representative (e.g. business representative). As
only the second meaning of the Dutch word is ex-
pressed by the English agent, these words are con-
sidered partial cognates.

Two important observations should be made.
Firstly, we accorded more fine-grained labels in
the gold standard that are described in great detail
in the annotation guidelines (Labat et al., 2019).
For cognates, a distinction was, for instance,
made between cognates of which Part-of-Speech
(PoS) and meaning are identical in both languages,
cognates that differ in PoS (e.g. organisatie-
organizing) and cognates that differ in agreement
(e.g. organisatie-organisations). Secondly, it is
important to note that a successful dictionary look-
up never overruled the “proper name” annotation.

The resulting gold standard 1is context-
independent. Hence, it can be used for both
the development and the evaluation of machine

"https://www.vandale.be/
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learning models that deal with cognate detection.
Besides its applications in natural language
processing, the gold standard can also form an
important new resource for further research on
cognates in linguistics, translation studies or
psycho-linguistics.

4 Classification

This section describes the experimental setup and
the two types of information sources, viz. ortho-
graphic similarity and semantic similarity, that
were incorporated for the experiments.

4.1 Experimental Setup

In this paper, cognate detection was approached
as a supervised classification task. To this end, we
applied Support Vector Machines as implemented
in sklearn (Pedregosa et al., 2011).

The data set used for the binary classifica-
tion experiments consisted of the COGNATE
pairs (labels “cognate” and “partial cognate”) and
NON-COGNATE pairs (labels “error” and “false
friend”’). The categories of “proper name” and “no
standard” were removed from the data set as they
are always identical translations and would boost
the performance of the system in an artificial way.
Table 1 gives an overview of the distribution of the
two classes in the gold standard data set.

Cognate  Non- Total
cognate  pairs
GS 9,855 4,763 14,618

Table 1: Distribution of the “cognate” and “non-
cognate” class labels in the gold standard (GS).

In order to train and test the system, we per-
formed 5-fold cross-validation for which we fixed
our 5 subsamples. Hyperparameter optimisa-
tion was performed by means of a 5-fold cross-
validation grid search on the training folds, result-
ing in the following values: kernel = RBF, C' =5,
class weight = None and gamma = 5.

4.2 Orthographic Similarity Features

Fifteen different string similarity metrics were
applied on the candidate cognates to measure
the formal relatedness between source and target
words. Eleven of these fifteen metrics were also
used by Frunza et al. (2007). The following list
briefly summarizes the orthographic features im-
plemented:
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Prefix divides the length of the shared pre-
fix by the length of the longest cognate in the
pair.

Dice (Brew and McKelvie, 1996) divides the
number of common bigrams times two by the

total number of bigrams in the cognate pair,
2 x |bigrams(z)| N |bigrams(y)|

as in
|bigrams(z)| + |bigrams(y)|

Dice (trigrams) differs from Dice in that it

uses trigrams instead of bigrams.

XDice is a variant of Dice as it uses bigrams
that are created out of trigrams by deleting
the middle letter in them.

XXDice incorporates the string positions of
the bigrams into its metric. Therefore, the de-
nominator is no longer multiplied by two, but

by .
1+ (pos(x) — pos(y))?

LCSR stands for the longest common subse-
quence ratio, which is two times the length
of the longest subsequence over the summed
length of both sequences.

NLS or the Normalized Levenshtein Similar-
ity equals one minus the minimum number of
edits required to change one string sequence
to another.

LCSR (bigrams), NLS (bigrams), LCSR
(trigrams), and NLS (trigrams) differ from
their standard metrics in that they use, respec-
tively, bigrams and trigrams to calculate their
results.

Jaccard index models the length of the in-
tersection of both cognate strings over the
length of the union of these strings.

Jaro-Winkler similarity is the complement
of the Jaro-Winkler distance. Word pairs that
from their beginning correspond to a set pre-
fix length will receive higher scores.

Spsim option 1 and Spsim option 2 are
the only metrics which require supervised
training, in order to learn grapheme map-
pings between language pairs (Gomes and
Pereira Lopes, 2011). They are trained
by performing 5-fold cross-validation on the
positive instances (i.e. cognates) in the data
set. Therefore, we created two different train



sets: option 1 includes cognate pairs which
differ in agreement or PoS-tags, while option
2 only includes cognates and partial cognates.

4.3 Semantic Information

Besides features that model formal similarity be-
tween word pairs, we also included semantic in-
formation in our classifier. We opted for word
embeddings, as these have shown to be very ef-
fective for various NLP tasks. In addition, word
embeddings have not yet been used for the task of
cognate identification. For the purpose of this re-
search, we worked with fastText word embeddings
that were pre-trained on the Wikipedia corpus with
the skip-gram model proposed by Bojanowski et
al. (2017). The model was trained with the default
parameters and the length of the vector was set to
300. A disadvantage of using text-formatted pre-
trained embeddings is that we could not generate
embeddings for all words in the gold standard list.
As a result, we only obtained word embeddings
for 12,433 instances, while we have orthographic
information for 14,618 instances. Table 2 gives an
overview of the distribution of the two classes in
the full and reduced gold standard data sets. The
experimental results that we obtained for this sub-
set are presented in Section 5.2.

Cognate  Non- Total

cognate  pairs
Ortho 9,855 4,763 14,618
Semantic 8,935 3,498 12,433

Table 2: Distribution of the “cognate” and “non-
cognate” class labels in the full (Ortho) and re-
duced (Semantic) gold standard data sets.

We chose to work with fastText embeddings in-
stead of regular Word2Vec embeddings because
the former model uses n-grams to train its em-
beddings. In contrast to the Word2Vec mod-
els, fastText can create word embeddings for out-
of-vocabulary words, which is especially impor-
tant for low-frequent words. Although the cur-
rent research only works with pre-trained word
entries, in future research we plan to add out-of-
vocabulary words by training word embeddings on
domain-specific corpora more similar to the DPC
corpus that was used to extract the list of candi-
date cognate pairs. This way, we hope to construct
embeddings for all word pairs in the gold standard
list.
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Once the results for the Dutch and English
monolingual embeddings were loaded, the Dutch
embeddings were mapped to the English vector
space by means of a pre-trained alignment ma-
trix (Smith et al., 2017). Since the embeddings are
then situated in the same vector space, one can eas-
ily compute the cosine similarity between the two
words of a candidate cognate pair. Subsequently,
this cosine similarity was used as a semantic fea-
ture for our machine learning system.

5 Experimental Results

This section describes the classification results for
two sets of experiments, namely (1) a classifier
incorporating fifteen orthographic similarity fea-
tures and (2) a classifier combining the same set
of orthographic similarity features with a semantic
feature resulting from computing the cosine simi-
larity between the word embeddings of the cog-
nate pair.

5.1 Experiment 1: Orthographic Features

A first set of experiments was conducted to evalu-
ate the performance of the orthographic similarity
features for the task of cognate detection. Table 3
lists the averaged precision, recall and F1-score for
all individual orthographic similarity features and
their combination.

The results show a very good performance of
the classifier combining all orthographic similar-
ity information (average F-score of 84%). Espe-
cially precision improves considerably when com-
bining the different orthographic similarity met-
rics. When looking into the results for the individ-
ual features, it is clear that some metrics perform
very well in isolation, such as LCSR and NLS,
which obtain F-scores of around 85% for the pos-
itive class (“Cognates”) with good balance of pre-
cision and recall.

To get further insight in the informativeness of
the various orthographic features, we also trained
a conditional inference tree and random forest on
the cognate data set. Figure 1 visualizes the model
learned by the conditional inference tree at depth
3. The tree indicates which orthographic metric is
the most important for that node in the tree. As can
be observed in Figure 1, the longest common sub-
sequence ratio is overall the most influential met-
ric, followed by SpSim (option 1) and the Jaro-
Winkler similarity.

In addition to the conditional inference tree, a



Cognates

Non-cognates

Average score

Metric ‘ Prec Rec  F-score | Prec Rec  F-score | Prec Rec F-score
Prefix 7743 87.84 8231 | 65.17 47.03 5462 | 71.30 6744 68.46
Dice 73.38 91.99 81.63 | 65.04 3091 41.84 | 69.21 61.45 61.73
Dice (3gr) 73.28 91.88 81.53 | 64.63 30.67 41.59 | 68.95 61.28 61.56
Jaccard 73.83 91.53 81.73 | 6522 3286 43.69 | 69.52 62.19 62.71
XDice 70.85 96.26 81.62 | 70.03 18.08 28.73 | 70.44 57.17 55.18
XXDice 76.10 92.54 8352 | 72.15 39.88 5135 | 74.12 66.21 67.43
LCSR 82.15 89.30 8547 | 72.65 5993 6566 | 7740 7462 7557
NLS 82.39 86.03 84.24 | 6847 61.84 6495 | 7543 73.93 74.59
LCSR (2gr) 76.92 81.28 79.03 | 56.16 49.52 52.58 | 66.54 6540 65.80
NLS (2gr) 76.80 81.02 78.84 | 55.74 4931 52.26 | 66.27 65.17 65.55
LCSR (3gr) 73.28 91.88 81.53 | 64.63 30.67 41.59 | 68.95 61.28 61.56
NLS (3gr) 7334 91.60 8146 | 64.16 31.10 41.87 | 68.75 61.35 61.67
Jaro-Winkler | 77.06 90.72 83.33 | 69.72 44.10 5399 | 73.39 6741 68.66
SpSim (opt.1) | 86.01 79.01 82.35 | 62.83 73.38 67.68 | 7442 76.19 75.02
SpSim (opt.2) | 83.36 80.37 81.82 | 62.21 66.76 64.37 | 72779 73.56  73.10
Combined \ 89.33 90.63 89.97 \ 80.63 77.60 78.78 | 84.68 84.11 84.38

Table 3: Precision (Prec), Recall (Rec) and F1-score for the individual orthographic similarity features

and for the classifier combining all features (%).

random forest was trained in order to further inves-
tigate the importance of each metric. Since a ran-
dom forest uses lots of seeds (in our case: 123) in
order to decide on the importance of each variable
individually, it provides a somewhat more repre-
sentative, validated picture of the influence of dif-
ferent metrics. An additional Somers’ D value was
computed for the random forest in order to check
the goodness of fit. With a correlation score of
0.9528739, our random forest forms a good model
for unseen data. Figure 2 shows that the model
agrees with the conditional inference tree in that
it also classifies LCSR, SpSim (option 1) and the
Jaro-Winkler similarity as important metrics for
the identification of cognates. It does, however,
provide some additional information, as it shows
that the normalized Levenshtein similarity is also
very influential for this binary classification task.

5.2 Experiment 2: Orthographic and
Semantic Features

In a second set of experiments, we combined all
orthographic similarity features with a semantic
feature expressing the cosine similarity between
the two word embeddings. Table 4 shows the re-
sult of the classifiers incorporating (1) only seman-
tic information and (2) a combination of ortho-
graphic and semantic similarity information. As
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this set of experiments is only conducted on that
part of the data set for which word embeddings
were retrieved, we also added the updated perfor-
mance scores for all individual orthographic met-
rics on this reduced data set.

The classification results listed in Table 4 show
some interesting findings. First of all, the em-
beddings in isolation already obtain good classi-
fication results for the “Cognates” class (F-score
of 89.14%). Second, the classifier combining or-
thographic and semantic similarity features clearly
outperforms the classifier only incorporating or-
thographic information.

An analysis of the output reveals that the se-

mantic information indeed helps to detect cognate
pairs showing less orthographic resemblance

(e.g. east-oost, older—ouderen, widespread—
wijdverbreid, asleep—slaap, sweating—zweten,
shame—schaamte,  belief-geloof,  whole—hele,

swarm—zwerm, overheated—oververhitte). In
addition, the word embedding information also
generates less false negatives. Examples of pairs
that were wrongly labeled as cognates by the
classifier relying on orthographic information
and that are correctly labeled as non-cognates
by the combined classifier are: affects—effecten,
unlocking—blokkering,  investments—instrument,
slit—gesplit, provide—profielen, brazier—branden,
might—high, where—wateren. On the other hand,
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Figure 1: Conditional Inference Tree with depth 3 trained on the orthographic similarity features.

Cognates Non-cognates Average score
Metric \ Prec Rec  F-score | Prec Rec  F-score | Prec Rec  F-score
Prefix 82.30 87.99 85.05 | 62.74 51.66 56.65 | 72,52 69.82 70.85
Dice 8040 9123 8547 | 65.84 43.19 5215 | 73.12 6721 68.81
Dice (3gr) 79.94 91.28 8523 | 65.05 4148 50.65 | 72.50 66.38 67.94
Jaccard 80.71 90.74 8543 | 6534 4458 5298 | 73.02 67.66 69.20
XDice 76.45 9594 85.09 | 70.25 2450 36.32 | 73.35 60.22 60.70
XXDice 79.89 94.15 8643 | 7256 3945 51.09 | 7622 66.80 68.76
LCSR 83.79 9199 87.70 | 72.73 5455 6232 | 7826 7327 75.01
NLS 8523 8848 86.83 | 6742 6083 6395 | 76.33 74.66 75.39
LCSR (2gr) 78.77 91.57 84.69 | 63.16 3694 46.60 | 70.96 64.25 65.64
NLS (2gr) 79.09 90.57 84.44 | 61.69 3882 47.64 | 70.39 64.69 66.04
LCSR (3gr) 79.94 91.28 8523 | 65.05 4148 50.65 | 7249 66.38 67.94
NLS (3gr) 80.04 9097 85.15 | 64.57 42.05 5092 | 72.30 6651 68.04
Jaro-Winkler | 82.24 9131 86.54 | 69.11 49.64 57.76 | 75.67 7047 72.15
SpSim (opt.1) | 85.58 81.05 83.23 | 5740 6501 60.89 |71.49 73.03 72.06
SpSim (opt.2) | 80.87 87.42 83.99 |59.57 47.02 5233 | 7022 6722 68.16
Sem 83.56 9553 89.14 | 82.00 5199 63.62 | 82.78 73.76  76.38
Ortho 89.46 9123 90.33 | 7642 7254 7442 | 8294 81.88  82.38
Ortho + Sem | 92.59 94.65 93.61 | 85.52 80.64 83.00 | 89.05 87.64 88.30

Table 4: Precision (Prec), Recall (Rec) and Fl-score for the classifiers incorporating the fifteen indi-
vidual orthographic features, the classifier incorporating only semantic information (Sem), the classifier
incorporating the combined orthographic information (Ortho) and the classifier incorporating both or-
thographic and semantic similarity features (Ortho + Sem).

the combined classifier rarely introduces addi-
tional false negatives (seven instances in total,
e.g. lead-leiden, include—inhouden, docker—
dokwerker) or additional false positives (three
instances in total:  told—toen, escapologist—
escapist, because—bepaalde).

608

6 Conclusion and Future Work

This paper presents preliminary experiments for
combining orthographic and semantic similarity
information for cognate detection. The experi-
mental results already show promising scores for
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Figure 2: Random Forest indicating the importance the different orthographic similarity features for the

current cognate identification task.

a classifier using merely orthographic similarity
information. The results, however, revealed that
adding semantic information capturing the cosine
similarity between the word embeddings of the
Dutch and English terms further improves the
classification results considerably. As a result, we
can conclude that combining orthographic and se-
mantic similarity information is a viable approach
to automatic cognate detection.

As we presented proof-of-concept results in
this research, there is still a lot of room for fu-
ture research. Firstly, the implementation of al-
ternative word embeddings is an important di-
rection for future work. We will perform addi-
tional experiments with (1) larger and different
(e.g. domain-specific) corpora and (2) other em-
bedding approaches to improve the semantic in-
formation based on embedding distance. We are
confident this will result in high-level quality em-
beddings for all candidate cognate pairs.

Secondly, it would be interesting to perform
multi-class experiments, where a distinction is
made between cognates, false friends and non-
related word pairs. To this end, a training and
evaluation corpus containing cognate candidates
in context will be built and manually annotated.

Finally, we plan to compile the corresponding
gold standard set for French-Dutch, which is also
part of the Dutch Parallel Corpus. This will allow
an evaluation of our approach for a different lan-
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guage pair. In addition, this will enable us to per-
form trilingual machine learning experiments and
to gain useful insights into cross-lingual cognate
detection.
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