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Abstract

Humans gather information through conver-
sations involving a series of interconnected
questions and answers. For machines to assist
in information gathering, it is therefore essen-
tial to enable them to answer conversational
questions. We introduce CoQA, a novel data-
set for building Conversational Question An-
swering systems. Our dataset contains 127k
questions with answers, obtained from 8k
conversations about text passages from seven
diverse domains. The questions are conver-
sational, and the answers are free-form text
with their corresponding evidence highlighted
in the passage. We analyze CoQA in depth
and show that conversational questions have
challenging phenomena not present in existing
reading comprehension datasets (e.g., coref-
erence and pragmatic reasoning). We evaluate
strong dialogue and reading comprehension
models on CoQA. The best system obtains an
F1 score of 65.4%, which is 23.4 points behind
human performance (88.8%), indicating that
there is ample room for improvement. We
present CoQA as a challenge to the commu-
nity athttps://stanfordnlp.github.
io/coqa.

1 Introduction

We ask other people a question to either seek or
test their knowledge about a subject. Depending on
their answer, we follow up with another question
and their second answer builds on what has already
been discussed. This incremental aspect makes
human conversations succinct. An inability to
build and maintain common ground in this way is
part of why virtual assistants usually don’t seem
like competent conversational partners. In this

∗The first two authors contributed equally.

paper, we introduce CoQA,1 a Conversational
Question Answering dataset for measuring the
ability of machines to participate in a question-
answering style conversation. In CoQA, a machine
has to understand a text passage and answer a
series of questions that appear in a conversation.
We develop CoQA with three main goals in mind.

The first concerns the nature of questions in a
human conversation. Figure 1 shows a conver-
sation between two humans who are reading a
passage, one acting as a questioner and the other as
an answerer. In this conversation, every question
after the first is dependent on the conversation
history. For instance, Q5 (Who?) is only a single
word and is impossible to answer without knowing
what has already been said. Posing short questions
is an effective human conversation strategy, but
such questions are difficult for machines to parse.
As is well known, state-of-the-art models rely
heavily on lexical similarity between a question
and a passage (Chen et al., 2016; Weissenborn
et al., 2017). At present, there are no large-
scale reading comprehension datasets that contain
questions that depend on a conversation history
(see Table 1) and this is what CoQA is mainly
developed for.2

The second goal of CoQA is to ensure the
naturalness of answers in a conversation. Many
existing QA datasets restrict answers to contiguous
text spans in a given passage (Table 1). Such
answers are not always natural—for example,
there is no span-based answer to Q4 (How many?)
in Figure 1. In CoQA, we propose that the answers
can be free-form text, while for each answer, we
also provide a text span from the passage as a
rationale to the answer. Therefore, the answer
to Q4 is simply Three and its rationale spans

1CoQA is pronounced as coca.
2Concurrent with our work, Choi et al. (2018) also created

a conversational dataset with a similar goal, but it differs in
many aspects. We discuss the details in Section 7.
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Figure 1: A conversation from the CoQA dataset. Each
turn contains a question (Qi), an answer (Ai), and a
rationale (Ri) that supports the answer.

across multiple sentences. Free-form answers have
been studied in previous reading comprehension
datasets for example, MS MARCO (Nguyen
et al., 2016) and NarrativeQA (Kočiskỳ et al.,
2018), and metrics such as BLEU or ROUGE
are used for evaluation due to the high variance
of possible answers. One key difference in our
setting is that we require answerers to first select
a text span as the rationale and then edit it to
obtain a free-form answer.3 Our method strikes
a balance between naturalness of answers and
reliable automatic evaluation, and it results in a
high human agreement (88.8% F1 word overlap
among human annotators).

The third goal of CoQA is to enable building
QA systems that perform robustly across domains.
The current QA datasets mainly focus on a single
domain, which makes it hard to test the gen-
eralization ability of existing models. Hence we
collect our dataset from seven different domains—
children’s stories, literature, middle and high
school English exams, news, Wikipedia, Reddit, and

3In contrast, in NarrativeQA, the annotators were encour-
aged to use their own words and copying was not allowed in
their interface.

science. The last two are used for out-of-domain
evaluation.

To summarize, CoQA has the following key
characteristics:

• It consists of 127k conversation turns col-
lected from 8k conversations over text pas-
sages. The average conversation length is
15 turns, and each turn consists of a question
and an answer.

• It contains free-form answers and each an-
swer has a span-based rationale highlighted
in the passage.

• Its text passages are collected from seven di-
verse domains: five are used for in-domain
evaluation and two are used for out-of-
domain evaluation.

Almost half of CoQA questions refer back
to conversational history using anaphors, and a
large portion require pragmatic reasoning, making
it challenging for models that rely on lexical
cues alone. We benchmark several deep neural
network models, building on top of state-of-
the-art conversational and reading comprehension
models (Section 5). The best-performing system
achieves an F1 score of 65.4%. In contrast, humans
achieve 88.8% F1, 23.4% F1 higher, indicating
that there is a considerable room for improvement.

2 Task Definition

Given a passage and a conversation so far, the task
is to answer the next question in the conversation.
Each turn in the conversation contains a question
and an answer.

For the example in Figure 2, the conversation
begins with question Q1. We answer Q1 with A1

based on the evidence R1, which is a contiguous
text span from the passage. In this example,
the answerer only wrote the Governor as the
answer but selected a longer rationale The Virginia
governor’s race.

When we come to Q2 (Where?), we must
refer back to the conversation history, otherwise
its answer could be Virginia or Richmond or
something else. In our task, conversation history
is indispensable for answering many questions.
We use conversation history Q1 and A1 to answer
Q2 with A2 based on the evidence R2. Formally,
to answer Qn, it depends on the conversation
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Dataset Conversational Answer Type Domain

MCTest (Richardson et al., 2013) 7 Multiple choice Children’s stories
CNN/Daily Mail (Hermann et al., 2015) 7 Spans News
Children’s book test (Hill et al., 2016) 7 Multiple choice Children’s stories
SQuAD (Rajpurkar et al., 2016) 7 Spans Wikipedia
MS MARCO (Nguyen et al., 2016) 7 Free-form text, Unanswerable Web Search
NewsQA (Trischler et al., 2017) 7 Spans News
SearchQA (Dunn et al., 2017) 7 Spans Jeopardy
TriviaQA (Joshi et al., 2017) 7 Spans Trivia
RACE (Lai et al., 2017) 7 Multiple choice Mid/High School Exams
Narrative QA (Kočiskỳ et al., 2018) 7 Free-form text Movie Scripts, Literature
SQuAD 2.0 (Rajpurkar et al., 2018) 7 Spans, Unanswerable Wikipedia
CoQA (this work) 3 Free-form text, Unanswerable; Children’s Stories, Literature,

Each answer comes with a Mid/High School Exams, News,
text span rationale Wikipedia, Reddit, Science

Table 1: Comparison of CoQA with existing reading comprehension datasets.

Figure 2: A conversation showing coreference
chains in color. The entity of focus changes in Q4,
Q5, and Q6.

history: Q1, A1, . . ., Qn−1, An−1. For an un-
answerable question, we give unknown as the
final answer and do not highlight any rationale.

In this example, we observe that the entity of
focus changes as the conversation progresses. The
questioner uses his to refer to Terry in Q4 and he to
Ken in Q5. If these are not resolved correctly, we
end up with incorrect answers. The conversational

nature of questions requires us to reason from
multiple sentences (the current question and the
previous questions or answers, and sentences from
the passage). It is common that a single question
may require a rationale spanning across multiple
sentences (e.g., Q1, Q4, and Q5 in Figure 1). We
describe additional question and answer types in
Section 4.

Note that we collect rationales as (optional)
evidence to help answer questions. However, they
are not provided at testing time. A model needs
to decide on the evidence by itself and derive the
final answer.

3 Dataset Collection

For each conversation, we use two annotators,
a questioner and an answerer. This setup has
several advantages over using a single annotator
to act both as a questioner and an answerer: 1)
when two annotators chat about a passage, their
dialogue flow is natural; 2) when one annotator
responds with a vague question or an incorrect
answer, the other can raise a flag, which we use
to identify bad workers; and 3) the two annotators
can discuss guidelines (through a separate chat
window) when they have disagreements. These
measures help to prevent spam and to obtain high
agreement data.4 We use Amazon Mechanical
Turk to pair workers on a passage through the
ParlAI MTurk API (Miller et al., 2017).

4Due to Amazon Mechanical Turk terms of service, we
allowed a single worker to act both as a questioner and an
answerer after a minute of waiting. This constitutes around
12% of the data. We include this data in the training set only.

3



3.1 Collection Interface
We have different interfaces for a questioner and
an answerer (see Appendix). A questioner’s role
is to ask questions, and an answerer’s role is
to answer questions in addition to highlighting
rationales. Both questioner and answerer see the
conversation that happened until now, that is,
questions and answers from previous turns and
rationales are kept hidden. While framing a new
question, we want questioners to avoid using exact
words in the passage in order to increase lexical
diversity. When they type a word that is already
present in the passage, we alert them to paraphrase
the question if possible. While answering, we want
answerers to stick to the vocabulary in the passage
in order to limit the number of possible answers.
We encourage this by asking them to first highlight
a rationale (text span), which is then automatically
copied into the answer box, and we further ask
them to edit the copied text to generate a natural
answer. We found 78% of the answers have at
least one edit such as changing a word’s case or
adding a punctuation.

3.2 Passage Selection
We select passages from seven diverse domains:
children’s stories from MCTest (Richardson et al.,
2013), literature from Project Gutenberg,5 middle
and high school English exams from RACE (Lai
et al., 2017), news articles from CNN (Hermann
et al., 2015), articles from Wikipedia, Reddit arti-
cles from the Writing Prompts dataset (Fan et al.,
2018), and science articles from AI2 Science
Questions (Welbl et al., 2017).

Not all passages in these domains are equally
good for generating interesting conversations.
A passage with just one entity often results in
questions that entirely focus on that entity. There-
fore, we select passages with multiple entities,
events, and pronominal references using Stanford
CoreNLP (Manning et al., 2014). We truncate
long articles to the first few paragraphs that result
in around 200 words.

Table 2 shows the distribution of domains. We
reserve the Reddit and Science domains for out-
of-domain evaluation. For each in-domain dataset,
we split the data such that there are 100 passages
in the development set, 100 passages in the test
set, and the rest in the training set. For each out-

5Project Gutenberg https://www.gutenberg.org.

#Q/A Passage #Turns per
Domain #Passages pairs length passage

In-domain
Children’s Sto. 750 10.5k 211 14.0
Literature 1,815 25.5k 284 15.6
Mid/High Sch. 1,911 28.6k 306 15.0
News 1,902 28.7k 268 15.1
Wikipedia 1,821 28.0k 245 15.4

Out-of-domain
Reddit 100 1.7k 361 16.6
Science 100 1.5k 251 15.3
Total 8,399 127k 271 15.2

Table 2: Distribution of domains in CoQA.

of-domain dataset, we only have 100 passages in
the test set.

3.3 Collecting Multiple Answers
Some questions in CoQA may have multiple
valid answers. For example, another answer to
Q4 in Figure 2 is A Republican candidate. In
order to account for answer variations, we collect
three additional answers for all questions in the
development and test data. Because our data
are conversational, questions influence answers,
which in turn influence the follow-up questions.
In the previous example, if the original answer
was A Republican Candidate, then the following
question Which party does he belong to? would not
have occurred in the first place. When we show
questions from an existing conversation to new
answerers, it is likely they will deviate from the
original answers, which makes the conversation
incoherent. It is thus important to bring them to a
common ground with the original answer.

We achieve this by turning the answer collection
task into a game of predicting original answers.
First, we show a question to an answerer, and
when she answers it, we show the original answer
and ask her to verify if her answer matches the
original. For the next question, we ask her to guess
the original answer and verify again. We repeat
this process with the same answerer until the
conversation is complete. The entire conversation
history is shown at each turn (question, answer,
original answer for all previous turns but not the
rationales). In our pilot experiment, the human
F1 score is increased by 5.4% when we use this
verification setup.
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Figure 3: Distribution of trigram prefixes of questions in SQuAD and CoQA.

4 Dataset Analysis

What makes the CoQA dataset conversational
compared to existing reading comprehension
datasets like SQuAD? What linguistic phenomena
do the questions in CoQA exhibit? How does the
conversation flow from one turn to the next? We
answer these questions in this section.

4.1 Comparison with SQuAD 2.0
SQuAD has been the main benchmark for read-
ing comprehension. In the following, we perform
an in-depth comparison of CoQA and the latest
version of SQuAD (Rajpurkar et al., 2018).
Figure 3(a) and Figure 3(b) show the distribution
of frequent trigram prefixes. Because of the free-
form nature of answers, we expect a richer variety
of questions in CoQA than in SQuAD. While
nearly half of SQuAD questions are dominated by
what questions, the distribution of CoQA is spread
across multiple question types. Several sectors
indicated by prefixes did, was, is, does, and and
are frequent in CoQA but are completely absent in
SQuAD. Whereas coreferences are non-existent
in SQuAD, almost every sector of CoQA contains
coreferences (he, him, she, it, they), indicating that
CoQA is highly conversational.

Because a conversation is spread over multiple
turns, we expect conversational questions and
answers to be shorter than in a standalone inter-
action. In fact, questions in CoQA can be made up
of just one or two words (who?, when?, why?). As
seen in Table 3, on average, a question in CoQA

SQuAD CoQA

Passage Length 117 271
Question Length 10.1 5.5
Answer Length 3.2 2.7

Table 3: Average number of words in passage,
question, and answer in SQuAD and CoQA.

SQuAD CoQA

Answerable 66.7% 98.7%
Unanswerable 33.3% 1.3%

Span found 100.0% 66.8%
No span found 0.0% 33.2%

Named Entity 35.9% 28.7%
Noun Phrase 25.0% 19.6%
Yes 0.0% 11.1%
No 0.1% 8.7%
Number 16.5% 9.8%
Date/Time 7.1% 3.9%
Other 15.5% 18.1%

Table 4: Distribution of answer types in SQuAD
and CoQA.

is only 5.5 words long whereas it is 10.1 for
SQuAD. The answers are a bit shorter in CoQA
than SQuAD because of the free-form nature of
the answers.

Table 4 provides insights into the type of
answers in SQuAD and CoQA. While the original
version of SQuAD (Rajpurkar et al., 2016) does
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Phenomenon Example Percentage

Relationship between a question and its passage

Lexical match Q: Who had to rescue her? 29.8%
A: the coast guard
R: Outen was rescued by the coast guard

Paraphrasing Q: Did the wild dog approach? 43.0%
A: Yes
R: he drew cautiously closer

Pragmatics Q: Is Joey a male or female? 27.2%
A: Male
R: it looked like a stick man so she kept him.
She named her new noodle friend Joey

Relationship between a question and its conversation history

No coref. Q: What is IFL? 30.5%
Explicit coref. Q: Who had Bashti forgotten? 49.7%

A: the puppy
Q: What was his name?

Implicit coref. Q: When will Sirisena be sworn in? 19.8%
A: 6 p.m local time
Q: Where?

Table 5: Linguistic phenomena in CoQA questions.

not have any unanswerable questions, the later
version (Rajpurkar et al., 2018) focuses solely
on obtaining them, resulting in higher frequency
than in CoQA. SQuAD has 100% span-based
answers by design, whereas in CoQA, 66.8% of
the answers overlap with the passage after ignoring
punctuation and case mismatches.6 The rest of the
answers, 33.2%, do not exactly overlap with the
passage (see Section 4.3). It is worth noting that
CoQA has 11.1% and 8.7% questions with yes
or no as answers whereas SQuAD has 0%. Both
datasets have a high number of named entities and
noun phrases as answers.

4.2 Linguistic Phenomena
We further analyze the questions for their rela-
tionship with the passages and the conversation
history. We sample 150 questions in the devel-
opment set and annotate various phenomena as
shown in Table 5.

If a question contains at least one content word
that appears in the rationale, we classify it as
lexical match. These constitute around 29.8% of
the questions. If it has no lexical match but is a

6If punctuation and case are not ignored, only 37% of the
answers can be found as spans.

paraphrase of the rationale, we classify it as
paraphrasing. These questions contain phenom-
ena such as synonymy, antonymy, hypernymy,
hyponymy, and negation. These constitute a large
portion of questions, around 43.0%. The rest,
27.2%, have no lexical cues, and we classify them
as pragmatics. These include phenomena like
common sense and presupposition. For example,
the question Was he loud and boisterous? is not a
direct paraphrase of the rationale he dropped his
feet with the lithe softness of a cat but the ratio-
nale combined with world knowledge can answer
this question.

For the relationship between a question and its
conversation history, we classify questions into
whether they are dependent or independent of the
conversation history. If dependent, whether the
questions contain an explicit marker or not. Our
analysis shows that around 30.5% questions do
not rely on coreference with the conversational
history and are answerable on their own. Almost
half of the questions (49.7%) contain explicit
coreference markers such as he, she, it. These
either refer to an entity or an event introduced
in the conversation. The remaining 19.8% do not
have explicit coreference markers but refer to an
entity or event implicitly (these are often cases of
ellipsis, as in the examples in Table 5).
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Answer Type Example Percentage

Yes Q: is MedlinePlus optimized for mobile? 48.5%
A: Yes
R: There is also a site optimized for display on mobile devices

No Q: Is it played outside? 30.3%
A: No
R: AFL is the highest level of professional indoor American football

Fluency Q: Why? 14.3%
A: so the investigation could continue
R: while the investigation continued

Counting Q: how many languages is it offered in? 5.1%
A: Two
R: The service provides curated consumer health information in English and Spanish

Multiple choice Q: Is Jenny older or younger? 1.8%
A: Older
R: her baby sister is crying so loud that Jenny can’t hear herself

Fine grained breakdown of Fluency
Multiple edits Q: What did she try just before that? 41.4%

A: She gave her a toy horse.
R: She would give her baby sister one of her toy horses.
(morphology: give→ gave, horses→ horse; delete: would, baby sister one of her; insert: a)

Coreference insertion Q: what is the cost to end users? 16.0%
A: It is free
R: The service is funded by the NLM and is free to users

Morphology Q: Who was messing up the neighborhoods? 13.9%
A: vandals
R: vandalism in the neighborhoods

Article insertion Q: What would they cut with? 7.2%
A: an ax
R: the heavy ax

Adverb insertion Q: How old was the diary? 4.2%
A: 190 years old
R: kept 190 years ago

Adjective deletion Q: What type of book? 4.2%
A: A diary.
R: a 120-page diary

Preposition insertion how long did it take to get to the fire? 3.4%
A: Until supper time!
R: By the time they arrived, it was almost supper time.

Adverb deletion Q: What had happened to the ice? 3.0%
A: It had changed
R: It had somewhat changed its formation when they approached it

Conjunction insertion Q: what else do they get for their work? 1.3%
A: potatoes and carrots
R: paid well, both in potatoes, carrots

Noun insertion Q: Who did 1.3%
A: Comedy Central employee
R: But it was a Comedy Central account

Coreference deletion Q: What is the story about? 1.2%
A: A girl and a dog
R: This is the story of a young girl and her dog

Noun deletion Q: What is the ranking in the country in terms of people studying? 0.8%
A: the fourth largest population
R: and has the fourth largest student population

Possesive insertion Q: Whose diary was it? 0.8%
A: Deborah Logan’s
R: a 120-page diary kept 190 years ago by Deborah Logan

Article deletion Q: why? 0.8%
A: They were going to the circus
R: They all were going to the circus to see the clowns

Table 6: Analysis of answers that don’t overlap with the passage.
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4.3 Analysis of Free-form Answers
Because of the free-form nature of CoQA’s
answers, around 33.2% of them do not exactly
overlap with the given passage. We analyze
100 conversations to study the behavior of such
answers.7 As shown in Table 6, the answers Yes
and No constitute 48.5% and 30.3%, respectively,
totaling 78.8%. The next majority, around 14.3%,
are edits to text spans to improve the fluency (nat-
uralness) of answers. More than two thirds of these
edits are just one-word edits, either inserting or
deleting a word. This indicates that text spans are a
good approximation for natural answers—positive
news for span-based reading comprehension mod-
els. The remaining one third involve multiple
edits. Although multiple edits are challenging to
evaluate using automatic metrics, we observe that
many of these answers partially overlap with pas-
sage, indicating that word overlap is still a reliable
automatic evaluation metric in our setting. The
rest of the answers include counting (5.1%) and
selecting a choice from the question (1.8%).

4.4 Conversation Flow
A coherent conversation must have smooth tran-
sitions between turns. We expect the narrative
structure of the passage to influence our conver-
sation flow. We split each passage into 10 uniform
chunks, and identify chunks of interest in a given
turn and its transition based on rationale spans.
Figure 4 shows the conversation flow of the first
10 turns. The starting turns tend to focus on the
first few chunks and as the conversation advances,
the focus shifts to the later chunks. Moreover,
the turn transitions are smooth, with the focus
often remaining in the same chunk or moving to a
neighboring chunk. Most frequent transitions hap-
pen to the first and the last chunks, and likewise
these chunks have diverse outward transitions.

5 Models

Given a passage p, the conversation history
{q1, a1, . . . qi−1, ai−1}, and a question qi, the task
is to predict the answer ai. Gold answers a1,
a2, . . . , ai−1 are used to predict ai, similar to the
setup discussed in Section 3.3.

Our task can either be modeled as a con-
versational response generation problem or a
reading comprehension problem. We evaluate

7We only pick the questions in which none of its answers
can be found as a span in the passage.

Figure 4: Chunks of interest as a conversation
progresses. Each chunk is one tenth of a passage.
The x-axis indicates the turn number and the y-axis
indicates the chunk containing the rationale. The height
of a chunk indicates the concentration of conversation
in that chunk. The width of the bands is proportional to
the frequency of transition between chunks from one
turn to the next.

strong baselines from each modeling type and
a combination of the two on CoQA.

5.1 Conversational Models
Sequence-to-sequence (seq2seq) models have
shown promising results for generating conversa-
tional responses (Vinyals and Le, 2015; Serban
et al., 2016; Zhang et al., 2018). Motivated by their
success, we use a sequence-to-sequence with at-
tention model for generating answers (Bahdanau
et al., 2015). We append the conversation his-
tory and the current question to the passage, as
p <q> qi−n <a> ai−n . . . <q> qi−1 <a> ai−1
<q> qi, and feed it into a bidirectional long
short-term memory (LSTM) encoder, where n is
the size of the history to be used. We generate
the answer using an LSTM decoder which attends
to the encoder states. Additionally, as the answer
words are likely to appear in the original passage,
we employ a copy mechanism in the decoder
which allows to (optionally) copy a word from
the passage (Gu et al., 2016; See et al., 2017).
This model is referred to as the Pointer-Generator
network, PGNet.

5.2 Reading Comprehension Models
The state-of-the-art reading comprehension mod-
els for extractive question answering focus on
finding a span in the passage that matches the
question best (Seo et al., 2016; Chen et al.,
2017; Yu et al., 2018). Because their answers are
limited to spans, they cannot handle questions
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whose answers do not overlap with the passage
(e.g., Q3, Q4, and Q5 in Figure 1). However, this
limitation makes them more effective learners than
conversational models, which have to generate
an answer from a large space of pre-defined
vocabulary.

We use the Document Reader (DrQA) model
of Chen et al. (2017), which has demonstrated
strong performance on multiple datasets (Rajpurkar
et al., 2016; Labutov et al., 2018). Because DrQA
requires text spans as answers during training, we
select the span that has the highest lexical overlap
(F1 score) with the original answer as the gold
answer. If the answer appears multiple times in
the story we use the rationale to find the correct
one. If any answer word does not appear in the
story, we fall back to an additional unknown token
as the answer (about 17% in the training set).
We prepend each question with its past questions
and answers to account for conversation history,
similar to the conversational models.

Considering that a significant portion of an-
swers in our dataset are yes or no (Table 4), we
also include an augmented reading comprehension
model for comparison. We add two additional
tokens, yes and no, to the end of the passage—if the
gold answer is yes or no, the model is required to
predict the corresponding token as the gold span;
otherwise it does the same as the previous model.
We refer to this model as Augmented DrQA.

5.3 A Combined Model
Finally, we propose a model that combines the
advantages from both conversational models and
extractive reading comprehension models. We use
DrQA with PGNet in a combined model, in which
DrQA first points to the answer evidence in the
text, and PGNet naturalizes the evidence into an
answer. For example, for Q5 in Figure 1, we expect
that DrQA first predicts the rationale R5, and then
PGNet generates A5 from R5.

We make a few changes to DrQA and PGNet
based on empirical performance. For DrQA, we
require the model to predict the answer directly
if the answer is a substring of the rationale, and
to predict the rationale otherwise. For PGNet,
we provide the current question and DrQA’s span
predictions as input to the encoder and the decoder
aims to predict the final answer.8

8We feed DrQA’s oracle spans into PGNet during training.

6 Evaluation

6.1 Evaluation Metric
Following SQuAD, we use macro-average F1
score of word overlap as our main evaluation
metric.9 We use the gold answers of history to
predict the next answer. In SQuAD, for computing
a model’s performance, each individual prediction
is compared against n human answers resulting
in n F1 scores, the maximum of which is chosen
as the prediction’s F1.10 For each question, we
average out F1 across thesen sets, both for humans
and models. In our final evaluation, we use n = 4
human answers for every question (the original
answer and 3 additionally collected answers).
The articles a, an, and the and punctuations are
excluded in evaluation.

6.2 Experimental Setup
For all the experiments of seq2seq and PGNet, we
use the OpenNMT toolkit (Klein et al., 2017) and
its default settings: 2-layers of LSTMs with 500
hidden units for both the encoder and the decoder.
The models are optimized using SGD, with an
initial learning rate of 1.0 and a decay rate of 0.5.
A dropout rate of 0.3 is applied to all layers.

For the DrQA experiments, we use the imple-
mentation from the original paper (Chen et al.,
2017). We tune the hyperparameters on the devel-
opment data: the number of turns to use from the
conversation history, the number of layers, num-
ber of each hidden units per layer, and dropout
rate. The best configuration we find is 3 layers of
LSTMs with 300 hidden units for each layer. A
dropout rate of 0.4 is applied to all LSTM layers
and a dropout rate of 0.5 is applied to word embed-
dings. We used Adam to optimize DrQA models.

We initialized the word projection matrix with
GloVe (Pennington et al., 2014) for conversational
models and fastText (Bojanowski et al., 2017) for
reading comprehension models, based on empiri-
cal performance. We update the projection matrix
during training in order to learn embeddings for
delimiters such as <q>.

9SQuAD also uses exact-match metric, however, we think
F1 is more appropriate for our dataset because of the free-
form answers.

10However, for computing human performance, a human
prediction is only compared against n − 1 human answers,
resulting in underestimating human performance. We fix this
bias by partitioning n human answers into n different sets,
each set containingn−1 answers, similar to Choi et al. (2018).

9



In-domain Out-of-dom. In-domain Out-of-dom.
Child. Liter. Mid-High. News Wiki. Reddit Science Overall Overall Overall

Development data
Seq2seq 30.6 26.7 28.3 26.3 26.1 N/A N/A 27.5 N/A 27.5
PGNet 49.7 42.4 44.8 45.5 45.0 N/A N/A 45.4 N/A 45.4
DrQA 52.4 52.6 51.4 56.8 60.3 N/A N/A 54.7 N/A 54.7
Augmt. DrQA 67.0 63.2 63.9 69.8 72.0 N/A N/A 67.2 N/A 67.2
DrQA+PGNet 64.5 62.0 63.8 68.0 72.6 N/A N/A 66.2 N/A 66.2
Human 90.7 88.3 89.1 89.9 90.9 N/A N/A 89.8 N/A 89.8

Test data
Seq2seq 32.8 25.6 28.0 27.0 25.3 25.6 20.1 27.7 23.0 26.3
PGNet 49.0 43.3 47.5 47.5 45.1 38.6 38.1 46.4 38.3 44.1
DrQA 46.7 53.9 54.1 57.8 59.4 45.0 51.0 54.5 47.9 52.6
Augmt. DrQA 66.0 63.3 66.2 71.0 71.3 57.7 63.0 67.6 60.2 65.4
DrQA+PGNet 64.2 63.7 67.1 68.3 71.4 57.8 63.1 67.0 60.4 65.1
Human 90.2 88.4 89.8 88.6 89.9 86.7 88.1 89.4 87.4 88.8

Table 7: Models and human performance (F1 score) on the development and the test data.

Augmt. DrQA+
Type Seq2seq PGNet DrQA DrQA PGNet Human

Answer Type
Answerable 27.5 45.4 54.7 67.3 66.3 89.9
Unanswerable 33.9 38.2 55.0 49.1 51.2 72.3
Span found 20.2 43.6 69.8 71.0 70.5 91.1
No span found 43.1 49.0 22.7 59.4 57.0 86.8
Named Entity 21.9 43.0 72.6 73.5 72.2 92.2
Noun Phrase 17.2 37.2 64.9 65.3 64.1 88.6
Yes 69.6 69.9 7.9 75.7 72.7 95.6
No 60.2 60.3 18.4 59.6 58.7 95.7
Number 15.0 48.6 66.3 69.0 71.7 91.2
Date/Time 13.7 50.2 79.0 83.3 79.1 91.5
Other 14.1 33.7 53.5 55.6 55.2 80.8

Question Type
Lexical Mat. 20.7 40.7 57.2 75.5 65.7 91.7
Paraphrasing 23.7 33.9 46.9 62.6 64.4 88.8
Pragmatics 33.9 43.1 57.4 64.1 60.6 84.2
No coref. 16.1 31.7 54.3 70.9 58.8 90.3
Exp. coref. 30.4 42.3 49.0 63.4 66.7 87.1
Imp. coref. 31.4 39.0 60.1 70.6 65.3 88.7

Table 8: Fine-grained results of different question and answer types in the development set. For the
question type results, we only analyze 150 questions as described in Section 4.2.

6.3 Results and Discussion

Table 7 presents the results of the models on the
development and test data. Considering the results
on the test set, the seq2seq model performs the
worst, generating frequently occurring answers
irrespective of whether these answers appear in
the passage or not, a well known behavior of
conversational models (Li et al., 2016). PGNet
alleviates the frequent response problem by focus-
ing on the vocabulary in the passage and it
outperforms seq2seq by 17.8 points. However,

it still lags behind DrQA by 8.5 points. A rea-
son could be that PGNet has to memorize the
whole passage before answering a question, a
huge overhead that DrQA avoids. But DrQA fails
miserably in answering questions with answers
that do not overlap with the passage (see row No
span found in Table 8). The augmented DrQA
circumvents this problem with additional yes/no
tokens, giving it a boost of 12.8 points. When
DrQA is fed into PGNet, we empower both
DrQA and PGNet—DrQA in producing free-form
answers, PGNet in focusing on the rationale

10



instead of the passage. This combination outper-
forms vanilla PGNet and DrQA models by 21.0
and 12.5 points, respectively, and is competitive
with the augmented DrQA (65.1 vs. 65.4).

Models vs. Humans The human performance
on the test data is 88.8 F1, a strong agreement indi-
cating that the CoQA’s questions have concrete
answers. Our best model is 23.4 points behind
humans.

In-domain vs. Out-of-domain All models per-
form worse on out-of-domain datasets compared
with in-domain datasets. The best model drops by
6.6 points. For in-domain results, both the best
model and humans find the literature domain
harder than the others because literature’s
vocabulary requires proficiency in English. For
out-of-domain results, the Reddit domain is ap-
parently harder. Whereas humans achieve high
performance on children’s stories, models perform
poorly, probably because of the fewer training
examples in this domain compared with others.11

Both humans and models find Wikipedia easy.

Error Analysis Table 8 presents fine-grained
results of models and humans on the development
set. We observe that humans have the highest
disagreement on the unanswerable questions. The
human agreement on answers that do not overlap
with passage is lower than on answers that do
overlap. This is expected because our evaluation
metric is based on word overlap rather than on
the meaning of words. For the question did Jenny
like her new room?, human answers she loved
it and yes are both accepted. Finding the perfect
evaluation metric for abstractive responses is still
a challenging problem (Liu et al., 2016; Chaganty
et al., 2018) and beyond the scope of our work.
For our models’ performance, seq2seq and PGNet
perform well on non-overlapping answers, and
DrQA performs well on overlapping answers,
thanks to their respective designs. The augmented
and combined models improve on both categories.

Among the different question types, humans
find lexical matches the easiest, followed by para-
phrasing, and pragmatics the hardest—this is ex-
pected because questions with lexical matches and
paraphrasing share some similarity with the pas-
sage, thus making them relatively easier to answer

11We collect children’s stories from MCTest, which con-
tains only 660 passages in total, of which we use 200 stories
for the development and the test sets.

History Augmt. DrQA+
size Seq2seq PGNet DrQA DrQA PGNet

0 24.0 41.3 50.4 62.7 61.5
1 27.5 43.9 54.7 66.8 66.2
2 21.4 44.6 54.6 67.2 66.0
all 21.0 45.4 52.3 64.5 64.3

Table 9: Results on the development set with
different history sizes. History size indicates the
number of previous turns prepended to the current
question. Each turn contains a question and its
answer.

than pragmatic questions. This is also the case with
the combined model, but we could not explain the
behavior of other models. Where humans find the
questions without coreferences easier than those
with coreferences, the models behave sporadi-
cally. Humans find implicit coreferences easier
than explicit coreferences. A conjecture is that
implicit coreferences depend directly on the previ-
ous turn, whereas explicit coreferences may have
long distance dependency on the conversation.

Importance of conversation history Finally,
we examine how important the conversation his-
tory is for the dataset. Table 9 presents the results
with a varied number of previous turns used
as conversation history. All models succeed at
leveraging history but the gains are little beyond
one previous turn. As we increase the history size,
the performance decreases.

We also perform an experiment on humans to
measure the trade-off between their performance
and the number of previous turns shown. Based
on the heuristic that short questions likely depend
on the conversation history, we sample 300 one or
two word questions, and collect answers to these
varying the number of previous turns shown.

When we do not show any history, human per-
formance drops to 19.9 F1, as opposed to 86.4 F1
when full history is shown. When the previous turn
(question and answer) is shown, their performance
boosts to 79.8 F1, suggesting that the previous turn
plays an important role in understanding the cur-
rent question. If the last two turns are shown, they
reach up to 85.3 F1, almost close to the perfor-
mance when the full history is shown. This sug-
gests that most questions in a conversation have a
limited dependency within a bound of two turns.

Augmented DrQA vs. Combined Model
Although the performance of the augmented
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Augmt. DrQA+
DrQA PGNet Human

Yes 76.2 72.5 97.7
No 64.0 57.5 96.8
Fluency 37.6 32.3 77.2
Counting 8.8 24.8 88.3
Multiple choice 0.0 46.4 94.3

Table 10: Error analysis of questions with answers
that do not overlap with the text passage.

DrQA is a bit better (0.3 F1 on the testing set)
than the combined model, the latter model has
the following benefits: 1) The combined model
provides a rationale for every answer, which can
be used to justify whether the answer is correct
or not (e.g., yes/no questions); and 2) we don’t
have to decide on the set of augmented classes
beforehand, which helps in answering a wide
range of questions like counting and multiple
choice (Table 10). We also look closer into the
outputs of the two models. Although the combined
model is still far from perfect, it does correctly
as desired in many examples—for example, for a
counting question, it predicts a rationale current
affairs, politics, and culture and generates an
answer three; for a question With who?, it predicts
a rationale Mary and her husband, Rick, and then
compresses it into Mary and Rick for improving
the fluency; and for a multiple choice question
Does this help or hurt their memory of the event?
it predicts a rationale this obsession may prevent
their brains from remembering and answers hurt.
We think there is still great room for improving the
combined model and we leave it to future work.

7 Related work

We organize CoQA’s relation to existing work
under the following criteria.

Knowledge source We answer questions about
text passages—our knowledge source. Another
common knowledge source is machine-friendly
databases, which organize world facts in the
form of a table or a graph (Berant et al., 2013;
Pasupat and Liang, 2015; Bordes et al., 2015;
Saha et al., 2018; Talmor and Berant, 2018).
However, understanding their structure requires
expertise, making it challenging to crowd-source
large QA datasets without relying on templates.
Like passages, other human-friendly sources are

images and videos (Antol et al., 2015; Das et al.,
2017; Hori et al., 2018).

Naturalness There are various ways to curate
questions: removing words from a declarative
sentence to create a fill-in-the-blank question
(Hermann et al., 2015), using a hand-written
grammar to create artificial questions (Weston
et al., 2016; Welbl et al., 2018), paraphrasing
artificial questions to natural questions (Saha et al.,
2018; Talmor and Berant, 2018), or, in our case,
letting humans ask natural questions (Rajpurkar
et al., 2016; Nguyen et al., 2016). While the for-
mer enable collecting large and cheap datasets,
the latter enable collecting natural questions.

Recent efforts emphasize collecting questions
without seeing the knowledge source in order
to encourage the independence of question and
documents (Joshi et al., 2017; Dunn et al., 2017;
Kočiskỳ et al., 2018). Because we allow a ques-
tioner to see the passage, we incorporate measures
to increase independence, although complete inde-
pendence is not attainable in our setup (Section 3.1).
However, an advantage of our setup is that the
questioner can validate the answerer on the spot
resulting in high agreement data.

Conversational Modeling Our focus is on ques-
tions that appear in a conversation. Iyyer et al.
(2017) and Talmor and Berant (2018) break down
a complex question into a series of simple ques-
tions mimicking conversational QA. Our work is
closest to Das et al. (2017) and Saha et al. (2018),
who perform conversational QA on images and a
knowledge graph, respectively, with the latter focus-
ing on questions obtained by paraphrasing templates.

In parallel to our work, Choi et al. (2018) also
created a dataset of conversations in the form of
questions and answers on text passages. In our
interface, we show a passage to both the questioner
and the answerer, whereas their interface only
shows a title to the questioner and the full passage
to the answerer. Because their setup encourages
the answerer to reveal more information for the fol-
lowing questions, their average answer length is
15.1 words (our average is 2.7). While the human per-
formance on our test set is 88.8 F1, theirs is 74.6 F1.
Moreover, although CoQA’s answers can be free-
form text, their answers are restricted only to ex-
tractive text spans. Our dataset contains passages
from seven diverse domains, whereas their dataset
is built only from Wikipedia articles about people.
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Concurrently, Saeidi et al. (2018) created a con-
versational QA dataset for regulatory text such as
tax and visa regulations. Their answers are limited
to yes or no along with a positive characteristic of
permitting to ask clarification questions when a
given question cannot be answered. Elgohary et al.
(2018) proposed a sequential question answer-
ing dataset collected from Quiz Bowl tourna-
ments, where a sequence contains multiple related
questions. These questions are related to the same
concept while not focusing on the dialogue aspects
(e.g., coreference). Zhou et al. (2018) is another
dialogue dataset based on a single movie-related
Wikipedia article, in which two workers are asked
to chat about the content. Their dataset is more
like chit-chat style conversations whereas our
dataset focuses on multi-turn question answering.

Reasoning Our dataset is a testbed of various rea-
soning phenomena occurring in the context of a con-
versation (Section 4). Our work parallels a growing
interest in developing datasets that test specific
reasoning abilities: algebraic reasoning (Clark,
2015), logical reasoning (Weston et al., 2016),
common sense reasoning (Ostermann et al., 2018),
and multi-fact reasoning (Welbl et al., 2018;
Khashabi et al., 2018; Talmor and Berant, 2018).

Recent Progress on CoQA Since we first re-
leased the dataset in August 2018, the progress
of developing better models on CoQA has been
rapid. Instead of simply prepending the current
question with its previous questions and answers,
Huang et al. (2019) proposed a more sophisticated
solution to effectively stack single-turn models
along the conversational flow. Others (e.g., Zhu
et al., 2018) attempted to incorporate the most
recent pretrained language representation model
BERT (Devlin et al., 2018)12 into CoQA and
demonstrated superior results. As of the time we
finalized the paper (Jan 8, 2019), the state-of-art
F1 score on the test set was 82.8.

8 Conclusions

In this paper, we introduced CoQA, a large
scale dataset for building conversational question
answering systems. Unlike existing reading
comprehension datasets, CoQA contains conver-
sational questions, free-form answers along with

12Pretrained BERT models were released in November
2018, which have demonstrated large improvements across
a wide variety of NLP tasks.

text spans as rationales, and text passages from
seven diverse domains. We hope this work will stir
more research in conversational modeling, a key
ingredient for enabling natural human–machine
communication.
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Figure 5: Annotation interfaces for questioner (top) and answerer (bottom).

Appendix

Worker Selection

First each worker has to pass a qualification test
that assesses their understanding of the guide-
lines of conversational QA. The success rate for
the qualification test is 57% with 960 attempted
workers. The guidelines indicate this is a conver-
sation about a passage in the form of questions
and answers, an example conversation and do’s
and don’ts. However, we give complete freedom
for the workers to judge what is good and bad
during the real conversation. This helped us in

curating diverse categories of questions that were
not present in the guidelines (e.g., true or false,
fill in the blank and time series questions). We
pay workers an hourly wage around 8–15 USD.

Annotation Interface
Figure 5 shows the annotation interfaces for both
questioners and answerers.

Additional Examples
We provide additional examples in Figure 7 and
Figure 6.
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Figure 6: In this example, the questioner explores
questions related to time.

Figure 7: A conversation containing No and unknown
as answers.
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