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Abstract

Attribute information in a natural language
query is one of the key features for con-
verting a natural language query into a
Structured Query Language' (SQL) in Nat-
ural Language Interface to Database sys-
tems. In this paper, we explore the task
of classifying the attributes present in a
natural language query into different SQL
clauses in a SQL query. In particular,
we investigate the effectiveness of various
features and Conditional Random Fields
for this task. Our system uses a statisti-
cal classifier trained on manually prepared
data. We report our results on three differ-
ent domains and also show how our sys-
tem can be used for generating a complete
SQL query.

1 Introduction

Databases have become one of the most efficient
ways to store and retrieve information. Database
systems require a user to have the knowledge of
structured languages in order to be able to retrieve
information from them. As a result, it becomes
difficult for people of non-technical background
to use databases. Natural Language Interface to
Database (NLIDB) (Androutsopoulos et al., 1995;
Catalina Hallett and David Hardcastle, 2008; Pa-
zos et al., 2002; Popescu et al., 2003; Giordani
and Moschitti, 2009; Gupta et al., 2012) systems
provide an interface through which a user can ask
a query in natural language and get the required
information from the database. NLIDB systems
translate the user’s natural language (NL) query
into a SQL query, thereby allowing the user to re-
trieve the answer from the database. However,

'Structured Query Language is a specialized language
used for relational database management and data manipu-
lation.
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NLIDB systems are not widely used because of
their inability to process ambiguity and complex-
ity of natural language, which makes them more
error prone. Thus, it becomes very important to
capture even the smallest of the information from
a NL query before converting it into a SQL query.

A relational database contains objects called ta-
bles in which information is stored. These tables
contain columns and rows. The column names in
the tables are known as attributes. A SQL query is
composed of different SQL clauses like SELECT,
FROM, WHERE, GROUP BY, HAVING and ORDER
BY. Since clauses in a SQL query have attributes,
attribute information becomes very important for
an effective conversion of a NL query into a SQL
query. Explicit attributes are the attributes men-
tioned by the user in the NL query text. When
a NL query is converted into SQL query, explicit
attributes may belong to different SQL clauses.
In this paper, we use Conditional Random Fields
(CRF) for classifying the explicit attributes in a NL
query to different SQL clauses.

2 Related Work

There have been significant research efforts in the
area of NLIDB systems. Different approaches have
been proposed to deal with these systems.

In (Gupta et al., 2012), the authors propose a
NLIDB system based on Computational Paninian
Grammar (CPG) Framework (Bharati et al., 1996).
They emphasize on syntactic elements as well as
the semantics of the domain. They convert a NL
query into a SQL query by processing the NL query
in three stages, viz. the syntactic stage, the seman-
tic stage and the graph processing stage. In the
semantic stage, they identify attribute-value pairs
for various entities using noun frames. The prob-
lem with this proposal is that it becomes costly in
terms of space to use high number of frames in
large domains. In (Khalid et al., 2007), machine
learning was used in Question Answering systems.
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The system proposed by them maps an input query
to certain tables containing attributes which can
provide the required answer. They specify that
identifying the related tables and attributes from
the knowledge base is very important for answer-
ing an incoming question. Amany Sarhan (2009)
emphasized on the importance of identifying the
table names of attributes in a NL query. He shows
that attribute and table information help in mini-
mizing the effort to build SQL queries. Thus, at-
tribute information plays a very important role in
both NLIDB systems and Question Answering sys-
tems. To our knowledge, this work is the first
attempt to classify attributes directly from a NL
query to different SQL clauses in their SQL queries.
In (Srirampur et al., 2014), the authors address the
problem of Concepts Identification of a NL query
in NLIDB, which plays a crucial role for our sys-
tem to generate a complete SQL query.

The remainder of this paper is structured as fol-
lows. Section 3 describes the problem. In sec-
tion 4, we illustrate the concept of explicit attribute
classification. Section 5 explains the methodology
along with the features adopted for the classifica-
tion. We also discuss on generating the complete
SQL query. In section 6, we show experimenta-
tions and results along with error analysis. We
conclude in section 7.

3 Problem

An attribute in a NL query can correspond to vari-
ous SQL clauses. We define two types of attributes
which can be found in a NL query.

Explicit attributes: Explicit attributes are the at-
tributes which are directly mentioned by the user
in the NL query.

Implicit attributes: Implicit attributes are not
directly mentioned by the user in the NL query.
These attributes are identified with the help of val-
ues mentioned by the user in the NL query. For
identifying these attributes, domain dictionaries
can be used. Table 1 shows a sample domain dic-
tionary. The following examples illustrate explicit
and implicit attributes in a user query.

Example 1: List the grades of all the students in
Mathematics.

In this example, grade is an explicit attribute as it
is directly mentioned by the user in the NL query.
The user also mentions the value Mathematics.
This value when checked in the domain dictionary
gives the attribute course_name as Mathematics is
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the name of a course. Thus, course_name is an
implicit attribute. The attribute students or stu-
dent_name is another explicit attribute in the above
example.

Example 2: What course does Smith teach?

In this example, course or course_name is an ex-
plicit attribute as it is directly mentioned by the
user. The user mentions the value Smith. This
value when checked in the domain dictionary
gives the attribute professor_name if Smith is a
name of a professor. Thus, the attribute profes-
sor_name is an implicit attribute.

Implicit attributes generally correspond to the
WHERE clause in a SQL query as they are associ-
ated with a value. This paper focusses on classify-
ing explicit attributes into different SQL clauses in
a SQL query.

Value Attribute
Smith  professor_name
ABCD lab_name
John student_name
Science  course_name

Table 1: Sample domain dictionary

4 Explicit Attribute Classification

In this section, we illustrate the classification of
explicit attributes from a NL query into different
clauses in a SQL query. In all the examples shown
in Figure 1, course_name (courses) is explicitly
mentioned by the user. In each example, the
attribute course_name belongs to a different SQL
clause. In Example 1 (Figure 1), course_name
belongs to the SELECT clause as the user has
asked to the list courses taught by Smith. In
Example 2 (Figure 1), course_name belongs
to the WHERE clause as it gives information
about a course (Science). Note that Science can
be identified as course_name from the domain
dictionary as well. In Example 3, the user is
asking to show a student from each course. So
it is required to group the students according to
their course (course_name) and then list them.
Thus, the attribute course_name should belong
to the GROUP BY clause. Note that, in the same
example the user has also mentioned another
attribute (students) explicitly. Since he has asked
to list the students, the attribute student_name will
belong to the SELECT clause. In Example 4, the



two explicit attributes mentioned by the user are
professors and courses. Here, the user is asking
to list only those professors who teach more
than two courses. Here, we group according to
professors and then for each professor, we count
the number of courses taught. Only if the count
is greater than 2, we select the professor and list
his name. Thus, professor_name belongs to the
GROUP BY clause. The condition on professors
iS COUNT (course_name) > 2. Therefore, the
attribute courses or course_name belongs to the
HAVING clause. In this way, by identifying the
clauses to which the attributes belong, we can
improve the translation of NL queries to SQL
queries. In the next section, we describe how
we classify these explicit attributes to their SQL
clauses.

1. What are the courses taught by Smith?
SELECT course_name

FROM COURSES, TEACH, PROFESSOR
WHERE professor_name= “Smith” AND
prof_id=prof_teach_id AND
course_teach_id=course_id.

2. Who teaches Science course?
SELECT professor_name

FROM COURSES, TEACH, PROFESSOR
WHERE course_name="Science” AND
course_id =course_teach_id AND
prof_teach_id=prof_id

3. List a student from each course.
SELECT student_name, course_name
FROM STUDENTS, REGISTER, COURSES
WHERE stud_id=stud_reg_id AND
reg_id=course_id

GROUP BY course_name

4. Who are the professors teaching more than 2 courses?
SELECT professor_name

FROM COURSES, TEACH, PROFESSOR
WHERE course_id=course_teach_id AND
prof_teach_id =prof_id

GROUP BY professor_name

HAVING COUNT(course_name) > 2

Figure 1: Examples of NL queries and their
SQL queries

5 Methodology

We manually prepared a dataset of queries on the
Academic domain of our university. The uni-
versity database was used as the source of in-
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formation. Examples of tables in the database
schema are courses, labs, students consisting
of attributes like course_name, course_id, stu-
dent_name, lab_name etc. @ The database has
relationships like register (between student and
course), teach (between professor and course) etc.
Each token in the sentence is given a tag and a set
of features. If a token is an attribute, it is assigned
a tag which corresponds to a SQL clause to which
the attribute belongs. If a token is not an attribute,
it is given a NULL (0) tag. The tagging was done
manually. Our tag set is simple and consists of
only 4 tags, where each tag corresponds to a SQL
clause. The tags are SELECT, WHERE, GROUP BY,
HAVING. Formally, our task is framed as assigning
label sequences to a set of observation sequences.

Token Attribute Tag
What 0 (0]
are 0 0]
the 0 0]
courses 1 GROUP BY
with 0 0]
less 0 0]
than 0 0]
25 0 (0]
students 1 HAVING
? 0 (0]

Table 2: Example of tagging scheme

We followed two guidelines while tagging sen-
tences. Sometimes it is possible that an attribute
can belong to more than one SQL clause. If an
attribute belongs to both SELECT and GROUP BY
clause, we tag the attribute as a GROUP BY clause
attribute. This is done with an aim to identify
higher number of GROUP BY clause attributes as
SELECT clause attributes are very common and
are comparatively easier to identify. The second
guideline that we followed was, if an attribute be-
longs to both the SELECT and the WHERE clause,
we tag the attribute as a SELECT clause attribute.
This is done because the WHERE clause attributes
can often be identified through a domain dictio-
nary. Table 2 shows an example of the tagging
scheme. Each token in a sentence is given a set of
features and a tag. In Table 2, we have shown only
one feature due to space constraints. We trained
our data and created models for testing. We used
Conditional Random Fields (Lafferty et al., 2001)
for the machine learning task. The next subsection



describes the features employed for the classifica-
tion of explicit attributes in a NL query.

5.1 Classification Features

The following features were used for the classifi-
cation of explicit attributes in a NL query.
Token-based Features These features are based
on learning of tokens in a sentence. The isSym-
bol feature checks whether a token is a symbol (>,
<) or not. Symbols like > (greater than), < (less
than) are quite commonly used as aggregations in
NL queries. This feature captures such aggregates.
We also took lower case form of a token as a fea-
ture for uniform learning. We considered a par-
ticular substring as a feature. If that substring is
found in the token, we set the feature to 1 else 0
(for example, in batch wise or batchwise, the at-
tribute batch is identified as GROUP BY clause at-
tribute using substring wise).

Grammatical Features POS tags of tokens and
grammatical relations (e.g. nsubj, dobj ) of a token
with other tokens in the sentence were considered.
These features were obtained using the Stanford
pa.rser2 (Marneffe et al., 2006).

Contextual Features Tokens preceding and fol-
lowing (local context) the current token were also
considered as features. In addition, we took the
POS tags of the tokens in the local context of the
current token as features. Grammatical relations
of the tokens in local context of the current token
were also considered for learning.

Other Features:

isAttribute This is a basic and an important fea-
ture for our problem. If a token is an attribute, we
set the feature to 1, else 0.

Presence of other attributes This feature aims to
identify the GROUP BY clause attributes only. In
SQL, the HAVING clause generally contains a con-
dition on the GROUP BY clause. If a NL query is
very likely (>95%) to have a HAVING clause at-
tribute, then the SQL clause will certainly have a
GROUP BY clause as well. This feature is marked
as 1 for an attribute if it has a local context which
may trigger a GROUP BY clause and at the same
time if the NL query is very likely to have the HAV-
ING clause attribute. The likeliness of the HAVING
clause attribute is again decided based on the local
context of the attribute. Thus, GROUP BY clause
attribute is not just identified using its local con-
text, but also depending on the presence of HAV-

“http://nlp.stanford.edu/software/lex-parser.shtml
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ING clause attribute. In simple terms, this feature
increases the weight of an attribute to belong to the
GROUP BY clause of the SQL query.

Trigger words An external list is used to deter-
mine whether a word in the local context of an
attribute may trigger a certain SQL clause for the
attribute. (eg., the word each may trigger GROUP
BY clause).

5.2 Completing the SQL Query

Until now, we have only identified attributes and
their corresponding SQL clauses. But this is not
sufficient to get a complete SQL query. In this sec-
tion, we describe how we can generate a complete
SQL query after the classification of attributes. To
build a complete SQL query we would require:

1. Complete attribute and entity information.

2. Concepts® of all the tokens in the given query.
3. Mapping of identified entities and relationships
in the Entity Relationship schema to get the joint
conditions in WHERE clause.

Our system can extract attribute information using
explicit attribute classifier for explicit attributes
and domain dictionaries for implicit attributes.
Sometimes, we may not have complete attribute
information to form a SQL query. That is, there
can be attributes other than explicit attributes and
implicit attributes in a SQL query. For example,
consider:

Example 1: Which professor teaches NLP ?
Example 2: Who teaches NLP ?

The SQL query for both the examples is:

SELECT professor_name

FROM prof, teach, course

WHERE course_name= NLP AND
course_id=course_teach_id AND
prof_teach_id=prof_id .

In example 1, our system has complete attribute
information to form the SQL query. Since pro-
fessor is explicitly mentioned by the user in the
query, here professor_name is identified as a SE-
LECT clause attribute by our system. But in exam-
ple 2, we do not have complete attribute informa-
tion. Here identifying the SELECT clause attribute
professor_name is a problem, as there is no clue
(neither explicit attribute nor implicit attribute) in
the query which points us to the attribute pro-
fessor_name. To identify attributes which cannot
be identified as implicit attributes or explicit at-

3Concept of a NL token maps the NL token to the database
schema. The tables, attributes and relations in the database
schema constitute concepts.



tributes, Concepts Identification (Srirampur et al.,
2014) is used. In Concepts Identification, each to-
ken in the NL query is tagged with a concept. Us-
ing Concepts Identification, we can directly iden-
tify Who as professor_name. These attributes are
known as the Question class attributes. Most of
the times, since question words are related to the
SELECT clause, the attribute professor_name can
be mapped to the SELECT clause, thereby giving
us complete information of attributes. We also
use Concepts Identification to identify relation-
ships in the NL query. In both the examples, teach
which is a relationship in the Entity Relationship
schema can be identified through Concepts Iden-
tification (CI). Once the attributes are identified,
entities can be extracted. For example, entities
for the attributes course_name, professor_name are
COURSES and PROFESSOR respectively. The iden-
tified entities and relationships are added to the
FROM clause.

All the identified entities and relationships can
now be mapped to the Entity Relationship (ER)
schema to get the joint conditions (Arjun Reddy
Akula, 2015) in the WHERE clause. We create
an ER graph using the ER schema of the database
with entities and relationships as vertices in the
ER graph. We apply a Minimum spanning tree
(MST) algorithm on the ER graph to get a non-
cyclic path connecting all the identified vertices
in the ER graph. With this, we get the required
join conditions in the WHERE clause. Arjun Reddy
Akula (2015) discusses the problem of handling
joint conditions in detail. Note that new enti-
ties and relationships can also be identified while
forming the MST. These extra entities and rela-
tionships are added to the FROM clause in the SQL
query. We now have a complete SQL query.

6 Experiments and Discussions

6.1 Data

We manually prepared a rich dataset ensuring that
NL queries when converted into SQL queries, a
wide variety of SQL queries are covered for the
classification. We tested our classifier on these
queries. Apart from the Academic domain, we
also experimented on Mooney’s dataset*. We con-
sidered the Restaurant and the Geoquery domains
(Wong and Mooney, 2006) in Mooney’s dataset.
The Geoquery dataset (GEO880) consisted of
880 queries. Since we are not addressing nested

*http://www.cs.utexas.edu/users/ml/nldata.html
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SQL queries, we removed queries which when
converted to SQL queries, involve nested SQL
queries. This task was done manually. There were
256 nested SQL queries in the Geoquery dataset.
Regarding classification, we mainly focused on
the Academic domain as it consists of queries
with the SELECT, WHERE, GROUP BY and the
HAVING clause attributes. The Restaurant and
Geoquery domains had queries with only the
SELECT and WHERE clause attributes. This is
one of the reasons why we prepared the data
ourselves. Table 3 shows the number of sentences
considered for training and testing in each domain.

Domain Train Test
Academic 711 305
Restaurant 150 100
Geoquery 400 224

Table 3: Corpus statistics

6.2 Experimental Results

We used the metrics of Precision (P), Recall (R)
and F-measure’ (F) for evaluation.

6.2.1 Baseline Method

We first determine the majority class C of an
explicit attribute A found in the training data. The
baseline system then labels all occurrences of A
found in the test data with class C, irrespective
of the context of the attribute. In all the three do-
mains, SELECT clause attribute was the majority
class attribute. Table 4 summarizes the results of
the baseline method in all the domains.

Domain P(%) R(%) F(%)
Academic 46.29 46.37 46.33
Restaurant 47.75 43.80 45.69
Geoquery 63.08 63.08 63.08

Table 4: Baseline method results

6.2.2 Conditional Random Fields

We used Conditional Random Fields for the clas-

sification experiments since it represents the state
5

2x Px R

F— e =
measure P+R



of the art in sequence modeling and has also
been very effective at Named Entity Recognition
(NER). As our problem is very similar to NER,
we used CRF. CRF++9 tool kit was used for this.
CRFs are a probabilistic framework used for label-
ing sequence data. CRF models effectively solve
the label bias problem, which make it better than
HMMs which are generally more likely to be sus-
ceptible to the label bias problem. Our discussions
mainly focus on Academic domain.

We conducted experiments in three phases.
Phase one involved using features only for the cur-
rent token. The system achieved a F-measure of
60.27%.

Domain Clause P(%) R(%) F(%)
SELECT  60.94 89.80 72.61

WHERE 48.81 57.75 52.90

Academic GROUP BY 7237 38.73 50.46
HAVING 1429 152 274

Overall 60.04 60.50 60.27

SELECT 81.08 92.31 86.33

Restaurant WHERE 96.30 92.86 94.55
Overall 87.50 92.56 89.96

SELECT 7821 98.05 87.01

Geoquery WHERE 94.12 53.33 68.09
Overall 81.54 81.54 81.54

Table 5: Results obtained without considering
contextual features.

In phase two, we added contextual features
as well. The contextual features include tokens
surrounding the current token, POS tags of the
tokens surrounding the current token and also the
grammatical relations of the tokens surrounding
the current token.

Incorporating contextual features showed a sig-
nificant improvement in the classification. At the
end of phase two, the F-measure of the system was
83.73%. This shows that the local context of an
attribute is important in deciding its SQL clause.
Table 5 and Table 6 show the classification results
of phase one and phase two respectively. By lo-
cal context, we mean the neighbouring tokens or
features of neighbouring tokens of the attribute in
the NL query. After a few pilot experiments, con-
text window of size three was found to be opti-
mal in Academic domain and context window of
size one was enough for Restaurant and Geoquery
domains. Window size of three was required spe-

Shttps://code.google.com/p/crfpp
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Domain Clause P(%) R(%) F(%)

SELECT 88.12  93.88 90.91

WHERE 56.41 9296 70.21

Academic GROUPBY 96.58 79.58 87.26
HAVING 96.88 46.97 63.27

Overall 83.49 83.97 83.73

SELECT 94.64 81.54 87.60

Restaurant WHERE 100.00 98.21 99.10
Overall 97.30 89.26 93.10

SELECT 89.04 99.02 93.76

Geoquery WHERE 9794 79.17 87.56
Overall 91.69 91.69 91.69

Table 6: Results obtained on adding contextual
features.

cially for HAVING clause attributes. This is proba-
bly because HAVING clause attributes are gener-
ally associated with aggregations. Hence, local
context of an attribute is very important for the
HAVING class attributes. As can be seen from Ta-
ble 5 and Table 6, adding contextual features in-
creased the F-measure of HAVING clause attributes
by 60.53 percentage points. The presence of at-
tribute feature is very important for identifying the
GROUP BY clause attributes. F-measure of GROUP
BY clause attributes increased by 11.72 percent-
age points on adding this feature. The reason
for higher F-measures in the Restaurant and the
Geoquery domains is mainly because these do-
mains had NL queries with only the SELECT and
the WHERE clause attributes, thus making classi-
fication much easier. Moreover, the randomness
found in queries was comparatively lesser than
the Academic domain. In addition, the problem
of contextual conflicts was not seen in these do-
mains. Contextual conflicts are discussed in the
error analysis section.

Train Test P(%) R(%) F(%)
Academic Restaurant 69.63 77.69 73.44
Academic  Geoquery 70.99 70.77 70.88
Restaurant Academic 52.55 51.15 51.84
Restaurant Geoquery 80.66 60.31 69.01
Geoquery Academic 50.57 50.95 50.76
Geoquery Restaurant 77.78 86.78 82.03

Table 7: Cross domain results

In phase three, we performed cross domain ex-
periments. Here, we train a model on a dataset of
one domain and test the model on the dataset of a
different domain. We do not consider current to-



ken as a feature since the attributes are different
in each domain. But, features like POS and gram-
matical relations of the current token were taken.
Contextual tokens and other features of contextual
tokens were considered. Table 7 shows the results
of phase three experiments. Using contextual fea-
tures in a supervised machine learning framework
captures a strong generalization for classifying the
attributes.

Finally, we compare the final results we were
able to achieve to the state-of-the-art. Many
NLIDB systems have been proposed using differ-
ent approaches. We discuss few of them. PRE-
CISE (Popescu et al., 2003) is a system which con-
verts semantic analysis to a graph matching prob-
lem using schema elements. A class of semanti-
cally tractable queries is proposed and the system
can form SQL queries only if a query belongs to
the proposed class. PRECISE achieves an overall
F-measure of 87% on 700 tractable queries from
the GEO880 (Geoquery domain) corpus and a re-
call of 95% in restaurant domain. In KRISP (Kate
et al., 2006), a user query is mapped to its formal
meaning representations using kernel based classi-
fiers. These classifiers were trained on string sub-
sequence kernels and were used to build complete
meaning representation of the user query. They
achieve a precision of 94% and recall of 78% on
the GEO880 corpus.

Support Vector Machines with kernel methods
(Giordani et al., 2009) were adopted to repre-
sent syntactic relationships between NL and SQL
queries. The authors apply different combinations
of kernels and derive an automatic translator of
NL query to SQL query. Their system achieves an
overall accuracy of 76% and 84.7% for forming
SQL queries in the Geoquery and the Restaurant
domains respectively.

A set of candidate SQL queries (Giordani et
al., 2012) are produced using lexical dependencies
and metadata of the database. These SQL queries
are then re-ranked using SVM with tree kernels.
Using few heuristics they generate final list of SQL
queries. They achieved F-measure of 85% on the
GEO0880 corpus. Recent work (Clarke et al., 2010)
tackles semantic parsing using supervision. Here,
the system predicts complex structures based on
feedback of external world. From the GEO880
corpus, they randomly select 250 queries for train-
ing and 250 queries for testing and achieved an
overall F-measure of 73%.
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However, there have not been any efforts in
mapping NL queries to SQL queries exclusively
from an attribute point of view. Attributes being
the building blocks of a SQL query, we focus on at-
tributes to build a SQL query. After attribute classi-
fication, Concept Identification and identification
of the joint conditions in the WHERE clause, we
evaluate the overall SQL query formation. Even if
one attribute is wrongly tagged, we consider the
SQL query wrong. After accounting to Concepts
Identification errors and domain dictionary errors,
the final accuracies achieved by our system were
75%, 71% and 64% in Restaurant, Geoquery’ and
Academic domains respectively.

We define accuracy as

Number of correctly retrieved SQL queries

Accuracy =
Y Total Number of queries

These accuracies® are on the same test datasets

used for attribute classification(Table 3). Apart
from wrong tagging of attributes, one interesting
error we found while forming SQL queries was
domain dictionary error. For example, consider
the query, What length is the Mississippi?. Here,
the user is talking about Mississippi river, but the
domain dictionary tags Mississippi as state_name.
However, if the query had been asked as What
length is the Mississippi river ?, the system uses
the explicit attribute river and retrieves Missis-
sippi as river_name. In summary, we achieve com-
petitive results using a novel approach and move
towards tackling domain independency.

6.3 Error Analysis in Attribute Classification

Most of the errors occurred due to contextual con-
flicts which are of two types. Contextual con-
flict between two attributes A and B is an instance
wherein both the attributes A and B have same lo-
cal context but are found to be classified under dif-
ferent SQL clauses A and B. We say that there
is a contextual conflict between A and B clause
attributes. The observed contextual conflicts (>
90%) were:

SELECT clause vs GROUP BY clause attributes.

"The results on Geoquery domain may actually be worse
as the data (Table 3) we considered is a subset of the GEO880.

8Various state-of-the-art approaches show results on dif-
ferent train-test data splits. We achieved an accuracy of 74%
in restaurant domain using standard 10-fold cross validation
method. We do not show 10-fold cross validation results for
Geoquery domain as the corpus we considered in this domain
is a subset of the GEO880 dataset. However, the difference in
results is likely not statistically significant.



For example, consider List the courses in our col-
lege and List the batches in our college with more
than 100 students. Here, context of courses and
batches is same. In the first example, the at-
tribute courses (course_name) is a SELECT clause
attribute and in the second example, the attribute
batches (batch_name) is a GROUP BY clause at-
tribute. But batches was misclassified as SELECT
clause attribute. It should belong to the GROUP BY
clause according to our annotation guidelines.
WHERE clause vs HAVING clause attributes.

In the examples, Who are the students with more
than 8 marks in NLP? and What are the batches
with more than 8 students?, the prefix context of
marks in the first example is same as the pre-
fix context of students (more than 8) in the sec-
ond example. The attribute marks in the first ex-
ample belongs to the WHERE clause and students
in the second example belongs to the HAVING
clause. But students was misclassified as WHERE
clause attribute. Another reason why one yields
WHERE and the other HAVING is due to the way
the database is organized internally. If the batch
table has a number of students attribute, then the
second example would also yield a WHERE clause.
This is an inherent limitation of the NLIDB ap-
proach, not related to the features, classifier or the
overall approach used.

Contextual conflicts were less in the Restaurant
and the Geoquery domains when compared to the
Academic domain, as they consisted of only SE-
LECT and WHERE clause attributes. Errors in these
domains were mainly token based errors.

7 Conclusion and Future Work

In this paper, we investigate a CRF model to clas-
sify attributes present in a NL query into different
SQL clauses in a SQL query. We believe that this
is the core part of SQL query formation. For ex-
plicit attribute classification, our system achieved
overall F-measures of 83.73%, 93.10%, 91.69% in
Academic, Restaurant and Geoquery domains re-
spectively. We also achieved accuracies of 64%,
75% and 71% in forming SQL queries in Aca-
demic, Restaurant and Geoquery domains respec-
tively. The main contributions of this paper are:

e We show that within a sentence, attributes
can be used to build a SQL query. For this,
the local context of an attribute can be help-
ful to identify its clause in the SQL query.

504

e We primarily focus on attribute classification
as they are the building blocks of the SQL
query. We then use an existing system to
complete the SQL formation. We achieved
promising results in forming SQL queries us-
ing a novel approach.

e The work presents a significant study on SQL
clauses like GROUP BY and HAVING by man-
ually creating a new dataset. To the best of
our knowledge, benchmark datasets do not
cover these SQL clauses as good as they cover
SQL clauses like SELECT and WHERE.

e Experiments in cross domain datasets suggest
that the proposed feature set learns a strong
generalization for classifying the attributes in
the NL query. To an extent, this certainly ad-
dresses the disadvantage of domain indepen-
dency in NLIDB systems. Another advantage
of learning the context of an attribute is that,
it can be useful in classifying an unseen at-
tribute within the same domain.

Finally, we claim that attributes are an important
part of a user query to a NLIDB system. Exploring
patterns on how these attributes are used by a user
in a NL query can be useful to form a SQL query.
The proposed approach may break down with NL
queries having less explicit attributes, where the
NL query may require deeper semantic processing.
It would be interesting if we can combine our ap-
proach with existing parsing based approaches. In
our future work, we will further improve the ex-
plicit attribute classification, incorporate semantic
features to improve SQL query formation and han-
dle nested SQL queries.
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