
Student Research Workshop, RANLP 2009 - Borovets, Bulgaria, pages 18–22

LOGICON: A System for Extracting

Semantic Structure using Partial Parsing
Kais Dukes

School of Computing, University of Leeds

LS2 9JT, United Kingdom

sckd@leeds.ac.uk

Abstract

Partial parsing is an established NLP technique used to

perform syntactic analysis without generating a full

constituent parse tree. This paper presents LOGICON, an end-

to-end system using partial parsing, which assigns novel

semantic structures to natural language text. Evaluating

against a test set of 500 previously unseen sentences, the

system has an accuracy of 62.4% as measured by exact

matching against the expected semantic output. Since partial

parsing is used, the system is robust and will assign partial

semantic structure to sentences it may not fully understand. As

stochastic methods are not used, the system is deterministic

and fast. A syntactic tagging scheme is proposed which is

closely aligned to the corresponding semantics. The system

was developed as part of a PhD research project, and was

written to evaluate partial parsing as the first step to creating a

full natural language question-answering system.

Keywords

natural language processing, partial parsing, annotated corpora,

constituent structure, thematic relations, semantic role labeling,

syntax parse trees, part-of-speech tagging

1. Introduction
The LOGICON system was developed as part of an

ongoing PhD research project, with the aim of using partial

parsing to extract semantic structures from natural

language. LOGICON contrasts with PARASITE, a system

which produces formal semantics for unrestricted text [9],

since partial parsing [1][2] is used instead of deep parsing,

and semantic roles are used for representing meaning as

opposed to logic statements with variables and quantifiers.

For example, given a simple sentence focusing around an

event, LOGICON attempts to identify roles for the actor

(who did the event), the action (what the event was) and the

target (what entity the actor performed the action on). The

system employs simple partial parsing techniques as

described by Abney [1], [2]. A syntax-driven approach is

then used to derive semantic roles through recursion.

2. Semantic Structures
Thematic relations are an intuitive approach to assigning

meaning to the constituents of a sentence. A typical

problem is what role to assign to a noun phrase.

Traditionally thematic relations include Agent, Patient,

Theme, Location, etc. However, there is no definitive list of

roles, and in some cases which role to use is not

immediately clear: in "the key opened the door" is the key

the agent or the instrument? In order to produce a practical

system, the research focused on working with a small set of

well-defined roles:

Table 1. Semantic relations describing an event

Relation Description

ACTION the action, or main verb

ACTOR the doer of the action

TARGET what the action was performed on

LOCATION where the action was performed

TIME when the action was performed

The ACTOR role is typically assigned to the syntactic

subject of the sentence, and the TARGET is typically

assigned to the object. Together, the roles are grouped into

a semantic structure called an EVENT. For the simple

sentence "Jack helped John", the corresponding semantic

structure produced by LOGICON would be:

EVENT:

ACTOR: Jack

ACTION: help

TIME: PAST

TARGET: John

A semantic structure called a LINK is used to represent

sentences that use a copula to link a subject (the SOURCE)

to its predicate (the TARGET). For example, "The apple is

red" would have the following semantic structure:

LINK:

SOURCE: apple

TARGET: red

Table 2 below gives a brief summary of the important

keywords used in the semantic structures found in the

annotated corpus:

18

Table 2. Keywords in LOGICON semantic structures

Keyword Description

SPEAKER represents the first person

LISTENER represents the second person

OTHER represents the third person

OF used in a possessive construction

CONFIRM "Is the sky blue?"

EXPLAIN "Why is the sky blue?"

QUANTIFY "How much" / "How many"

PARAMETER second object (ditransitive verbs)

LOCATION "Jack put the book on the table"

SPECIFIC represents the definite article

GENERAL represents an indefinite article

CONCEPT an isolated noun phrase

POSSIBLE "Jack might eat"

EXPECTED "Jack will eat"

RECOMMENDED "Jack should eat"

MODIFIER "Jack ate quickly" (adverb)

NOT used to negate a structure

AND "Jack and Mary are clever"

OR "Eat the apple or the orange"

Special handling is given to pronouns and to possessive

constructions, using the first 4 keywords listed in table 2.

As an example, LOGICON translates the sentence "You

broke my car" into the corresponding semantic structure:

EVENT:

ACTOR: LISTENER

ACTION: break

TIME: PAST

TARGET: car OF SPEAKER

The aim of the system is to produce enough semantic detail

to enable effective question-answering. Since partial

parsing, and not deep parsing is used, some structures are

not dissected. For example the internals of noun phrases are

not handled directly.

In this respect, the semantic structures can be considered a

form of semantic role labeling. The structures are general-

purpose so that it would be more accurate to say that they

are an intermediate form between the frame semantics

found in FrameNet [3] and the verb-argument annotations

found in the PropBank corpus [8].

2.1 Semantic recursion
Since natural language is inherently recursive, it is not

unreasonable to expect that any corresponding semantic

structures should show similar recursion. The semantic

structures generated by LOGICON are syntactically-driven,

that is to say they are derived directly from parse trees

constructed via partial parsing. Since these parse trees are

recursive structures, so are the corresponding semantics.

A simple example would be the sentence "Who said time is

money?". In the corresponding semantic structure, this is

analyzed as a LINK (a subject/predicate construction)

embedded within an EVENT (an action in time or space):

EVENT:

ACTOR: UNKNOWN

ACTION: say

TIME: PAST

TARGET: LINK:

SOURCE: time

TARGET: money

The actor (the doer of the action) is UNKNOWN ("who?").

The UNKNOWN keyword is used as a placeholder for

thematic roles in sentences which use interrogative

pronouns. In the event structure above, the target of the

action (what was said) is itself another semantic structure, a

link between a subject and its predicate: "time is money".

3. Partial Parsing

3.1 Abney’s partial parsing scheme
The partial parsing scheme introduced by Abney [1] and

implemented in the Cass partial parser [2], successively

builds a parse tree bottom-up by using a cascade of finite

state transducers. Customizable patterns are used to define

the regular expressions used to parse at each level. These

patterns are specified in a human readable format (similar

to Backus-Naur form) and are then complied into a unified

finite state transducer automatically. A distinguishing

feature of the original scheme is that there is no definite

top-level node representing the entire sentence. The system

is more like a chunking analyzer as opposed to a full

syntactic parser.

The main advantages of the Cass partial parsing scheme is

that it is robust (it will not fail to produce a partial analysis

given input it may not fully understand), it is fast (orders of

magnitude faster than stochastic parsers) and relatively easy

to implement.

3.2 The annotated corpus
An annotated corpus was constructed at the start of the

project. By adopting a corpus-driven methodology, the

effectiveness of potential parser rules was decided by

available corpus evidence. The annotations were produced

as follows:

19

1. A set of 2000 sentences was collected.

2. For each sentence, the semantic structure expected to be

produced by the system was manually annotated.

3. From the expected semantic structure, a syntactic parse

tree was also annotated that would provide the suitable

semantic skeleton from which to derive the semantics.

After annotation the corpus was divided into two sets: a

training set of 1500 sentences, and an evaluation set of 500

sentences. The training set would be used as a reference

when building the system, in order to test the effectiveness

of the parser during its construction, and to try out various

partial parsing rules. An example annotated sentence is

shown below:

"Who wrote ‘The Moon is a Harsh Mistress?’"

(EV

(C Who) (V wrote)

(LN

(C (Q The) (C Moon))

(AUX is)

(C (Q a) (C Harsh Mistress))))

EVENT:

ACTOR: UNKNOWN

ACTION: write

TIME: PAST

TARGET: LINK:

SOURCE: SPECIFIC Moon

TARGET: GENERAL Harsh Mistress

The following resources were used to construct corpus:

1. Example sentences from the Link Grammar Parser [10].

2. Sentences based on patterns in A.L.I.C.E. [11].

3. Questions from the TREC-10 QA track [6].

4. Sentences from novels in Project Gutenberg.

5. News headlines from news.google.com.

Different sources were used so that a wide-coverage parser

could be constructed. Focusing on a particular genre – such

as newspaper text – might have resulted in a more limited

parser. A large proportion of the data was derived from the

question templates found in the A.L.I.C.E. chat program,

which is relevant to question-answering because this data

was formed after studying the most frequent inputs given to

a popular chat system.

3.3 Partial parsing in LOGICON
Three possible parsing schemes were considered at the

outset of the project: using a stochastic parser such as

Bikel’s parser [4], using a dependency parser such the Link

Grammar Parser [10], or using a partial parser. An existing

stochastic parser was not suitable for use in LOGICON,

because either these are pre-trained on a different tagset or

need to be trained using a large corpus. It was felt that

converting the output from the Link Grammar Parser would

be too time consuming, so it was decided to construct a

partial parser which matched the syntax in the annotated

corpus. A Brill tagger using transformation-based machine

learning was first applied to the training set [5].

With an effective part-of-speech tagger in place, Abney’s

original partial parsing scheme was then adapted. Initially,

this yielded encouraging results. Out of the 1500 sentences

in the training corpus, 7 simple rules resulted in partial

syntax trees which had an accuracy of 90.84% as measured

by the number of nodes parsed and connected to the correct

constituent nodes. A total of 35 rules were finally used.

3.4 The partial parsing algorithm
The partial parsing algorithm used by the LOGICON

system is described as follows1. The parser constructs a

parse tree bottom-up. At each stage of its operation, there is

a set of top-level nodes, which are grouped together to form

new top-level nodes at the next iteration. The result of the

algorithm is a partial parse tree, defined as a set of one or

more final top-level nodes, each of which is a complete

parse tree:

1. Construct a node for each word, using part-of-speech

tags from the tagger.

2. For each parser rule R, apply R to the top-level nodes.

3. If at least one rule did apply, repeat step 2 until no rules

apply, and no new top-level nodes can be created.

Figure 1. Rule in partial parser specifying a new node

Q

The man opened the door

C V Q C

Figure 1 above shows a syntactic structure constructed by

the parser during its analysis. The current top-level nodes

are shown in black. At this stage of operation, the three top-

level nodes represent a noun-phrase, followed by a verb,

followed by a second noun phrase. These would be

recognized by a parser rule as a subject-verb-object

construction, and these 3 nodes would be collected into a

new top-level node shown in gray.

1 See the appendix for a description of the partial parsing

algorithm in pseudo-code

20

The ordering of rules in the parser is crucial, as this

represents rule precedence. The rules which operate on

lower parts of the parse tree are listed first. Rules which

operate on similar syntactic structures are listed together.

However they are ordered so that the rule which is more

applicable in general will operate first, to create new top-

level nodes with the correct precedence.

Figure 2 below shows two sentences with the same part-of-

speech tags, but with different constituent structure. In the

annotated corpus, two noun phrases separated by a

preposition (e.g. 'the picture on the wall') are grouped

together into a symmetric compound noun phrase. This

analysis is used to support the expected semantic structure.

Ambiguity arises when the parser is faced with the sequence

C + P + C + P + C. As figure 2 indicates, this can be

analyzed in one of two ways.

Figure 2. Ambiguity in preposition and noun phrase structure

C

the man in the picture on the wall
P C P C

C

C

C

hundreds of millions in every drop
P C P C

C

C

The first right-to-left grouping was found to be more

common in the corpus. The rule which deals with

prepositions builds this structure by default. The second

grouping also occurs, and in this case the behavior is

overridden by adding lexical information to the parser rule.

3.5 The tagging scheme
It was decided to keep the tagging scheme used by

LOGICON to be as close as possible to the final semantic

structure. A sample sentence found in the training corpus is:

"Who was the lead singer for the Commodores?". This is

analyzed as a copula link, with the subject 'who'. The

predicate is a compound phrase with a preposition linking

two noun phrases ('the lead singer' and 'the Commodores').

The syntactic structure constructed via partial parsing is:

(LN

(C Who) (AUX was)

(C

(C (Q the) (C lead singer))

(P for)

(C (Q the) (C Commodores))))

A reduced tagset of 18 tags is used by the partial parser:

Table 3. Semantically-aligned tagset used for syntax tree nodes

Tag Description or example

N noun

V verb

AUX auxiliary verb

P preposition

Q quantifier / determiner

SYM symbol / punctuation

NEG negation ("no, not")

POS possessive ("Jack’s house")

CONJ conjunction ("and, or")

T time phrase ("2pm")

LOC location phrase ("in London")

COMP complementizer / relative pronoun

C concept / noun phrase

EV subject-verb-object event

LN subject-copula-predicate link

XL explanation question ("why")

MOD modifier (adverb)

OP mathematical operation ("2 + 2")

3.6 Mapping partial parsing to semantics
The translation algorithm is a recursive map. The translator

accepts as input the results of the partial parser and

performs a recursive algorithm which visits each node in

turn, bottom-up. A sequence of semantic translation rules

are applied, with each rule operating on a pre-defined

syntactic tag. Thematic relations are deduced directly from

the syntax, designed with semantic analysis in mind. For

example, rules will map a verb tag to an ACTION role, and

a time tag to a TIME role. Since a parent node’s children

will already have semantics attached, these structures can

be used to construct the next-level of analysis, and so on,

until the entire partial tree has semantics attached to each

node. The final output of the LOGICON system is the

resulting semantic structure attached to the top-level nodes.

21

4. Evaluation

4.1 Evaluation against the annotated corpus
The annotated corpus was divided into a training set of

1500 sentences and an evaluation set of 500 sentences.

When applied to the evaluation set, the system produced the

exact expected semantic output for 312 of the 500

sentences, giving an accuracy score of 62.4%.

Table 4. Evaluation matching against exact expected semantics

Matched Not matched Total %

312 188 500 62.4

A qualitative analysis of the errors indicated that most of

the inaccuracies were due to the part-of-speech tagger. The

evaluation set contained words not previously seen by the

Brill tagger which resulted in incorrect parts-of-speech.

4.2 Parsing speed
Despite the lower than expected accuracy, the system did

demonstrate a good trade-off between speed versus depth of

analysis. The algorithm presented is wholly deterministic,

making no use of stochastic techniques or backtracking.

The entire 2000 sentences took 0.75 seconds to process.

This measurement was the average of several runs on an

Lenovo T61 Laptop, running two Intel Core Duo

processors, at 2.4 GHz.

5. Conclusions and Future Work
In this paper the LOGICON system was presented and a

novel set of semantic structures were described, driven by

syntax. The system employs partial parsing techniques

using a tagging scheme in which syntax and semantics are

closely aligned. With a few partial parsing rules, reasonable

accuracy was obtained. Future work will involve refining

the parser using a more accurate part-of-speech tagger such

as SVMTool [7] and then applying the system to the

question-answering domain.

6. Appendix: Parsing Algorithm
The algorithm used by the LOGICON partial parser is

shown in pseudo-code below:

- create initial nodes from part-of-speech tags

- repeat until no rule applies:

 - for each parser rule R:

 - repeat while R applies to existing top-level nodes:

 - use R to create a new top-level node

In the training corpus of 1500 sentences, there were a total

of 6722 constituent nodes. The second column in table 5

shows the number of nodes generated by each parser rule.

The fourth column shows the cumulative percentage. With

a few general rules reasonable accuracy can be achieved,

but producing increased accuracy from the parser requires

writing a larger number of specialized rules.

Table 5. Top 10 most common partial parsing rules

Parser rule Nodes % Cum. %

C  N+ 2104 31.30 31.30

C  C + Q 1104 16.42 47.72

C  named entity 1049 15.61 63.33

EV  contains V 761 11.32 74.65

LN  contains AUX + C 550 8.18 82.83

C  C + P + C 362 5.39 88.22

V  P + V 176 2.62 90.84

LN  contains AUX 138 2.05 92.89

C  C + POS + C 96 1.43 94.32

AUX  AUX + NEG 81 1.20 95.52

7. References
[1] S. Abney. Partial Parsing via Finite-State Cascades, in

Workshop on Robust Parsing (ESSLLI), 1996.

[2] S. Abney. The SCOL Manual, http://www.vinartus.net/spa,

1997.

[3] C. Baker, C. Fillmore, J. Lowe. The Berkeley FrameNet

project, in Proceedings of COLING/ACL, 1998.

[4] D. Bikel. Intricacies of Collins' Parsing Model,

Computational Linguistics, 30(4), 2004.

[5] E. Brill. Transformation-based error-driven learning and

natural language processing: A case study in part-of-speech

tagging, Computational linguistics, 1995.

[6] J. Chen, A. Diekema, et al. Question answering: CNLP at the

TREC-10 question answering track. In Proceedings of the

Tenth Text REtrieval Conference, 2001.

[7] J. Gimenez, L. Marquez. SVMTool: A general POS tagger

generator based on Support Vector Machines. In Proceedings

of the 4th International Conference on Language Resources

and Evaluation, 2004.

[8] M. Palmer, G. Daniel, K, Paul. The proposition bank: An

annotated corpus of semantic roles, Computational

Linguistics, 31(1), 2005.

[9] A. Ramsay, H. Seville. Models and Discourse Models,

Journal of Language and Computation, 1(2), 2000.

[10] D. Sleator, D. Temperley. Parsing English with a Link

Grammar, Third International Workshop on Parsing

Technologies, 1993.

[11] R. Wallace. The Annotated A.L.I.C.E. AIML,

http://www.alicebot.org/aiml/aaa, 2007

22

