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Abstract

In this work, we present a new task
for testing compositional distributional se-
mantic models. Recently, there has been
a spate of research into how distributional
representations of individual words can
be combined to represent the meaning of
phrases. Vecchi et al. (2011) have shown
that some compositional models, includ-
ing the additive and multiplicative mod-
els of Mitchell and Lapata (2008; 2010)
and the linear map-based model of Baroni
and Zamparelli (2010), can be applied to
detect semantically anomalous adjective—
noun combinations. We extend their ex-
periments and apply these models to the
combinations extracted from texts written
by learners of English.

Our work contributes to the field of com-
positional distributional semantics by in-
troducing a new test paradigm for seman-
tic models and shows how these models
can be used for error detection in language
learners’ content word combinations.

1 Introduction

Vector-based (distributional) models are widely
used for representing the meaning of single words.
They rely on the assumption that word meaning
can be learned from the linguistic environment
and can be approximated by a word’s distribution
across contexts. Words are represented as vectors
in a high-dimensional space, with vector dimen-
sions encoding word co-occurrence with contex-
tual elements — other words within a local win-
dow, words linked by specific dependencies to the
target word, and so forth. Distributional models
provide a clear basis for interpreting word mean-
ing, as well as a simple means for measuring se-
mantic similarity. These properties have been ex-
ploited in many NLP tasks, including automatic
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thesaurus extraction (Grefenstette, 1994), word
sense induction (Schiitze, 1998) and disambigua-
tion (McCarthy et al., 2004), collocation extrac-
tion (Schone and Jurafsky, 2001) and others.

In contrast to single words, the distribution of
phrases cannot be used as a reliable approxima-
tion of their meaning, as phrase vectors are much
sparser. Irrespective of the size of the corpus con-
sidered, some content word combinations will re-
main unattested as a consequence of their Zipf-like
distributions. For example, Vecchi et al. (2011)
have shown that both semantically acceptable and
semantically deviant word combinations will be
absent from large English corpora. A promising
alternative is to use compositional models which
combine distributional vectors for the component
words in some way, for example, using a di-
rect vector combination function (Kintsch, 2001;
Mitchell and Lapata, 2008; Erk and Padé, 2008;
Thater et al., 2010) or linear transformations on
vectors (Baroni and Zamparelli, 2010).

In spite of the spate of recent work in this area,
the question of how to combine word representa-
tions is far from answered. Compositional mod-
els can be assessed by their ability both to provide
a solid theoretical basis for meaning composition
and to represent composite meaning for relevant
practical tasks. Promising results have been shown
with such models on similarity detection and para-
phrase ranking (Mitchell and Lapata, 2008; Erk
and Pado, 2008; Thater et al., 2010), adjective—
noun vector prediction (Baroni and Zamparelli,
2010) and semantic anomaly detection (Vecchi et
al., 2011). Of these tasks, the latter appears to be
particularly challenging since it addresses the abil-
ity of compositional models to account for linguis-
tic productivity.

No corpus can effectively sample all possi-
ble content word combinations. On the other
hand, some corpus-attested word combinations
may appear semantically deviant when considered
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out of context (for example, when they are used
metaphorically). Vecchi et al. (2011) have focused
on unattested adjective—noun (AN) combinations
and noted that if a combination does not occur in a
corpus, it may be due to various reasons including
data sparsity as well as nonsensicality. The task of
distinguishing between the two cases is challeng-
ing. Vecchi et al. use the following examples:

(1) a. blue rose
b. residential steak

Whereas both may well be unattested in a cor-
pus, the concept of blue rose is perfectly conceiv-
able while that of residential steak is nonsensical
and only interpretable in specifically-constructed
discourse contexts. Vecchi et al. argue that there
should be a detectable difference between the
model-generated representations for the semanti-
cally deviant combinations and those for the ac-
ceptable ones, and assess compositional models
by their ability to capture this difference. Vecchi
et al. have created a set of corpus-unattested AN
combinations, annotated them as semantically ac-
ceptable or deviant, and applied the additive (add)
and multiplicative (mult) models of Mitchell and
Lapata (2008) and adjective-specific linear maps
(alm) of Baroni and Zamparelli (2010).

Given that promising results have been obtained
in their experiments, we propose that a useful ex-
tension of this task is to test the compositional
models on errors in content word combinations ex-
tracted from texts written by learners of English.
This task provides a natural setting for testing se-
mantic models on genuine examples and is a po-
tential practical application for such models.

Language learners’ errors are diverse, but many
of them can naturally be explained in terms of non-
productive, semantically anomalous combination
of content words (Leacock et al., 2010). Learn-
ers may lack robust intuitions about words’ selec-
tional preferences and subtle differences in mean-
ing, so they may confuse near-synonyms, overuse
words with broad meaning, and otherwise choose
words inappropriately. Consider the following ex-
amples extracted from our data:

(2) a. *big importance vs great importance
b. *economical crisis vs economic crisis
c. *deep regards vs kind regards
d. best moment vs best time

These examples illustrate that learner errors can
often be explained by confusions stemming from
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similar meaning (2a) or form (2b). When a word
combination appears to be nonsensical as in 2c,
the words chosen might still be related to the ap-
propriate ones in the learner’s mental lexicon. We
recognise that although error detection in learn-
ers’ content word combinations is a natural exten-
sion to semantic anomaly detection, it also poses
additional difficulties that semantic models might
not be able to deal with. For example, some erro-
neous word combinations may not be completely
devoid of compositional meaning, while violating
language conventions. However, semantic models
might still be able to capture some of these con-
ventions. Another challenge is that some expres-
sions cannot be unambiguously classified as either
correct or incorrect, as their interpretation depends
on the context of use: best moment (2d) is appro-
priate when used to denote a short period of time,
but it is often incorrectly used by learners instead
of best time.

To make our work comparable with previous
work on semantic anomaly, we investigate AN
combinations extracted from texts written by non-
native speakers of English, and apply the add, mult
and alm models of semantic composition. The
main contributions of this work are to show that
error detection in content word combinations pro-
vides a natural testbed and useful application for
the compositional distributional models, and that
the results obtained on this task provide a more
natural estimate of the models’ performance than
ones based on artificially constructed examples. If
the compositional distributional models can distin-
guish between correct and incorrect content word
combinations, these models can then be used for
writing or pedagogical assistance. To the best of
our knowledge, this is the first attempt to handle
learner errors in the choice of content words using
compositional distributional semantics.

Plan of the paper. We overview related work
on error detection and discuss the three models
of semantic composition in Section 2. Section 3
presents the data and experimental setup. We dis-
cuss the results of our experiments in Section 4
and conclude in Section 5.

2 Related Work

2.1 Error Detection in Content Words

Research on error detection has mostly been con-
cerned with function words, such as determiners
and prepositions (Leacock et al., 2010; Dale et al.,



2012). Such errors are more frequent, but they are
also more systematic which makes them easier to
detect. Function words constitute a closed class,
so the set of possible corrections is also limited.
By comparison, errors in content word combina-
tions pose a bigger challenge. Since content words
primarily express meaning rather than encode syn-
tax, detection and correction of such errors depend
on a system’s ability, in the limit, to recognise the
communicative intent of the writer. Moreover, the
set of possible corrections is much larger than for
function words.

Previous work has either focused on correc-
tion alone assuming that errors are already de-
tected (Liu et al., 2009; Dahlmeier and Ng, 2011),
or has reformulated the task as writing improve-
ment (Shei and Pain, 2000; Wible et al., 2003;
Chang et al., 2008; Futagi et al., 2008; Park et al.,
2008; Yi et al., 2008). In the former case error de-
tection, which is a difficult task in itself, is not ad-
dressed, while in the latter case it is integrated into
that of suggesting alternatives according to some
metric (for example, frequency or mutual informa-
tion). In some cases, a database of typical errors in
word combinations is collected from learner texts
and suggestions are only made for these error-
prone combinations. Otherwise suggestions will
be made for many acceptable phrases.

In this work, we treat error detection in the
choice of content words as an independent task
and assess the ability of compositional distribu-
tional models to discriminate incorrect from cor-
rect AN combinations — a frequent source of error
in learner texts.

2.2 Composition by Component-wise
Operations

In the additive and multiplicative compositional
models of Mitchell and Lapata (2008; 2010), the
components of the composite vector are obtained
by component-wise operations applied to the word
vectors. If ¢ is a word combination vector and a
and b are word vectors, then ¢’s i-th component is
the sum of the i-th components of a and b for the
add model:

¢ =a;+ b ey

and the product of the corresponding compo-
nents for the mult model:

2

C; = ay bl
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An advantage of using these models is that they
provide a clear and simple interpretation of vector
composition, requiring no training or tuning. They
have also been shown to be promising models of
composition in a number of NLP tasks, including
semantic anomaly detection (Vecchi et al., 2011).
However, the principal weakness of these models
is that they use commutative operations, and there-
fore fail to represent the difference in the gram-
matical function of the component words, their or-
der, and “headedness”. For example, these mod-
els would produce the same composite vectors for
component vector and vector component.

In addition, the add model does not take “in-
compatibility” of constituent vectors along indi-
vidual dimensions into account. If one vector has
a high value in its ¢-th dimension while another
vector has 0, the composed vector will receive the
high value from the first input vector, even though,
intuitively, this dimension should get 0 or near-0
value. This problem does not arise with the mult
model. On the other hand, the mult model is heav-
ily biased towards dimensions with high values in
both input vectors (Baroni et al., 2012).

2.3 Distributional Functions and Linear
Maps

The adjective-specific linear maps of Baroni and
Zamparelli (2010) take the grammatical functions
of the words within a combination into account.
Focusing on AN combinations, they try to model
the fact that adjectives modify nouns and the re-
sulting combination is nominal. They note that the
meaning of nouns can be represented with their
distributional vectors, but the meaning of attribu-
tive adjectives cannot be fully captured by their
distribution alone: for example, new in new friend
is not the same as new in new shoes. The meaning
of the adjective new is defined through its appli-
cation to the denotations of the nouns. Therefore,
Baroni and Zamparelli (2010) suggest treating ad-
jectives as distributional functions that map be-
tween semantic vectors representing nouns to ones
representing AN combinations.

Within this approach, adjectives are represented
with weight matrices. The composition is defined
by matrix-by-vector multiplication as follows:

f(noun) =4.s F xa=b (3)

where F is the matrix representing an adjec-
tive and encoding function f, which maps the input



noun vector a to the output AN vector b. The 7j-th
cell of the matrix contains the weight determining
how much the component corresponding to the j-
th context element in the noun vector contributes
to the value assigned to the i-th context element in
the AN vector (Baroni et al., 2012). These weights
are estimated separately for each adjective from
all corpus-observed noun—AN vector pairs using
(multivariate) partial least squares regression.

3 Experimental Setup
3.1 Test Data

We have extracted a set of AN combinations from
the publicly available CLC-FCE dataset (Yan-
nakoudakis et al., 2011), a subset of the Cam-
bridge Learner Corpus (CLC)," which is a large
corpus of texts produced by English language
learners sitting Cambridge Assessment’s examina-
tions.?

These texts have been manually error-
coded (Nicholls, 2003). Using the error an-
notation, we have divided extracted ANs into two
subsets — correctly used ANs and those that are
annotated with error codes due to inappropriate
choice of an adjective or/and noun.> For the
ANss that are used correctly in some contexts and
incorrectly in others we use the most frequent
annotation from the data.

Our test set contains 4681 correct and 530 in-
correct combinations. In contrast to Vecchi et
al. (2011), who have used a limited set of con-
stituent adjectives and nouns and an approxi-
mately equal number of semantically acceptable
and deviant combinations, our test set iS more
skewed towards correct combinations and consists
of a wider range of constituent words. It also in-
cludes ANs occurring in the BNC* — 3294 of the
correct test ANs and 256 of the incorrect ones are
corpus-attested. The set of corpus-attested ANs
annotated as incorrect in our data includes low-
frequency combinations from the BNC, as well as
combinations whose error-annotation depends on
context. We believe that this test set reflects prac-
tical applications of semantic anomaly detection
more closely.’

"http://www.cup.cam.ac.uk/gb/elt/catalogue/subject/custom/

item3646603/Cambridge-International-Corpus-Cambridge-
Learner-Corpus/
“http://www.cambridgeenglish.org
3 .
The corresponding error codes are RJ and RN.
*http://www.natcorp.ox.ac.uk/
5The examples extracted for our experiments are publicly
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3.2 Semantic Space Construction

In constructing the semantic space we follow the
procedure outlined in Vecchi er al. (2011). We
populate the semantic space with a large number
of distributional vectors for the rarget elements
— constituent nouns and adjectives from the test
ANs, and the most frequent nouns and adjectives
from a corpus of English as well as AN combina-
tions of these words. To estimate the frequency
rankings, we use a concatenation of two well-
formed English corpora — the 100M word BNC
and the Web-derived 2B word ukWaC corpus.®

The semantic space is represented by a matrix
encoding word co-occurrences, with the rows rep-
resenting the target elements and the columns rep-
resenting a set of 10K context words consisting
of 6,590 nouns, 1,550 adjectives and 1,860 verbs
most frequent in the combined corpus. The 7j-
th cell of the original matrix contains a sentence-
internal co-occurrence count of the i-th target
element with the j-th context word. The raw
sentence-internal co-occurrence counts from the
original matrix have been transformed into Local
Mutual Information scores (Baroni and Zampar-
elli, 2010; Evert, 2005).

An interesting research question is how much
data are needed to obtain reliable word co-
occurrence counts. We estimate the word co-
occurrence statistics using the BNC only, and
leave it for future research to explore the impact of
estimating them from larger corpora, for example,
the ukWaC or the concatenated corpus mentioned
above. We lemmatise, tag and parse the data with
the RASP system (Briscoe et al., 2006; Andersen
et al., 2008), and extract all statistics at the lemma
level.

The target elements are selected as follows: we
first select the 4K adjectives and 8K nouns which
are most frequent in the concatenated corpus. In
each case, we exclude the top 50 most frequent
words since those may have too general meanings.

Next, we extract the constituent adjectives and
nouns from our test data and populate the semantic
space with the words not yet contained in it. As a
result, our semantic space contains 8,364 nouns.

Since we aim at investigating AN behaviour in
a highly-populated semantic space, we add more
AN combinations to that. We select 218 very fre-
quent adjectives (occurring more than 100K but

available at http://www.cl.cam.ac.uk/~ek358/.
Shttp://wacky.sslmit.unibo.it/



less than 740K times) and merge them with the
adjectives from the test ANs. We generate all
possible AN combinations by crossing this com-
bined set of adjectives and the set of 8,364 nouns.
This results in a set of ANs of which 1,6M com-
binations are corpus-attested. From these we ran-
domly choose 62,205 ANs that occur more than
100 times in the corpus. As a result, we popu-
late our semantic space with ANs with the num-
ber of unique corpus-attested combinations per ad-
jective ranging from 1 to 1,226 and being 84.52
on average. Since we apply our approach to real
data, we cannot avoid having a different number
of training examples for different adjectives. It is
worth exploring how many training examples are
needed for a single adjective, since some highly
frequent adjectives may have more training exam-
ples in the data, while some adjectives may require
more training examples than others due to poly-
semy or lack of strong selectional preferences.

Finally, we check our test set against the com-
bined corpus and add 1,131 test ANs which are
corpus-attested but not yet contained in the seman-
tic space. Our final semantic space consists of
8,364 nouns, 4,353 adjectives and 63,336 corpus-
attested ANs.

We perform all operations on vectors in the full
semantic space, using a 76,053 x 10K matrix. We
leave it for future research to perform dimension-
ality reduction (for example, using Singular Value
Decomposition) and to compare the results with
the ones reported here.

3.3 Composition Methods

For the add and mult models, the AN vectors are
obtained by component-wise addition and mul-
tiplication without normalisation. For the alm
model, the weight coefficients are estimated with
multivariate partial least squares regression using
the R pls package (Mevik and Wehrens, 2007),
using the leave-one-out training regime. This
model is computationally expensive since a sep-
arate weight matrix must be learned for each ad-
jective and since we use the non-reduced semantic
space. Therefore, for the experiments presented
here we limit the number of test adjectives to 38.
The selected adjectives are, on the one hand, fre-
quently misused by language learners, and, on the
other, have a manageable number of training ex-
amples. The reduced set of test ANs consists of
347 combinations.
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The number of latent variables used by the train-
ing algorithm depends on the number of avail-
able noun—AN training pairs. We have gradually
changed this number from 3 to 20 depending on
the adjective and the number of available train-
ing pairs with the aim of keeping the independent-
variable-to-training-item ratio stable. However,
we have not optimised this number and leave it for
future research.

3.4 Measures of Semantic Anomaly

Once the composite vectors are obtained, the next
question is how to distinguish between the vectors
for correct and anomalous combinations. Vecchi
et al. (2011) propose three simple measures for
distinguishing between the two sets of vectors:

1. Vector Length (VLen): they hypothesise
that vectors for anomalous ANs are shorter
than those for acceptable ones. Since the
distributional vectors encode word occur-
rence, words that do not “match” semanti-
cally should have their co-occurrence counts
distributed differently along the dimensions,
and their composition is expected to have
many near-0 values.

2. Cosine with the Noun Vector (CosN): they
hypothesise that in nonsensical ANs the
meaning of the input nouns is degraded and
their model-generated vectors are situated
further away from the original noun vectors.
For example, since a big dog is still a dog and
an *extensive dog is less clearly so, in the se-
mantic space the vector for big dog would be
closer to that of dog than the vector for *ex-
tensive dog to dog. Semantically deviant ANs
are expected to have lower cosine between
their vectors and the original noun vectors.

3. Density of the AN Neighbourhood (Dens):
it is hypothesised that deviant ANs will have
fewer close neighbours and be more “iso-
lated” in the semantic space. This is mea-
sured by the average cosine with the top 10
nearest neighbours, which is assumed to be
lower for anomalous ANs.

We hypothesise that some cues alternative to the
ones already proposed may also be effective:

1. Cosine with the Adjective Vector (CosA):
since both add and mult models are symmet-
ric and both input vectors contribute to the



Measure | all ‘attest ‘unattest ‘ ’Measure ‘ all ‘attest ‘unattest ‘
VLen 0.1992 [ 0.6226 | 0.1840 VLen 0.0033%) [ 0.1549 [ 0.0004)
CosN 0.0797 | 0.1538 | 0.00001() CosN 0.0017%) | 0.0182™) | 0.0083(*)
Dens 0.9792 | 0.3921 | 0.5589 Dens 0.3531 0.6656 | 0.2703
CosA 0.6867 | 0.3790 | 0.0026™) CosA 0.00002™) | 0.0144™ | 0.3352
RDens | 0.6915 | 0.7493 | 0.1414 RDens | 0.0002®) [ 0.0300%) | 0.0001(*)
Num 0.8756 | 0.5753 | 0.1050 Num 0.0001®) 0.0091™ | 0.0001™)
COver 0.6028 | 0.2126 | 0.1200 COver 0.00410) 0.0096™) | 0.7317

Table 1: p values for the add model

output combination equally, we also measure
the distance to the original adjective vector.

2. Ranked Density (RDens): we define close
proximity to the model-generated AN vec-
tor as the neighbourhood populated with vec-
tors for which the cosine to the AN vec-
tor is higher than 0.8. Since the num-
ber of close neighbours is different for dif-
ferent ANs, we measure ranked density as
SN | rank; distance;, where N is the num-
ber of neighbours.

3. Number of Neighbours within Close Prox-
imity (Num): the number of close neigh-
bours itself can be used as a measure.

4. Component Overlap (COver): we assume
that AN combinations, unless they are id-
iomatic, are similar to the constituent words
or combinations with the same constituents.
The models can be assessed by their abil-
ity to place the AN vector in the neighbour-
hood populated by similar words and combi-
nations. We measure this as the proportion
of nearest neighbours containing same con-
stituent words as in the tested ANs.

4 Results

We use the measures described above and com-
pute the difference between the mean values for
the correct and incorrect model-generated ANSs.
We apply the unpaired t-test, assuming a two-
tailed distribution, to assess the statistical signif-
icance of the difference between these values. In
Tables 1 to 3 we report p values estimating statis-
tical significance at the 0.05 level, and statistical
significance is marked with an asterisk (x).

We assume that there might be a difference be-
tween the corpus-attested and corpus-unattested
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Table 2: p values for the mult model

test ANs, with each of the subgroups being more
homogeneous than the entire test set. Our corpus-
unattested examples are more similar to the ANs
considered by Vecchi et al. (2011). We report the
results on the full set of test ANs, as well as on
each of the two subgroups separately.

Our goals are to:

e comparatively evaluate performance of the
three composition models;

e assess the appropriateness of the proposed
metrics;

e investigate models’ performance on the
corpus-attested and corpus-unattested combi-
nations.

4.1 Comparative Performance of the Models

Of the three composition models, the mult model
(Table 2) shows the best results overall.

The alm model (Table 3) shows statistically sig-
nificant difference between the model-generated
vectors for the correct and incorrect combina-
tions with the cosines and component overlap, but
it does not detect the difference on the corpus-
unattested subset with any of the metrics.

The add model (Table 1) shows statistically sig-
nificant differences only with the cosine measures
on the corpus-unattested subset. The poor perfor-
mance of this model may be due to its weaknesses
outlined in Section 2.2. Also, Baroni and Zampar-
elli (2010) note that normalisation may help im-
proving its performance.

4.2 Appropriateness of the Metrics

Cosines to the original input vectors show promis-
ing results with all three models. In contrast to the
results reported by Vecchi ef al. (2011), the den-
sity of the semantic neighbourhood does not dif-
fer significantly with any of the models, but since



Measure | all ‘ attest ‘ unattest ‘
VLen 0.6537 0.2840 [ 0.5557
CosN 0.00003™ | 0.0003™) | 0.1555
Dens 0.8160 0.4902 | 0.1799
CosA 0.0188) | 0.0070™) | 0.8440
RDens | 0.9106 0.6804 | 0.8588
Num 0.5959 0.9619 | 0.1402
COver | 0.00001™) | 0.0004) | 0.1484

Table 3: p values for the alm model

AN | bad intention *bad information
add | bad, information,
bad company, | other information,
bad image real information
mult | uncomplicated, | uncomplicated,
improbable, improbable,
suggestive humane
alm | intention, people,
main intention, | blind people,
real intention like-minded

Table 4: Top 3 neighbours for each model

many of the combinations tested in our experi-
ments are not genuinely anomalous, the fact that
they are situated in densely populated semantic
neighbourhoods is not surprising. Measures based
on close proximity neighbourhood — RDens and
Num - show statistical difference when applied to
the mult-generated vectors only.

With COver, the alm model, followed by the
mult model, produce sensible results. Table 4
shows the top 3 nearest neighbours found by the
models for the correct AN bad intention and the
incorrect *bad information. The latter is annotated
as incorrect since its meaning is quite vague and
a possible correction is inaccurate information.
Note that only the al/m model is able to discrim-
inate between the correct and the incorrect word
combinations suggesting sensible nearest neigh-
bours for bad intention and less sensible ones for
*bad information.

4.3 Attested vs Unattested Combinations

Our results show that the models perform differ-
ently on the two subsets and somewhat better on
corpus-attested ANs. However, the results also
confirm that appropriate models and metrics can
be found to distinguish between correct and incor-
rect ANS in both subsets.
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5 Conclusion

In this paper we have introduced a new task on
which compositional distributional semantic mod-
els can be tested. Our results support the hypoth-
esis that semantic models can be applied to detect
errors in the choice of content words by English
language learners. The original contribution of our
paper is to show how compositional and distribu-
tional semantics can be linked to error detection to
provide a solution to a practical task.

Our results suggest that with the metrics con-
sidered it is easier to detect the difference between
the model-generated vectors for the correct and
incorrect word combinations with the multiplica-
tive model. On the other hand, qualitative analysis
suggests that the adjective-specific linear maps of
Baroni and Zamparelli (2010) are superior, since
they place the model-generated vectors in seman-
tically sensible neighbourhoods.

We plan to investigate further whether the use of
a bigger corpus for collecting word co-occurrence
statistics provides more reliable counts, and
whether dimensionality reduction and/or normal-
isation of the models improves the results. We
also plan to apply the alm model to a larger num-
ber of examples. Some other models such as
the ones by Erk and Padé (2008) and Thater et
al. (2010) which take selectional preferences and
context into account may yield better results on
this task, and we plan to test this experimentally
in the future. Finally, since these models can dis-
criminate between correct and anomalous combi-
nations, the next step is to incorporate them into
an error detection classifier.
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