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Abstract

Incorporating distant information via manu-
ally selected skip chain templates has been
shown to be beneficial for the performance
of conditional random field models in con-
trast to a simple linear chain based structure
(Sutton and McCallum, 2007; Galley, 2006;
Liu et al., 2010). The set of properties to
be captured by a template is typically man-
ually chosen with respect to the application
domain.

In this paper, a search strategy to find mean-
ingful skip chains independent from the
application domain is proposed. From a
huge set of potentially beneficial templates,
some can be shown to have a positive im-
pact on the performance. The search for
a meaningful graphical structure demon-
strates the usefulness of the approach with
an increase of nearly 2 % F1 measure on a
publicly available data set (Klinger et al.,
2008).

1 Introduction

Many applications in the field of text segmenta-
tion, especially named entity recognition, have
been addressed with linear chain conditional ran-
dom fields. Using a linear chain of variables to
represent the labeling of text is straight forward,
as processing text in a sequential manner suggests
itself due to the way it is written and firstly per-
ceived.

While language suggests this linear structure
to represent written text, it does not necessarily
model all dependencies: Co-referencing a prior
entity is an example (while it could be seen as
higher order linearity typically pointing back but
not forward). Especially in non-scientific texts, in-
formation may as well be left out and filled in later
to keep a story exciting. Another example is the
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Figure 1: Distribution of the length of three entity
classes.

use of filler words as a trivial case where the mean-
ing of words can be determined by distant tokens.

In named entity recognition, typically linear
chain structures of conditional random fields are
used. The capabilities of a linear chain such struc-
ture may be limited in at least two cases: Firstly,
relations between distant tokens can have an im-
pact on their meaning. This is a motivation which
lead to the previous work presented in the follow-
ing Section 2. Secondly, long entity classes can-
not be captured as a whole, which is especially
interesting because a characteristic of named enti-
ties in biology and chemistry is their high length
with inter-dependencies between tokens of an en-
tity. The distribution of the length of terms in the
classes of gene names (BioCreative 2, Smith et al.
(2008)), IUPAC names (Klinger et al., 2008) and
person names, organizations and places (CoNLL
2005, Sang and De Meulder (2003)) is shown
in Figure 1. Gene names and especially IUPAC
names are much longer than entities like names,
organizations and places. This is the motivation
to investigate if a linear-chain structure can be
supported by other structures to capture this com-
plexity. The work presented in this paper aims
towards an automatic detection of beneficial struc-
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Figure 2: Example of a skip chain CRF structure
as used by Sutton and McCallum (2007) (as factor
graph depiction). Subsequent labels are connected
as well as tokens representing the same string.

tures. The IUPAC domain with its notable long en-
tities is used as an evaluation domain in this paper,
presuming that a pure linear chain structure has
specific difficulties here (using the training corpus
presented by Klinger et al. (2008)).

In the following, the challenge is approached
as a search for meaningful skip chain templates
(Sutton and McCallum, 2007).

2 Previous Work

The class of CRFs including skip chain edges (un-
rolled from skip chain templates) has been de-
scribed by Sutton and McCallum (2007) and Gal-
ley (2006) in a named entity recognition scenario.
In addition to the linear chain, a template is used
to measure the dependencies between same capi-
talized tokens. This is motivated by the assump-
tion that same words in a sentence or document
are likely to have the same label, despite their to-
ken distance. An example for such skip chain
CRF is shown in Figure 2. As stated by Sutton
and McCallum (2007), each pair of nodes can be
connected by a skip chain which the developer be-
lieves to be similar. They point out that the num-
ber of edges unrolled from a template may not be
too high as the runtime and memory consumption
increases prohibitively. Connecting only capital-
ized words allows to match most proper names
(which is an entity class of interest in their test
domain) while they are sparsely distributed.

The work by Liu et al. (2010) enhances that ap-
proach by different classes of variables (as special
keywords) to be connected. To adapt Sutton’s and
McCallum’s approach to gene and protein names,
they introduce three skip chain templates: Firstly,
connecting the main parts of gene names (referred
to as “keyword” in their work) defined by regu-
lar expressions, secondly connecting only similar
keywords, only differing to a certain extent, and

thirdly connecting typed dependencies like prepo-
sitional modifiers or noun compound modifiers.
On the BioCreative 2 NER data set (Smith et al.,
2008) they show an increase in F1 measure from
71.73 % with a linear chain to 73.14 % with the
best skip chain configuration for a strict evalua-
tion not using the allowed alternatives in the gold
data test set. Using the official evaluation with
alternatives, they show an increase from 83.29 %
to 84.67 % F1. They argue that the quality of the
skip chains is essential for the improvement of the
result compared to simple linear chain structures.

In contrast to previous work, this paper addresses
the question how to select meaningful skip edges
automatically from a set of possibilities. This
does not make the domain specific development
unnecessary (as the application of feature selec-
tion still needs the development of features for a
domain), but helps to find templates to improve
the results. It can select a specific subset of au-
tomatically generated clique templates. This task
can be understood as a combinatorial optimization
problem: Finding a factor graph with a structure
maximizing the performance of the model on a
test set.

Several approaches have been published about
optimizing the structure of Markov networks or
more specifically conditional random fields. They
can be divided into methods searching for such
structure with a measure to judge the quality of a
structure and filtering approaches to decide about
the quality of an edge. Beside those, regulariza-
tion is another way to find a good structure during
training.

The work by Schmidt et al. (2008) states to be
the first dealing with the structure learning task in
discrimatively trained, undirected graphical mod-
els. Similarly to Lee et al. (2006) (which is deal-
ing with general Markov networks), L1 regular-
ization is the incorporated method. While this
approach is very elegant due to the joint struc-
ture and parameter estimation, it has limitations
to deal with large, dynamically generated factor
graphs with a lot of features on each factor.

As long as the candidates for the optimal struc-
ture have a tractable size, a search in the space
of graph structures is feasible. This approach,
together with an approximation for the quality
measure of each graph is adopted by Parise and
Welling (2006). The advantage is that all depen-
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dencies in the graph are taken into account, the
disadvantage is the complexity of the performed
search.

A complementary and fast approach is to mea-
sure the quality of an edge with independence
tests, as described by Bromberg et al. (2009). The
main contribution in their work is to minimize
the needed independence tests to find the optimal
graph structure.

3 Methods

3.1 Problem Definition
The work described in Section 2 is focusing
on graph structures of limited size or on non-
conditional Markov graphs. In the following, the
problem of finding skip edges is discussed in de-
tail.

A graph structure G = (V,E) is defined via
vertexes V and edges E = V × V . Optimiz-
ing the structure corresponds to selecting a sub-
set of edges which leads to the maximal perfor-
mance. A factor graph (Kschischang et al., 2001)
is a bipartite graph G between variables and fac-
tors defining a probability distribution of a set of
output variables ~y conditioned on input variables
~x. Each factor Ψj computes the so-called score of
variables which are neighbors in the graph. It is
typically formulated as an exponential function of
the weighted sum of features:

Ψj(~x, ~y) = exp

(
m∑
i=0

λifi(~xj , ~yj)

)
.

A set of factor templates Θ = {θ1, . . . , θn} con-
sists of templates θk describing a set of tuples
{(~xk, ~yk)} on which factors are instantiated for
which the property pk(~xk, ~yk) holds and shares ~λk
and ~fk(·) between all instantiated factors on the
tuples. Kj is the number of parameters of the jth
template. The probability distribution on a factor
graph with templates Θ becomes

P (~y|~x) =
1

Z(~x)

∏
θj∈Θ

∏
(~xi,~yi)∈θj

exp

 Kj∑
k=1

λjkfjk(~xi, ~yi)

.
The task of finding meaningful skip chains corre-
sponds to finding a set of templates Θ̃ describ-
ing tuples (yu, yv, ~x) with a property p(xu, xv).

A linear chain template θlc with features ~glc(~x, j)

for all possible combinations of label variables
is assumed to be present in all configurations.
In the following, the set of templates to se-
lect from is defined by properties pk(xu, xv) :=

holds iff glc
k (~x, u) = 1 and glc

k (~x, v) = 1 with
k ∈ {1, . . . , |~glc|}. Each template holds param-
eters for features glc

k (~x, u) ∨ glc
k (~x, v).1 In other

words, a skip chain factor is added to connect
two labeling variables of two tokens if a specified
property holds (where we take every occurring
feature specified for the linear chain into account,
like bag-of-words, prefixes, suffixes of tokens as
well as several regular expressions, the full set is
given by Klinger et al. (2008)). Each of the skip
chain factors has the disjunction of the feature val-
ues in the linear chain of the connected tokens.

That definition of the templates to choose from
is only for simplicity throughout this paper. A
more general formulation does not limit the meth-
ods described, though a small set decreases run-
time. Especially dependency properties as de-
scribed by Liu et al. (2010) may be included.

An example of different skip chain factors to
choose from is shown in Figure 3. The red prop-
erty of matching [.*ine] seems to be a reason-
able skip chain as it connects similar chemical
names such that their class can influence the class
of the others. The green matching stop words is an
example how the size of the factor graph can pro-
hibitively increase what should be avoided. The
orange matching of [,] could be able to capture
enumerations because features which take preced-
ing and succeeding tokens into account may have
some importance.

3.2 Best First Search

The most complete approach to find a suitable
structure of the graph is a search through the
space of all combinations of the skip chain tem-
plates. As the complexity is prohibitive even
for a small set of templates, the dependencies
between possible templates are proposed to be
measured via best-first-search (BFS, Russell and
Norvig (2003)) on all templates remaining from
a heuristic filtering step together with the linear
chain factors. Best-first-search is chosen as an ex-
emplary search strategy as it follows only the best

1This definition of features on the skip chain factors has
been chosen to capture not only shared properties but to mea-
sure characteristics of only one participant as well.
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Figure 3: Different skip chain factor templates to choose additionally to the linear chain (example
shortened from the abstract by Hasan and Srivastava (1992)).

alternative which limits the performance evalua-
tions needed.

Starting with the linear chain, each template is
added respectively, the model is trained and eval-
uated on a hold-out set. The best template is kept
and the prior step is repeated. This process ends
if none of the templates can improve the result.

Here, the same inference algorithm is used as
for the final model: Loopy belief propagation with
tree-based reparameterization for approximate in-
ference (Wainwright et al., 2001). During the
steps of BFS, the weights for each template to be
kept can be adopted for the next search iteration
retraining all parameters. Thereby retraining the
model can be performed in a much smaller num-
ber of iterations than training from scratch.

4 Experiments and Evaluation

In the following, the feasibility of the basic idea
of the proposed approach is evaluated on the IU-
PAC corpus (Klinger et al. (2008)2, split into 90 %
training and 10 % validation randomly). All tem-
plates which occur at least 10 times in the train-
ing data were taken into account. These are
5096 templates (from 16710 altogether). Training
with and without the skip factors (via maximizing
logP (~y|~x) with a Gaussian regularization) leads
to a ranked list of templates which forms the first
layer of the BFS.

This leads to the results depicted in Figure 4
showing the impact of each template. The infer-
ence algorithm did not converge for 474 templates.
Most of the templates have no or negative impact

2Statistics of this data set can be found in the original
publication and are not cited here due to page limitation.

on the result (3656 templates); 966 have positive
impact. The top 10 templates are depicted in Ta-
ble 1, together with their contribution. The most
important template is to add a skip chain between
tokens “alpha” with nearly 2 % improvement in
comparison to the linear chain only. This term
occurs 319 times in the training data and is fre-
quently part of IUPAC names (115) as well as out-
side of them (204). In a local, linear chain-based
setting a feature based on this token can hardly
contribute to a decision, but in a distant labeling
setting it can. The second best feature to built
skip chain factors is “PREFIX2=tr”: It occurs 698
times, 284 times in IUPAC names and 414 times
outside of them.

Most of the features forming the basis for tem-
plates with a positive impact are words occurring
close to or in chemical names or are typical chem-
ical pre- or suffixes. These features measure am-
biguous characteristics of tokens where the prob-
ability of correctly identifying the surrounding
terms can be increased by measuring the distant
information of them. The context is taken into
account by templates based on features of offset
conjunction (like W=alpha@2 measuring the to-
ken alpha two tokens left of the skip chain con-
nection). The reason is presumably that their com-
mon occurrence in a sentence is not labeled differ-
ently.

For instance, the term alpha is occurring
in alpha-ribofuranosyl (which is labeled
as IUPAC) and in alpha1-adrenergic (not
labeled as IUPAC). In both examples, alpha
is occurring multiple times in the text, but not
with different labels. Similarly, tr can be a
prefix of tributylstannyl (as IUPAC) or
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Figure 4: Impact for each proposed templates measured empirically.

treatment (as non-IUPAC), but it is not prob-
able that different labels occur in the same text.
The feature W=group@1 is a slightly different
case as it does not occur as part of an IUPAC name
itself but can occur in the context of chemical
names which are difficult to distinguish between
IUPAC and not. As an example, formamidino
group would not be labeled as IUPAC, but
p-methoxybenyl group is labeled as such.
Annotation is quite difficult here, but it is likely
that the annotator produced consistent data in one
text instance.

Notable is the occurrence of very strict fea-
tures like SUFFIX2=31—it is surprising that ob-
viously some numbers are occurring frequently in
IUPAC names and outside of them such that a dif-
ferentiation with distant information is beneficial.

This discussion illustrates that the found tem-
plates are meaningful in the context of the IUPAC
example taken for evaluation here. The impact
of the automated approach for the first layer of a
search shows similar or better possible improve-
ments than the manual approaches by Sutton and
McCallum (2007, cf. Table 1.2) (0.4 %) or Liu et
al. (2010) (1.2 % on BioCreative II data) (this is
remarkable although they tested on different data
sets).

5 Conclusion and Future Work

This paper presented the principle idea of build-
ing skip chain edges to capture distant informa-
tion for named entity recognition in a similar man-
ner as features to represent tokens are generated.
Instead of hand-crafting domain- and problem-
specific features, they are generated from the train-

ing data; analogously, potentially beneficial skip
chain templates are taken into account. It has been
shown that this approach is feasible and leads to
an improved performance on an example domain.

To be able to apply this methodology in prac-
tice, the search complexity for meaningful struc-
tures needs to be reduced. Nevertheless, the anal-
ysis shows that the idea of automatically select-
ing distant tokens as a basis for additional factors
makes sense. The presented analysis can help in
further work and be used as a training set for novel
template filtering methods.

Future work includes the analysis how different
templates work together for named entity recogni-
tion: What is the relation between the linear chain
and a skip chain? What characteristics does the
linear chain have where skip chains help?

Additionally due to the high complexity of em-
pirically testing all templates, the interaction be-
tween different skip chains has not been analyzed.

Another interesting topic is to investigate the
impact of specific factors on different evaluation
measures. It can be assumed that some support
accuracy, whereas some have a special impact on
precision or recall.
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