
Proceedings of Recent Advances in Natural Language Processing, pages 70–76,
Hissar, Bulgaria, 12-14 September 2011.

An Open Source Punjabi Resource Grammar

Shafqat Mumtaz Virk
University of Gothenburg, Sweden

virk@chalmers.se

Muhammad Humayoun
University of Savoie, France
humayoun@gmail.com

Aarne Ranta
University of Gothenburg, Sweden

aarne@chalmers.se

Abstract

We describe an open source computational
grammar for Punjabi; a resource-poor
language. The grammar is developed in GF
(Grammatical framework), which is a tool for
multilingual grammar formalism. First, we
explore different syntactic features of Punjabi
and then we implement them in accordance
with GF grammar requirements, to make
Punjabi the 17th language in the GF resource
grammar library.

1. Introduction

Grammatical Framework (Ranta, 2004) is a
special-purpose programming language for
multilingual grammar applications. It can be
used to write multilingual resource or
application grammars (two types of grammars
in GF).

Multilingualism of the GF grammars is based
on the principle that same grammatical
categories (e.g. noun phrases and verb phrases)
and syntax rules (e.g. predication) can appear in
different languages (Ranta, 2009a). A collection
of all such categories and rules, which are
independent of any language, makes the abstract
syntax of GF grammars (every GF grammar has
two levels: abstract and concrete). More
precisely, the abstract syntax defines semantic
conditions to form abstract syntax trees. For
example the rule that a common noun can be
modified by an adjective is independent of any
language and hence is defined in the abstract
syntax, e.g.:

Very big blue house
fun1 AdjCN : AP → CN → CN ;

However, the way this rule is implemented
may vary from one language to another; as each
language may have different word order and/or

1In GF code, cat and fun belong to abstract syntax. On
the contrary, lincat and lin belong to concrete syntax.

agreement rules. For this purpose, we have the
concrete syntax, which is a set of linguistic
objects (strings, inflection tables, records)
providing rendering and parsing. We may have
multiple parallel concrete syntaxes for one
abstract syntax, which makes the GF grammars
multilingual. Also, as each concrete syntax is
independent from others, it becomes possible to
model the rules accordingly (i.e. word order,
word forms and agreement features are chosen
according to language requirements).

Current state-of-the-art machine translation
systems such as Systran, Google Translate, etc.
provide huge coverage but sacrifice precision
and accuracy of translations. On the contrary,
domain-specific or controlled multilingual
grammar based translation systems can provide
a higher translation quality, on the expense of
limited coverage. In GF, such controlled
grammars are called application grammars.

Writing application grammars from scratch
can be very expensive in terms of time, effort,
expertise and money. GF provides a library
called the GF resource library that can ease this
task. It is a collection of linguistic oriented but
general-purpose resource grammars, which try
to cover the general aspects of different
languages (Ranta, 2009a).

Instead of writing application grammars from
scratch for different domains, one may use
resource grammars as libraries (Ranta, 2009b)2.
This method enables to create the application
grammar much faster with a very limited
linguistic knowledge.

The number of languages covered by GF
resource library is growing (17 including
Punjabi). Previously, GF and/or its libraries
have been used to develop a number of
multilingual as well as monolingual domain-

2This idea is influenced by programming language API
tradition in which, a standard general-purpose library is
supported by the language. It is then used by programmers
to write specific applications.

70

specific application grammars (see GF
homepage 3 for details on these application
grammars).

In this paper, we describe the resource
grammar development for Punjabi. Punjabi is an
Indo-Aryan language widely spoken in Punjab
regions of Pakistan and India. Punjabi is among
one of the morphologically rich languages
(others include Urdu, Hindi, Finish, etc) with
SOV word order, partial ergative behavior, and
verb compounding. In Pakistan it is written in
Shahmukhi, and in India, it is written in
Gurmukhi script (Humayoun, 2010). Language
resources for Punjabi are very limited
(especially for the one spoken in Pakistan).
With the best of our knowledge this work is the
first attempt of implementing a computational
Punjabi grammar as open-source software,
covering a fair enough part of Punjabi
morphology and syntax.

2. Morphology

Every grammar in GF resource grammar library
has a test lexicon, which is built through the
lexical functions called the lexical paradigms;
see (Bringert et el, 2011) for synopsis. These
paradigms take lemma of a word and make
finite inflection tables, containing different
forms of the word, according to the lexical rules
of that particular language. A suite of Punjabi
resources including morphology and a big
lexicon are reported by (Humayoun and Ranta,
2010). With minor required adjustments, we
have reused morphology and a subset of that
lexicon, as a test lexicon of about 450 words for
our grammar implementation. However, the
morphological details are beyond the scope of
this paper and we refer to (Humayoun and
Ranta, 2010) for more details on Punjabi
morphology.

3. Syntax

While morphology is about types and formation
of individual words (lexical categories), it is the
syntax, which decides how these words are
grouped together to make well-formed
sentences. For this purpose, individual words,
which belong to different lexical categories, are

3 http://www.grammaticalframework.org/

converted into richer syntactic categories, i.e.
noun phrases (NP), verb phrases (VP), and
adjectival phrases (AP), etc. With this up-cast
the linguistic features such as word-forms,
number & gender information, and agreements,
etc, travel from individual words to the richer
categories.

In this section, we explain this conversion
from lexical to syntactic categories and
afterwards, we demonstrate how to glue the
individual pieces to make clauses. These are
then can be used to make well-formed sentences
in Punjabi. The following subsections explain
various types of phrases.

3.1. Noun Phrases

A noun phrase (NP) is a single word or a group
of words that does not have a subject and a
predicate of its own, and does the work of a
noun (Verma, 1974). Now we show the
structure of noun phrase in our implementation,
followed by the description of its different parts.

Structure: In GF, we represent the NP as a
record with three fields, labeled as: ‘s’ , ‘a’ and
‘isPron’:

 NP: Type={s : NPCase => Str ;
 a : Agr ;
 isPron : Bool } ;

The label ‘s’ is an inflection table from
NPCase to string (NPCase => Str). NPCase
has two constructs (NPC Case, and NPErg) as
shown below:

NPCase = NPC Case | NPErg ;
Case = Dir | Obl | Voc | Abl ;

The construct (NPC Case) stores the lexical
cases (i.e. Direct, Oblique, Vocative and
Ablative) of a noun4. As an example consider
the following table for the noun “boy”:

s .NPC Dir => mʊnɖɑ: ���
�
�

s .NPC Obl => mʊnɖɛ ���
�
�

s .NPC Voc => mʊnɖi:a ����
�
�

s .NPC Abl => mʊnɖɛo:ɳ �	���
�
�

Other than storing the lexical cases of a noun
as shown in the above table, we also construct
the ergative case (i.e. NPErg in the code above).
We do it at the noun phrase level for the

4Punjabi nouns have four lexical cases.

71

following reason: In Urdu, the case markers that
follow the nouns in the form of post-positions
cannot be handled at lexical level through
morphological suffixes and thus need to be
handled at syntax level (Butt and King, 2002)5.
It also applies to Punjabi. So we construct the
ergative case of a noun by attaching ergative
case marker 'nɛ' to the oblique case of the noun
at NP level. For instance, the ergative form of
our running example “boy” is:

s.NPErg => mʊnɖɛ nɛ_Erg ���
�
� a��

It is used for the subjects of perfective
transitive verbs (see Section 3.5 for more
details).

The label ‘a’ represents the agreement feature
(Agr) and stores information about gender,
number and person that will be used for
agreement with other constituents. It is defined
as follows:

Agr = Ag Gender Number Person ;

In Punjabi, the gender can be masculine or
feminine; number can be singular and plural;
and person can be first, second casual, second
with respect and third person near & far. These
are defined as shown below:

Gender = Masc | Fem ;
Number = Sg | Pl ;
Person = Pers1 | Pers2_Casual |
 Pers2_Respect |

Pers3_Near | Pers3_Far

 Finally, the label ‘isPron’ is a Boolean
parameter, which shows whether NP is
constructed from a pronoun. This information is
important when dealing with the exceptions in
ergative behavior of verbs for the first and
second person pronouns in Punjabi. For
example consider the following constructions:

mi:ɳ_I ro:ʈi:_bread kʰadi:_ate

 �����a���	a
��

I ate bread.
tu:ɳ_you ru:ʈi:_bread kʰad̪i:_ate

 �����a���	a
�
�

You ate bread.
au:nɛ:_He ru:ʈi:_bread kʰadi:_ate

 ���������a���	
He ate bread.

5This also explains the reason for NPErg to be separate
from “NPC Case”.

mʊnɖɛ:_boy nɛ:_ErgMarker ru:ʈi:_bread kʰadi:_ate

 ���
�
� �� a���	
a��
�

The boy ate bread.

From the above examples, we can see that,
when we have the first or second person
pronoun as subject, the ergative case marker is
not used (first two examples). On the contrary,
it is used in all other cases. So for our running
example, i.e. the noun (boy, mʊnɖɑ:), the label
‘isPron’ is false.

Construction: First, the lexical category noun
(N) is converted to an intermediate category,
common noun (CN) through the UseN function.

fun UseN : N → CN ; -- mʊnɖɑ:, boy

CN is a syntactic category, which is used to
deal with the modifications of nouns by
adjectives, determiners, etc. Then, the common
noun is converted to the syntactic category,
noun phrase (NP). Three main types of noun
phrases are: (1) common nouns with
determiners, (2) proper names, and (3)
pronouns. We build these noun phrases through
different noun phrase construction functions
depending on the constituents of NP. As an
example consider (1). We define it with a
function DetCN given below:

Every boy, hər_every mʊnɖɑ: _boy
fun DetCN : Det → CN → NP ;

Here (Det) is a lexical category representing
determiners. The above given function takes the
determiner (Det) and the common noun (CN) as
parameters and builds the NP, by combining
appropriate forms of the determiner and the
common noun agreeing with each other. For
example if ‘every’ and ‘boy’ are the parameters
for the above given function the result will be a
NP: every boy, hər mʊnɖɑ:. Consider the
linearization of DetCN:

lin DetCN det cn = {
 s=\\c => detcn2NP det cn c det.n;
 a = agrP3 cn.gdet.n ;
 isPron = False } ;

As we know from the structure of NP (given
in the beginning of §3.1) ‘s’ represents the
inflection table used to store different forms of
NP built by the following line from the above
code:
s = \\c => detcn2NP det cn c det.n;

72

Notice that the operator (‘\\’) is used as
shorthand to represent different rows of the
inflection table ‘s’. An alternative but a verbose
code segment for the above line will be:

s = table {
NPC Dir=>detcn2NP det cn Dir det.n;
NPC Obl=>detcn2NP det cn Obl det.n;
NPC Voc=>detcn2NP det cn Voc det.n;
NPC Abl=>detcn2NP det cn Abl det.n}

Where the helper function detcn2NP is
defined as:

detcn2NP : Determiner → CN → NPCase
→ Number → Str =
\dt,cn,npc,n → case npc of {
 NPC c => dt.s ++ cn.s!n!c ;
 NPErg => dt.s++cn.s!n!Obl++"nɛ"};

Also notice that the selection operator (the
exclamation sign !) is used to select appropriate
forms from the inflection tables (i.e. cn.s!n!c,
which means the form of the common noun
with number ‘n’ and case ‘c’ from the inflection
table cn.s).

Other main types of noun phrases (2) and (3)
are constructed through the following functions.

fun UsePN : PN → NP ; Ali, əli:
fun UsePron : Pron → NP ; he, aeːh

This covers only three main types of noun
phrases, but there are other types of noun
phrases as well, i.e. adverbial post-modified NP,
adjectival modified common nouns etc. In order
to cover them we have one function for each
such construction. Few of these are given
below; for full details we refer to (Bringert et el,
2011).
Paris today, aj_today piːrəs_Paris
fun AdvNP : NP → Adv → NP ;

Big house, ʋəddɑː_big ɡʱər_house
fun AdjCN : AP → CN → CN ;

3.2. Verb Phrases

A verb phrase (VP), as a syntactic category, is
the most complex structure in our constructions.
It carries the main verb and auxiliaries (such as
adverb, object of the verb, type of the verb,
agreement information, etc), which are then
used in the construction of other categories
and/or clauses.

Structure: In GF, we represent a verb phrase as
a record, as shown below:

VPH : Type = {
s:VPHForm => {fin, inf : Str};
obj : {s : Str ; a : Agr} ;
subj: VType ;
comp: Agr =>Str;
ad : Str ;
embComp : Str} ;

The label ‘s’ represents an inflection table
which keeps a record with two string values, i.e.
{fin, inf : Str} for every value of
VPHForm, which is defined as shown below:

VPHForm =
 VPTense VPPTense Agr|VPInf|VPStem ;
VPPTense=
 PPres|VPPast|VPFutr|VPPerf;

The structure of VPHForm makes sure that we
preserve all inflectional forms of the verb. In it
we have three cases: (1) Inflectional forms
inflecting for tense (VPPTense) and number,
gender, person with Agr defined on page 3. (2)
The second constructor (VPInf) carries the
infinitive form. (3) On the contrary, VPStem
carries the root form. The reason for separating
these three cases is that they cannot occur at the
same time.

The label ‘inf’ stores the required form of
the verb in that corresponding tense, whereas
‘fin’ stores the copula (auxiliary verb).

The label ‘obj’ on the other hand, stores the
object of the verb and also the agreement
information of the object. The label ‘subj’
stores information about transitivity of the verb
with VType, which include: intransitive,
transitive or di-transitive:

VType = VIntrans|VTrans|VDiTrans ;

The label ‘comp’ stores the complement of
the verb. Notice that it also inflects in number,
gender and person (with Agr defined on page
3), whereas the label ‘ad’ stores the adverb.

Finally, ‘embComp’ stores the embedded
complement. It is used to deal with exceptions
in the word order of Punjabi when making a
clause. For instance, if a sentence or a question
sentence is a complement of the verb then it
takes a different position in the clause; i.e. it
comes at very end of the clause as shown in the
example with bold-face:
oo_she kehendi_say ai_Aux keh_that

main_I roti_bread khanda_eat waN_Aux

73

She says that I (masculine) eat
bread.

On the contrary, if an adverb is used as a
complement of verb then it comes before the
main verb, as shown in the following example:

oo_she kehendi_say ai_Aux keh_that oo_she
tez_briskly chaldi_walks ai_Aux
She says that she walks briskly

Construction: Lexical category verb (V) is
converted to syntactic category verb phrase (VP)
through different VP construction functions. The
simplest is:

fun UseV : V → VP ;
lin UseV v = predV v ;

The function predV converts the lexical
category V to the syntactic category VP:

predV : Verb → VPH = \verb -> {
s = \\vh => case vh of {
 VPTense VPPres (Ag g n p) => {
 fin =copula CPresent n p g;
 inf =verb.s!VF Imperf p n g} ;
 VPTense VPPast (Ag g n p) => {
 fin = [] ;
 inf =verb.s!VF Perf p n g};
 VPTense VPFutr (Ag g n p) => {
 fin = copula CFuture n p g ;
 inf = verb.s ! VF Subj p n g };
 VPTense VPPerf (Ag g n p) => {
 fin = [] ;
 inf = verb.s!Root ++ cka g n} ;
 VPStem => { fin = [] ;
 inf = verb.s ! Root };
 _ => {fin = [] ;
 inf = verb.s!Root}};
 obj = {s = [] ; a = defaultAgr} ;
 vType = VIntrans ; ad = [] ;
 embComp = [] ; comp = _ => []};

The lexical category V has three forms
(corresponding to perfective/imperfective
aspects and subjunctive mood). These forms are
then used to make four forms (VPPres,
VPPast, VPFutr, VPPerf in the above code) at
the VP level, which are used to cover different
combinations of tense, aspect and mood of
Punjabi at clause level.

As an example, consider the explanation of
the above code in bold-face. It builds a part of
the inflection table represented by ‘s’ for
VPPres and all possible combination of gender,
number and person (Ag g n p). As shown
above, the imperfective form of lexical category
V (VF Imperf p n g) is used to make present

tense at VP-level. The main verb is stored in the
field labeled as ‘inf’ and the corresponding
auxiliary verb (copula) is stored in the label
‘fin’.

All other parts of VP are initialized to default
or empty values in the above code. These parts
will be used to enrich the VP with other
constituents, e.g. adverb, complement etc. This
is done in other VP construction functions
including but not limited to:

Want to run, dʋɽna_run tʃahna_want
ComplVV : VV → VP → VP;

Sleep here, aiːt̪h eː_here sʋna_sleep

AdvVP : VP → Adv → VP;

3.3. Adjectival Phrases

At morphological level, Punjabi adjectives
inflect in number, gender and case (Humayoun
and Ranta, 2010). At syntax level, they agree
with the noun they modify using the agreement
information of the NP. Adjectival phrase (AP)
can be constructed simply from the lexical
category adjective (A) through the following
function:

PositA : A → AP ; (Warm, gərəm)

Or from other categories such as:

Warmer than I, miːreː_I to:ɳ_than gərəm_warm

ComparA : A → NP → AP ;

3.4. Adverbs and Closed Classes

The construction of Punjabi adverbs is very
simple because “they are normally unmarked
and don’t inflect” (Humayoun and Ranta, 2010).
We have different construction functions for
Adverbs and other closed classes both at lexical
and syntactical level. For instance, consider the
construction of adverbs with two functions (but
not limited to):

Warmly, gərəm dʒʋxiː

fun PositAdvAdj : A → Adv ;

Very quickly, boht_very tiːzi_quickly de nal_coupla

fun AdAdv : AdA → Adv → Adv ;

3.5. Clauses

While a phrase is a single word or group of
words, which are grammatically linked to each
other, a clause on the other hand, is a single
phrase or group of phrases.

74

Different types of phrases (e.g. NP, VP, etc)
are grouped together to make clauses6. Clauses
are then used to make sentences. In GF tense
system the difference between a clause and a
sentence is: A clause has a variable tense while
a sentence has a fixed tense.

We first construct clauses and then just fix
their tense in order to make sentences. The most
important construction of a clause is:

PredVP : NP → VP → Cl; -- Ali walks

The clause (Cl) has the following type:

Clause : Type =
 {s : VPHTense => Polarity =>
Order =>Str} ;

Where:

VPHTense = VPGenPres|VPImpPast
|VPFut|VPContPres|VPContPast
|VPContFut|VPPerfPres|VPPerfPast
|VPPerfFut|VPPerfPresCont|VPSubj
|VPPerfPastCon|VPPerfFutCont ;
Polarity = Pos | Neg
Order = ODir | OQuest

The tense system of GF resource library
covers only eight combinations with four tenses
(present, past, future and conditional) and two
anteriorities (Anter and Simul). It does not
cover the full tense system of Punjabi, which is
structured around the aspect and the
tense/mood.

We make sentences in twelve different tenses
(VPHTense in the above given code) at clause
level to get a maximum coverage of the Punjabi
tense system. Polarity is used to construct
positive and negative, while Order is used to
construct direct and question clauses.

We ensure the SOV agreement by saving all
needed features in NP. These are made
accessible in the PredVP function.

A distinguishing feature of Punjabi SOV
agreement is ergative behavior where transitive
perfective verb may agree with the direct object
instead of the subject. Ergativity is ensured by
selecting the agreement features and noun-form
accordingly. We demonstrate this in the
following simplified code segment:

subj agr : NPCase * Agr =
case vt of {

6Verb phrases alone can also be used as clause some times.

 VPImpPast => case vp.subj of {
 VTrans => <NPErg, vp.obj.a>;
 VDiTrans => <NPErg, defaultAgr>;
 _ => <NPC Dir, np.a>} ;
 _ => <NPC Dir, np.a>}

For perfective aspect (VPImpPast), if the
verb is transitive then it agrees with the object
and therefore the ergative case of NP is used
(VTrans in the above code).

For DiTransitive (i.e. VDiTrans in the
above code) the agreement is set to default but
the ergative case is still needed.

In all other cases, specified with the wild card
“_” above, the agreement is made with the
subject (np.a), and we use the direct case (i.e.
NPC Dir).

After selecting the appropriate forms of each
constituent (according to the agreement
features) they are grouped together to form the
clause. For instance, consider the following
simplified code segment combining different
constituents of a Punjabi clause:

np.s!subj ++ vp.obj.s ++ vp.ad ++
vp.comp!np.a ++ nahim ++ vps.inf
++ vps.fin ++ vp.embComp;

Where:
(1) np.s!subj is the subject; (2) vp.obj.s

is the object (if any); (3) vp.ad is the adverb (if
any); (4) vp.comp!np.a is verb’s complement;
(5) nahim is the negative clause constant; (6)
vps.inf is the verb; (7) vps.fin is the
auxiliary verb; (8) vp.embComp is an embedded
complement.

4. Coverage and Limitations

The grammar we have developed consists of 40
categories and 190 syntax functions. It covers
only a fair enough part of the language. The
reason for this limitation is approach of the
common abstract syntax defined for all the
languages in the GF resource library. Indeed it
is not possible to have an abstract syntax, which
is common to, and covers all features of all
languages. Consequently, the current grammar
does not cover all aspects of Punjabi.

However, this does not put any limitation on
the extension of a language resource. It can be
extended by implementing language specific
features as extra language-specific modules.
However these features will not be accessible

75

through the common API, but can be accessed
in the Punjabi application grammars.

5. Evaluation and Future Work

It is important to note that completeness is not
the success criteria for this kind of grammar
based resource but accuracy is (Ranta 2009b).
Evaluating a resource grammar is just like
evaluating a software library in general.
However, this type of evaluation is different
from evaluation of a natural language
processing application in general, where testing
is normally done against some corpus. To
evaluate the accuracy, we use the Punjabi
resource grammar to translate, and observe, a
test suite of examples7 from English to Punjabi
and vice versa. We achieved an accuracy of
98.1%. The reason for not having 100%
accuracy is that our current grammar does not
cover all aspects of the language. One such
aspect is compound verbs of Punjabi, formed by
nouns and the auxiliary verb ‘to be’ (hona:). In
this case, its gender must agree with the
inherent gender of the noun. We have not yet
covered this agreement for compound verbs and
therefore, produce incorrect translations. An
interesting (yet wrong) example would be:

bariʃ honda peːa aeː (It is raining)

Instead of “honda piːa”, it should be “hondiː pəiː”

Another such feature is the repetitive use of
verb in Punjabi (e.g. mʊnɖa_boy ru:ndɛ:_weping

ru:ndɛ:_weping su:ɳ_slept gi:a_coupla, ���a�����a ���
	

a��

��
a ���, the boy slept weeping). Coverage of
such language specific details is one direction
for the future work.

6. Related Work and Conclusion

In general language resources for Punjabi are
very limited; especially for the one spoken in
Pakistan and written in Shahmukhi.
Furthermore, most of the applications related to
Punjabi are designed only for the Punjabi,
written and spoken in India; hence, only support
the Gurmukhi script. A review of such
applications is given in (Lehal, 2009).

There are some attempts to interchange
between these scripts with transliteration

7See (Bringert et el, 2011) for this test suite of examples.

systems. However, the current systems only
seem to provide partial solutions, mainly
because of the vocabulary differences
(Humayoun and Ranta, 2010).

A transfer-based machine translation system
reported in (Lehal, 2009) translates between
Punjabi and Hindi only. On the contrary, the
Punjabi resource grammar is based on
Interlingua approach, which makes it possible to
translate between seventeen languages in
parallel. With the best of our knowledge this
work is the first attempt to implement a
computational Punjabi grammar as open source.

We have described the implementation of the
computational grammar for Punjabi. It might be
a useful resource, and may encourage other
researchers to work in this direction.

As the resource grammar does not cover full
features of Punjabi, although it is not possible to
use it for parsing and translation of arbitrary
text, it is best suited for building domain
specific application grammars.

References
B. Bringert, T. Hallgren, A. Ranta. 2011. GF Resource

Grammar Library Synopsis.
www.grammaticalframework.org/lib/doc/synopsis.html.

M. Butt, H. Dyvik, T. H. King, H. Masuichi, C. Rohrer.
2002. The Parallel Grammar Project. In Proceedings of
COLING-2002. Workshop on Grammar Engineering
and Evaluation.

M. Humayoun and A. Ranta. 2010. Developing Punjabi
Morphology, Corpus and Lexicon. The 24th Pacific
Asia conference on Language, Information and
Computation. pp: 163-172.

G. S. Lehal. 2009. A Survey of the State of the Art in
Punjabi Language Processing, Language In India,
Volume 9, No. 10, pp. 9-23.

A. Ranta. 2004. Grammatical Framework: A Type-
Theoretical Grammar Formalism. Journal of Functional
Programming, 14(2), pp. 145-189.

A. Ranta. 2009a. Grammatical Framework: A Multilingual
Grammar Formalism, Language and Linguistics
Compass, Vol. 3.

A. Ranta. 2009b. Grammars as Software Libraries. In Y.
Bertot, G. Huet, J-J. Lévy, and G. Plotkin (eds.), From
Semantics to Computer Science, Cambridge University
Press, pp. 281-308.

M. K. Verma. 1974. The Structure of the Noun Phrase in
English and Hindi by Review author(s): R. K. Barz, L.
A. Schwarzschild Journal of the American Oriental
Society, Vol. 94, No. 4, pp. 492-494.

76

