
Student Research Workshop, RANLP 2009 - Borovets, Bulgaria, pages 83–88

Context Driven XML Retrieval
Aneliya Tincheva

IPP-BAS

25A Acad. G. Bonchev Str.

Sofia 1113

nelitincheva@gmail.com

Abstract

This paper presents a data-centric approach to XML information

retrieval which benefits from XML document structure and

adapts traditional text-centric information retrieval techniques to

deal with text content inside XML. We implement our ideas in a

configurable, general purpose XML retrieval library which can

be tuned to operate on multilingual XML resources with

different structure and can be used to extract relevant document

fragments with different granularity according to user

preferences. We present a rich query format and an algorithm for

indexing and query processing.

Keywords
XML Retrieval, IR, XML-IR, XPath, document fragment, indexing

schema, full-text indexing

1. Introduction
The popularity of the eXtensible Markup Language

(XML) has led large quantities of structured information

to be stored in this format. Due to this ubiquity, there has

lately been interest in information retrieval (IR) from

XML. XML-IR presents different challenges than retrieval

in text documents due to the semi-structured nature of the

data. The goal is to take advantage of the structure of

explicitly marked up documents to provide more focused

retrieval results. For example, the correct result for a

search query might not be a whole document, but a

document fragment. Alternatively, the user could directly

specify conditions to limit the scope of search to specific

XML nodes. Previous work [2, 4] addresses several

challenges specific to retrieval from XML documents:

(1) Granularity of indexing units (Which parts of an XML

document should we index?)

(2) Granularity of the retrieved results(Which XML

nodes are most relevant?)

(3) Ranking of XML sub-trees (How should the ranking

depend on the type of enclosing XML element and term

frequency/inverse document frequency (tf-idf)?)

The aim of this work is to define an approach for XML

retrieval that can be used for indexing and search

independently of the document structure. We call our

approach context driven XML retrieval because indexing

and search operate on parts of XML documents called

contexts. These contexts represent searchable and

retrievable parts of an XML document, and for us the IR

problem can be viewed as the extraction of contexts that

match some search criteria. Traditional IR is a special

case of XML-IR where the context has to be a whole

document. Narrower contexts could be separate XML

elements or their combinations. Our setting assumes

knowledge of the XML document structure and the

retrieval requirements. Thus an administrator creates

indexing and retrieval rules for different XML document

corpora. Each corpus requires different indexing rules to

define contexts and relations between them – document

fragments referable at search time. Using this context

driven approach we address challenges (1) and (2).

Concerning ranking (3), we employ a strategy which

combines the unstructured and structured IR scoring

techniques. In the paper we present a scalable index

structure, indexing, search algorithms, indexing rules and

query language format. We implement our ideas in a

general purpose XML retrieval library that can be

integrated in different kinds of applications: web

applications, standalone systems, web services.

The rest of the paper is organized as follows: Section 2

describes related work; Section 3 describes motivation;

Section 4 presents implementation details. Section 5

concludes the paper and describes future work.

2. Related work
XML retrieval systems vary according to the query

language, index structure, document preprocessing,

indexing and scoring algorithms they employ. A great

variety of XML query languages already exist. Standard

ones proposed by W3C are XPath and XQuery.

Unfortunately, they do not reflect IR properties such as

weighing, relevance-oriented search, data types and vague

predicates, structural relativism [1, 14]. Amer-Yahia et

al. [4] classifies XML query languages into three classes:

keyword query languages (KQL) [5, 6, 12, 13]; tag &

KQL [6]; path & KQL [7, 8, 12]; XQuery & KQL [10].

The query language we introduce is a path and KQL in

XML format, and most related to XPath 2.0, XIRQL,

XXL, NEXI CAS queries. Different term and structure

statistics are implemented in separate XML-IR systems.

We share the idea of Mass and Mandelbrod [11] that an

XML index consists of a set of separate full-text indices.

For full-text search we use the Apache search API Lucene

[9].

83

The context driven approach we present can be classified

as Content-And-Structure (CAS) retrieval under the

system developed by the Initiative for the Evaluation of

XML Retrieval (INEX) [12].

3. Motivation
In addition to the growing interest in XML retrieval, we

had a practical need for an IR system for XML

documents. In order to aid annotation efforts, we needed a

platform independent search engine that could be tuned

for specific applications. Since the document structure

was known and important, we wanted to create indexing

and retrieval rules to improve retrieval. The system we

present allows exactly such application-specific indexing

and search.

4. Context Driven XML Retrieval
An XML document is a tree-like data structure which

consists of three node types: elements, attributes,

character data/text. XML document tree nodes are

instances of elements called tags/markups, which can be

either empty or have nested elements or text nodes.

Attributes are name-value pairs attached to tags. Figure 1

is an example of a textile multimedia XML document

created by our group for the purposes of the AsIsKnown

project [15]. The example document contains text and

images annotated with concepts from a textile knowledge

base. Text is delimited in sentences which are organized

in paragraphs.

Figure 1. Multimedia XML Document

There exist W3C standard languages for navigation

through XML documents (XPath) and querying (XQuery).

We employ XPath in the implementation of our

framework. After the evaluation of an Xpath expression, a

set of XML nodes are retrieved. For example, if we want

to extract the sentences which contain the word pattern

from our example XML document in Figure 1, we can use

the XPath expression: //s[contains (descendant::text(),

“pattern”)] . If we need sentences containing the

document’s title, we need variables to store temporary

results and be used in the search expression. We deal with

the problem by using an extension of XPath with

variables. The expression below extracts the sentences

containing the text of the title:

{x:=/title/descendant::text()}/s[contains(descendant::text(), $x)]

We set the variable x to be equal to the document title

text. The XPath engine extracts the sentences whose text

contains the value of the x variable.

4.1 System architecture

We implement our system in an XML retrieval library.

Each document corpus has a separate XML index in a

central XML Index Repository. Each index has its own

model, defined in an indexing schema. The indexing

schemas specify how to extract indexing units (XML sub-

trees) called contexts from XML documents with a

common structure and defines how the separate contexts

are related. Our basic assumption is that a context is a

document fragment whose content is indexed in several

text fields. A field is a name-value pair whose value is

character data. Contexts and fields can be referred to in

search queries. An indexing schema is added to an empty

index on its creation. Existent XML indices are populated

with documents according to the definitions in their

corresponding indexing schema. For each context defined

in the indexing schema we create and populate a full-text

index called context index. The rest of the subsection

gives an overview on the system architecture (Figure 2)

Figure 2. System Architecture

The search engine lifecycle has two sequential phases:

system initialization and user interactions. When the

system is started a processing module reads system

configurations from a configuration file. This file specifies

an indexing/search analyzer, document storage, and result

extractor implementation classes. The opportunity to

configure different implementations makes our framework

highly adaptable to various search scenarios. We can use

this to tune text analysis, document access policy, result

formatting and extraction. Instances of the configured

implementations are created by reflection and are made

84

available at runtime. The indexing and retrieval tasks are

performed by the indexer and searcher operational

modules which manipulate the XML indices, system files

and interact with the already instantiated objects.

4.2 Indexing schema and index structure
Each XML index consists of an indexing schema and one

or more full-text indices. The indexing schema is an XML

document which defines indexing and extraction rules.

Central concepts are context and field, as defined in the

previous subsection. Their usage is clarified with the

following example. Assume that we have a corpus with

documents with the same structure as the one in Figure 1

and we want to retrieve particular paragraphs/ images. For

the purpose we define 2 independent contexts: paragraph

and image. Our aim is to search for a combination of text

matches and concepts. We need to create two fields for

the paragraph context (text and concept) and one for the

image context (concept). We add one more requirement -

we want to extract paragraphs whose adjacent paragraphs

and images comply with supplementary search criteria. In

this case we need to define some kind of relation between

a paragraph and its adjacent paragraphs and images. We

call this type of relation coordination between contexts. In

the indexing schema the contexts are defined as context

elements, fields are elements nested in context elements

and coordination between contexts is expressed by nesting

context elements.

Figure 4. Indexing Schema Logical Tree View.

Each context and field element has an identifier and is

associated with an XPath expression. Indexing schema

elements are relative to their parent elements, i.e. their

identifiers are unique within the scope of their parent

element and their XPath expressions are applied relative

to the nodes extracted by the XPath expressions of their

parent element. The schema root element denotes the

default context, i.e. the whole XML document. Field

elements have no nested elements and can be boosted. For

context elements with child field elements we create

separate full-text indices in the XML index repository.

Figure 5 illustrates the Lucene index (full-text index) and

the XML index structures.

Figure 5. Lucene and XML Index Structure

 The Lucene index (left) is an inverted index consisting of

a set of Lucene documents. Each Lucene document carries

a unique identifier and contains fields. The XML index

(on the right) contains an indexing schema document and

a set of Lucene context indices. They are populated with

Lucene documents with identifiers which encode the

system identifier of the XML document, path to an XML

context node and paths to its related XML nodes. The

Lucene documents are populated with fields as defined in

the indexing schema document. An illustrative example is

to index the document in Figure 1. We want to search by

concept to extract paragraphs that match one concept

pattern with adjacent paragraphs or images matching

another pattern. Such a relation between structural

document units allows us to create complex search

queries. An indexing schema satisfying our requirements

is given in Figure 6.

Figure 6. Example indexing schema

The index created according to the definitions of the

indexing schema on Figure 6 contains five full-text

indexes (one for each context with a field). If the

document in Figure 1 has a system identifier f1, the

content of the separate full-text indexes after the indexing

would be:

Lucene context index Lucene document IDs Field content

paragraph f1_p#1 The concept URIs in

the first paragraph.

paragraph� previous_paragraph; (no data added)*

paragraph� following_paragraph (no data added)*

paragraph

�previous_images

f1_p#1@@@f1_img#1 The concept URIs in

the first image.

paragraph �following_images (no data added)*

85

Table 1. Content of Lucene indices for the example XML Index
1

Indexing is incremental. When a new XML documents is

added to an XML index, its Lucene context indices are

updated by creating and populating Lucene documents.

4.3 Indexing algorithm
Below (Figure 7) is listed the indexing algorithm which is

recursive in nature. The recursive structure is inherited

from the nesting of contexts.

Figure 7. Search procedure

4.4 Query syntax and search algorithm
Search is performed within a single index in order to

retrieve relevant content. The search criteria are specified

in a query XML document whose format is presented

below. Contexts and fields2 are referred to in search

queries. Figure 8 (below) illustrates the query structure.

Figure 8. Search query structure

1 The @@@ is a separator between identifiers of dependent contexts.

The Lucene document identifier f1_p#1@@@f1_img#1 (row 4)

encodes that the first paragraph is related to the first image with a

previous_images relation.

2 Contexts and fields as defined in the indexing schema for the index in

which we are searching.

Queries have a recursive structure similar to the indexing

schema. The context and field elements in queries refer to

corresponding elements in the indexing schema by ID.

The parent-child element relationship for both contexts

and fields should follow the order in the indexing schema.

The element content of query context elements consists of:

- field element(s) – their element content is transformed

to a Lucene query. The supported full-text queries for

a field include term, phrase, fuzzy, Boolean, span,

wildcard, range queries. Search results are sorted by

tf-idf.

- AND; OR | and;or elements – recursive multi-

argument operations denoting intersection and union

of search results returned for sets of context

arguments (AND; OR) or field arguments (and; or).

In either case, results are sorted by tf-idf.

The search algorithm is presented below (Figure 9).

Figure 9. Search procedure

Our search algorithm performs depth first search in

contexts. If a context has a descendant context then a

recursive call is made. The bottom of the recursion is

reached when no more context descendants are available.

For each separate context having fields we perform search

in its corresponding Lucene index.

4.5 Experiment

We evaluated the search engine on a corpus of 135

multimedia documents in XML format, in 3 separate

indexes. Our goal was to evaluate indexing and search

performance and retrieval relevance. The documents are

multilingual (English and Italian) and contain markers for

paragraphs, images, and concept annotation for both

images and text. The total number of text terms in the

corpus is 117 307 and the total number of concept

annotations is 9547. The paragraph text is indexed in

index (I1). Concept annotations in paragraphs as well as

86

the concepts in the preceding and following paragraphs

and images are indexed in index (I2). Finally, the text of

paragraphs, besides the concepts, is indexed in index (I3).

For text analysis we used the Lucene StandardAnalyzer.

This class uses a Java CC-based grammar to tokenize

alpha-numeric strings, acronyms, company names, e-mail

addresses, computer host names, numbers, words with an

interior apostrophe, serial numbers, IP addresses, and CJK

(Chinese Japanese Korean) characters. As we see in Chart

1, relatively little time is consumed in the creation of I1.

Increasing the schema complexity degrades indexing

performance.

Chart 1. Indexing performance

This degradation was not a major concern. We focus on

estimating:

(1) Does indexing performance degrade drastically for

complex indexing schemas?

(2) To what extent does the search performance

decreases for deeper and broader indexing schemas?

(3) What is the benefit in precision and recall from

querying indexes with more complex schemas?

Since indexing can be performed in the background and

offline, we are only interested in drastic degradation for

(1). Schema complexity appears not to affect search

performance significantly. We see in Chart 1 that schema

complexity only moderately affects indexing performance.

With the most complex schema all documents are indexed

in under 5 minutes. The estimation issues (2) and (3) are

the important ones to be evaluated for a search

application. Precision and recall mostly depend on the

preciseness and quality of the query, availability of

metadata in XML documents, the metadata indexing and

querying strategy. The results were more than satisfactory

addressing issue (2). For all queries for each index, we

obtained results in under 0.5 seconds. We did not evaluate

the system on a standard dataset. On the basis of the

experiment with I1, I2 and I3 we concluded that precision

and recall increase for more complex schemas (3). The

precision when querying I2 is higher than the one for I1,

because it retrieves conceptually relevant documents

either in English or Italian. Although many of the text

terms are not annotated with concepts and the variety of

queries is limited, the recall for I2 is comparable with the

one from I1. The retrieval from I3 is with the highest

precision and recall, since it combines advantages of I1

and I2.

5. Conclusion
The aim of this work was to define a user guided approach

to XML retrieval that could be used for indexing and

search in XML document corpora independent of

document structure. We implemented our ideas in a

platform independent search engine framework that

combines structured and unstructured retrieval techniques

and can be integrated in different kind of applications. We

ended up with a middle layer component which so far is

integrated into prototype systems created for the LT4eL

[16] and AsIsKnown [15] research projects. Future work

includes running experiments with the test collections

created for the INEX competition. Our future goals

include integration of automatic language detection and

format conversion to XML. We also intend to implement

and integrate different tokenizers and analyzers. A future

aim and big challenge for us is to adapt and integrate the

framework in a web search engine.

Acknowledgements
This work was supported by the Institute for Parallel

Processing (Bulgarian Academy of Science) and granted

by the European Projects AsIsKnown (FP6-028044) and

LTfLL (FP7-212578). I thank to my advisor Kiril Simov

who laid the foundation of the work and assisted me

during the past year and a half in the process of design,

analysis, development and integration of the XML-IR

framework.

6. References
[1] N. Fuhr: XML Information Retrieval and Information Extraction,

University of Dortmund, Germany, 2003

[2] Ch. D. Manning, P. Raghavan, H. Schütze: Introduction to

Information Retrieval, ISBN: 0521865719,Cambridge University

Press. 2008.

[3] D. Carmel, N. Efrati, G. M. Landau, Y. S. Maarek, and Y. Mass.

An Extension of the Vector Space Model for Querying XML

Documents via XML Fragments. Proceedings of the SIGIR 2002

Workshop on XML and Information Retrieval, 15. August 2002

[4] S. Amer-Yahia, M. Lalmas: XML search: languages, INEX and

scoring. SIGMOD Record 35(4): 16-23 (2006)

[5] L. Guo, F. Shao, C. Botev, J. Shanmugasundaram.XRANK:

Ranked Keyword Search over XML Documents.SIGMOD 2003.

[6] S. Cohen, J. Mamou. Y. Kanza, Y. Sagiv. XSEarch: A Semantic

Search Engine for XML. VLDB 2003

[7] A. Theobald, G. Weikum. The Index-Based XXL Search Engine

for Querying XML Data with Relevance Ranking. EDBT 2002

[8] A. Trotman, M. Lalmas. The Interpretation of CAS. INEX 2005

[9] E. Hatcher, O. Gospodnetić, and M. McCandless, “Lucene In

Action”, ISBN: 1932394281, May 2008

87

[10] XQueryFull-Text: http://www.w3.org/TR/xpath-full-text-10/

[11] Y. Mass, M. Mandelbrod. Retrieving the most relevant XML

Components. INEX 2004

[12] INEX 2009: http://www.inex.otago.ac.nz/

[13] N. Roussopoulos, S. Kelley, F. Vincent, Nearest Neighbor

Queries, 1995

[14] N. Fuhr and G. Weikum. Classification and Intelligent Search on

Information in XML. Bulletin of the IEEE Technical Committee

on Data Engineering, 25(1), 2002.

[15] AsIsKnown: http://www.asisknown.org/

[16] LT4eL: http://www.lt4el.eu/

88

