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Abstract

With the ever growing amount of textual data
from a large variety of languages, domains,
and genres, it has become standard to evalu-
ate NLP algorithms on multiple datasets in or-
der to ensure a consistent performance across
heterogeneous setups. However, such multi-
ple comparisons pose significant challenges to
traditional statistical analysis methods in NLP
and can lead to erroneous conclusions. In
this paper we propose a Replicability Analy-
sis framework for a statistically sound anal-
ysis of multiple comparisons between algo-
rithms for NLP tasks. We discuss the theo-
retical advantages of this framework over the
current, statistically unjustified, practice in the
NLP literature, and demonstrate its empirical
value across four applications: multi-domain
dependency parsing, multilingual POS tag-
ging, cross-domain sentiment classification
and word similarity prediction. 1

1 Introduction

The field of Natural Language Processing (NLP) is
going through the data revolution. With the persis-
tent increase of the heterogeneous web, for the first
time in human history, written language from mul-
tiple languages, domains, and genres is now abun-
dant. Naturally, the expectations from NLP algo-
rithms also grow and evaluating a new algorithm on
as many languages, domains, and genres as possible
is becoming a de-facto standard.

1Our code is at: https://github.com/rtmdrr/replicability-
analysis-NLP .

For example, the phrase structure parsers of Char-
niak (2000) and Collins (2003) were mostly evalu-
ated on the Wall Street Journal Penn Treebank (Mar-
cus et al., 1993), consisting of written, edited En-
glish text of economic news. In contrast, modern
dependency parsers are expected to excel on the 19
languages of the CoNLL 2006-2007 shared tasks
on multilingual dependency parsing (Buchholz and
Marsi, 2006; Nilsson et al., 2007), and additional
challenges, such as the shared task on parsing mul-
tiple English Web domains (Petrov and McDonald,
2012), are continuously proposed.

Despite the growing number of evaluation tasks,
the analysis toolbox employed by NLP researchers
has remained quite stable. Indeed, in most exper-
imental NLP papers, several algorithms are com-
pared on a number of datasets where the perfor-
mance of each algorithm is reported together with
per-dataset statistical significance figures. However,
with the growing number of evaluation datasets, it
becomes more challenging to draw comprehensive
conclusions from such comparisons. This is because
although the probability of drawing an erroneous
conclusion from a single comparison is small, with
multiple comparisons the probability of making one
or more false claims may be very high.

The goal of this paper is to provide the NLP com-
munity with a statistical analysis framework, which
we term Replicability Analysis, which will allow us
to draw statistically sound conclusions in evalua-
tion setups that involve multiple comparisons. The
classical goal of replicability analysis is to examine
the consistency of findings across studies in order
to address the basic dogma of science, that a find-
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ing is more convincingly true if it is replicated in
at least one more study (Heller et al., 2014; Patil et
al., 2016). We adapt this goal to NLP, where we
wish to ascertain the superiority of one algorithm
over another across multiple datasets, which may
come from different languages, domains, and gen-
res. Finding that one algorithm outperforms another
across domains gives a sense of consistency to the
results and positive evidence that the better perfor-
mance is not specific to a selected setup.2

In this work we address two questions: (1) Count-
ing: For how many datasets does a given algorithm
outperform another? and (2) Identification: What
are these datasets?

When comparing two algorithms on multiple
datasets, NLP papers often answer informally the
questions we address in this work. In some cases
this is done without any statistical analysis, by sim-
ply declaring better performance of a given algo-
rithm for datasets where its performance measure is
better than that of another algorithm, and counting
these datasets. In other cases answers are based on
the p-values from statistical tests performed for each
dataset: declaring better performance for datasets
with p-value below the significance level (e.g. 0.05)
and counting these datasets. While it is clear that the
first approach is not statistically valid, it seems that
our community is not aware of the fact that the sec-
ond approach, which may seem statistically sound,
is not valid as well. This may lead to erroneous con-
clusions, which result in adopting new (and probably
complicated) algorithms, while they are not better
than previous (probably more simple) ones.

In this work, we demonstrate this problem and
show that it becomes more severe as the number of
evaluation sets grows, which seems to be the current
trend in NLP. We adopt a known general statistical
methodology for addressing the counting (question
(1)) and identification (question (2)) problems, by
choosing the tests and procedures which are valid for

2“Replicability” is sometimes referred to as “reproducibil-
ity”. In recent NLP work the term reproducibility was used
when trying to get identical results on the same data (Névéol et
al., 2016; Marrese-Taylor and Matsuo, 2017). In this paper, we
adopt the meaning of “replicability” and its distinction from “re-
producibility” from Peng (2011) and Leek and Peng (2015) and
refer to replicability analysis as the effort to show that a finding
is consistent over different datasets from different domains or
languages, and is not idiosyncratic to a specific scenario.

situations encountered in NLP problems, and giving
specific recommendations for such situations.

Particularly, we first demonstrate (Section 3) that
the current prominent approach in the NLP litera-
ture, identifying the datasets for which the difference
between the performance of the algorithms reaches a
predefined significance level according to some sta-
tistical significance test, does not guarantee to bound
the probability to make at least one erroneous claim.
Hence this approach is error-prone when the num-
ber of participating datasets is large. We thus pro-
pose an alternative approach (Section 4). For ques-
tion (1), we adopt the approach of Benjamini et al.
(2009) to replicability analysis of multiple studies,
based on the partial conjunction framework of Ben-
jamini and Heller (2008). This analysis comes with
a guarantee that the probability of overestimating the
true number of datasets with effect is upper bounded
by a predefined constant. For question (2), we mo-
tivate a multiple testing procedure which guarantees
that the probability of making at least one erroneous
claim on the superiority of one algorithm over an-
other is upper bounded by a predefined constant.

In Sections 5 and 6 we demonstrate how to ap-
ply the proposed frameworks to two synthetic data
toy examples and four NLP applications: multi-
domain dependency parsing, multilingual POS tag-
ging, cross-domain sentiment classification, and
word similarity prediction with word embedding
models. Our results demonstrate that the current
practice in NLP for addressing our questions is
error-prone, and illustrate the differences between it
and the proposed statistically sound approach.

We hope that this work will encourage our com-
munity to increase the number of standard evalua-
tion setups per task when appropriate (e.g. including
additional languages and domains), possibly paving
the way to hundreds of comparisons per study. This
is due to two main reasons. First, replicability anal-
ysis is a statistically sound framework that allows
a researcher to safely draw valid conclusions with
well defined statistical guarantees. Moreover, this
framework provides a means of summarizing a large
number of experiments with a handful of easily in-
terpretable numbers (e.g., see Table 1). This allows
researchers to report results over a large number of
comparisons in a concise manner, delving into de-
tails of particular comparisons when necessary.
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2 Previous Work

Our work recognizes the current trend in the NLP
community where, for many tasks and applications,
the number of evaluation datasets constantly in-
creases. We believe this trend is inherent to language
processing technology due to the multiplicity of lan-
guages and of linguistic genres and domains. In or-
der to extend the reach of NLP algorithms, they have
to be designed so that they can deal with many lan-
guages and with the various domains of each. Hav-
ing a sound statistical framework that can deal with
multiple comparisons is hence crucial for the field.

This section is hence divided into two. We start
by discussing representative examples for multiple
comparisons in NLP, focusing on evaluations across
multiple languages and multiple domains. We then
discuss existing analysis frameworks for multiple
comparisons, both in the NLP and in the machine
learning literatures, pointing to the need for estab-
lishing new standards for our community.

Multiple Comparisons in NLP Multiple compar-
isons of algorithms over datasets from different lan-
guages, domains and genres have become a de-facto
standard in many areas of NLP. Here we survey a
number of representative examples. A full list of
NLP tasks is beyond the scope of this paper.

A common multilingual example is, naturally,
machine translation, where it is customary to com-
pare algorithms across a large number of source-
target language pairs. This is done, for example,
with the Europarl corpus consisting of 21 European
languages (Koehn, 2005; Koehn and Schroeder,
2007) and with the datasets of the WMT workshop
series with its multiple domains (e.g. news and
biomedical in 2017), each consisting of several lan-
guage pairs (7 and 14, respectively, in 2017).

Multiple dataset comparisons are also abundant in
domain adaptation work. Representative tasks in-
clude named entity recognition (Guo et al., 2009),
POS tagging (Daumé III, 2007), dependency parsing
(Petrov and McDonald, 2012), word sense disam-
biguation (Chan and Ng, 2007) and sentiment clas-
sification (Blitzer et al., 2006; Blitzer et al., 2007).

More recently, with the emergence of crowd-
sourcing that makes data collection cheap and fast
(Snow et al., 2008), an ever growing number of
datasets is being created. This is particularly notice-

able in lexical semantics tasks that have become cen-
tral in NLP research due to the prominence of neu-
ral networks. For example, it is customary to com-
pare word embedding models (Mikolov et al., 2013;
Pennington et al., 2014; Ó Séaghdha and Korho-
nen, 2014; Levy and Goldberg, 2014; Schwartz et
al., 2015) on multiple datasets where word pairs are
scored according to the degree to which different se-
mantic relations, such as similarity and association,
hold between the members of the pair (Finkelstein
et al., 2001a; Bruni et al., 2014; Silberer and Lapata,
2014; Hill et al., 2015). In some works (e.g., Baroni
et al. (2014)) these embedding models are compared
across a large number of simple tasks.

As discussed in Section 1, the outcomes of
such comparisons are often summarized in a table
that presents numerical performance values, usu-
ally accompanied by statistical significance figures
and sometimes also with cross-comparison statistics
such as average performance figures. Here, we ana-
lyze the conclusions that can be drawn from this in-
formation and suggest that with the growing number
of comparisons, a more intricate analysis is required.

Existing Analysis Frameworks Machine learn-
ing work on multiple dataset comparisons dates back
to Dietterich (1998) who raised the question: “given
two learning algorithms and datasets from several
domains, which algorithm will produce more accu-
rate classifiers when trained on examples from new
domains?”. The seminal work that proposed practi-
cal means for this problem is that of Demšar (2006).
Given performance measures for two algorithms on
multiple datasets, the authors test whether there is at
least one dataset on which the difference between
the algorithms is statistically significant. For this
goal they propose methods such as a paired t-test,
a nonparametric sign-rank test and a wins/losses/ties
count, all computed across the results collected from
all participating datasets. In contrast, our goal is to
count and identify the datasets for which one algo-
rithm significantly outperforms the other, which pro-
vides more intricate information, especially when
the datasets come from different sources.

In NLP, several studies addressed the problem of
measuring the statistical significance of results on a
single dataset (e.g., Berg-Kirkpatrick et al. (2012);
Søgaard (2013); Søgaard et al. (2014)). Søgaard
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(2013) is, to the best of our knowledge, the only
work that addressed the statistical properties of eval-
uation with multiple datasets. For this aim he mod-
ified the statistical tests proposed in Demšar (2006)
to use a Gumbel distribution assumption on the test
statistics, which he considered to suit NLP better
than the original Gaussian assumption. However,
while this procedure aims to estimate the effect size
across datasets, it answers neither the counting nor
the identification question of Section 1.

In the next section we provide the preliminary
knowledge from the field of statistics that forms the
basis for the proposed framework and then proceed
with its description.

3 Preliminaries

We start by formulating a general hypothesis test-
ing framework for a comparison between two algo-
rithms. This is a common type of hypothesis testing
framework applied in NLP, its detailed formulation
will help us develop our ideas.

3.1 Hypothesis Testing

We wish to compare between two algorithms,
A and B. Let X be a collection of datasets
X = {X1, X2, . . . , XN}, where for all i ∈
{1, . . . , N}, Xi = {xi,1, . . . , xi,ni} . Each dataset
Xi can be of a different language or a different do-
main. We denote by xi,k the granular unit on which
results are being measured, that, in most NLP tasks,
is a word or a sequence of words. The difference
in performance between the two algorithms is mea-
sured using one or more of the evaluation measures
in the setM = {M1, . . . ,Mm}.3

Let us denoteMj(ALG,X
i) as the value of the

measureMj when algorithmALG is applied on the
dataset Xi. Without loss of generality, we assume
that higher values of the measure are better. We de-
fine the difference in performance between two al-
gorithms, A and B, according to the measure Mj

on the dataset Xi as:

δj(X
i) =Mj(A,X

i)−Mj(B,X
i).

3To keep the discussion concise, throughout this paper we
assume that only one evaluation measure is used. Our frame-
work can be easily extended to deal with multiple measures.

Finally, using this notation we formulate the fol-
lowing statistical hypothesis testing problem:

H0i(j) :δj(X
i) ≤ 0

H1i(j) :δj(X
i) > 0.

(1)

The null hypothesis, stating that there is no differ-
ence between the performance of algorithm A and
algorithmB, or thatB performs better, is tested ver-
sus the alternative statement thatA is superior. If the
statistical test results in rejecting the null hypothesis,
one concludes that A outperforms B in this setup.
Otherwise, there is not enough evidence in the data
to make this conclusion.

Rejection of the null hypothesis when it is true is
termed type I error, and non-rejection of the null hy-
pothesis when the alternative is true is termed type II
error. The classical approach to hypothesis testing
is to find a test that guarantees that the probability
of making a type I error is upper bounded by a pre-
defined constant α, the test significance level, while
achieving as low probability of type II error as pos-
sible, a.k.a “achieving as high power as possible”.

We next turn to the case where the difference
between two algorithms is tested across multiple
datasets.

3.2 The Multiplicity Problem

Equation 1 defines a multiple hypothesis testing
problem when considering the formulation for all N
datasets. If N is large, testing each hypothesis sepa-
rately at the nominal significance level may result in
a high number of erroneously rejected null hypothe-
ses. In our context, when the performance of algo-
rithm A is compared to that of algorithm B across
multiple datasets, and for each dataset algorithm A
is declared as superior, based on a statistical test at
the nominal significance level α, the expected num-
ber of erroneous claims may grow as N grows.

For example, if a single test is performed with a
significance level of α = 0.05, there is only a 5%
chance of incorrectly rejecting the null hypothesis.
On the other hand, for 100 tests where all null hy-
potheses are true, the expected number of incorrect
rejections is 100 · 0.05 = 5. Denoting the total num-
ber of type I errors as V , we can see below that if the
test statistics are independent then the probability of
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making at least one incorrect rejection is 0.994:

P(V > 0) = 1− P(V = 0) =

1−
100∏

i=1

P(no type I error in i) =1− (1− 0.05)100.

This demonstrates that the naive method of counting
the datasets for which significance was reached at
the nominal level is error-prone. Similar examples
can be constructed for situations where some of the
null hypotheses are false.

The multiple testing literature proposes various
procedures for bounding the probability of making
at least one type I error, as well as other, less restric-
tive error criteria (see a survey in Farcomeni (2007)).
In this paper, we address the questions of counting
and identifying the datasets for which algorithm A
outperforms B, with certain statistical guarantees
regarding erroneous claims. While identifying the
datasets gives more information when compared to
just declaring their number, we consider these two
questions separately. As our experiments show, ac-
cording to the statistical analysis we propose the es-
timated number of datasets with effect (question 1)
may be higher than the number of identified datasets
(question 2). We next present the fundamentals of
the partial conjunction framework which is at the
heart of our proposed methods.

3.3 Partial Conjunction Hypotheses

We start by reformulating the set of hypothesis test-
ing problems of Equation 1 as a unified hypothe-
sis testing problem. This problem aims to iden-
tify whether algorithm A is superior to B across all
datasets. The notation for the null hypothesis in this
problem is HN/N

0 since we test if N out of N alter-
native hypotheses are true:

H
N/N
0 :

N⋃

i=1

H0i is true vs. H
N/N
1 :

N⋂

i=1

H1i is true.

Requiring the rejection of the disjunction of all
null hypotheses is often too restrictive for it in-
volves observing a significant effect on all datasets,
i ∈ {1, . . . , N}. Instead, one can require a rejec-
tion of the global null hypothesis stating that all in-
dividual null hypotheses are true, i.e., evidence that

at least one alternative hypothesis is true. This hy-
pothesis testing problem is formulated as follows:

H
1/N
0 :

N⋂

i=1

H0i is true vs. H
1/N
1 :

N⋃

i=1

H1i is true.

Obviously, rejecting the global null may not pro-
vide enough information: it only indicates that al-
gorithm A outperforms B on at least one dataset.
Hence, this claim does not give any evidence for the
consistency of the results across multiple datasets.

A natural compromise between the above two
formulations is to test the partial conjunction null,
which states that the number of false null hypotheses
is lower than u, where 1 ≤ u ≤ N is a pre-specified
integer constant. The partial conjunction test con-
trasts this statement with the alternative statement
that at least u out of the N null hypotheses are false.

Definition 1 (Benjamini and Heller (2008)). Con-
sider N ≥ 2 null hypotheses: H01, H02, . . . ,H0N ,
and let p1, . . . , pN be their associated p−values. Let
k be the true unknown number of false null hypothe-
ses, then our question “Are at least u out of N null
hypotheses false?” can be formulated as follows:

H
u/N
0 : k < u vs. H

u/N
1 : k ≥ u.

In our context, k is the number of datasets where
algorithm A is truly better, and the partial conjunc-
tion test examines whether algorithmA outperforms
algorithm B in at least u of N cases.

Benjamini and Heller (2008) developed a general
method for testing the above hypothesis for a given
u. They also showed how to extend their method
in order to answer our counting question. We next
describe their framework and advocate a different,
yet related method for dataset identification.

4 Replicability Analysis for NLP

Referred to as the cornerstone of science
(Moonesinghe et al., 2007), replicability anal-
ysis is of predominant importance in many scientific
fields including psychology (Collaboration, 2012),
genomics (Heller et al., 2014), economics (Herndon
et al., 2014) and medicine (Begley and Ellis, 2012),
among others. Findings are usually considered
as replicated if they are obtained in two or more
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studies that differ from each other in some aspects
(e.g. language, domain or genre in NLP).

The replicability analysis framework we employ
(Benjamini and Heller, 2008; Benjamini et al., 2009)
is based on partial conjunction testing. Particularly,
these authors have shown that a lower bound on
the number of false null hypotheses with a con-
fidence level of 1 − α can be obtained by find-
ing the largest u for which we can reject the par-
tial conjunction null hypothesis Hu/N

0 along with
H

1/N
0 , . . . ,H

(u−1)/N
0 at a significance levelα. Since

rejecting H
u/N
0 means that we see evidence in at

least u out of N datasets, algorithm A is superior
to B. This lower bound on k is taken as our answer
to the Counting question of Section 1.

In line with the hypothesis testing framework
of Section 3, the partial conjunction null, Hu/N

0 ,
is rejected at level α if pu/N ≤ α, where pu/N

is the partial conjunction p-value. Based on the
known methods for testing the global null hypoth-
esis (see, e.g., Loughin (2004)), Benjamini and
Heller (2008) proposed methods for combining the
p−values p1, . . . , pN of H01, H02, . . . ,H0N in or-
der to obtain pu/N . Below, we describe two such
methods and their properties.

4.1 The Partial Conjunction p−value

The methods we focus on were developed by Ben-
jamini and Heller (2008), and are based on Fisher’s
and Bonferroni’s methods for testing the global null
hypothesis. For brevity, we name them Bonfer-
roni and Fisher. We choose them because they are
valid in different setups that are frequently encoun-
tered in NLP (Section 6): Bonferroni for dependent
datasets and both Fisher and Bonferroni for indepen-
dent datasets.4

Bonferroni’s method does not make any assump-
tions about the dependencies between the participat-
ing datasets and it is hence applicable in NLP tasks,
since in NLP it is most often hard to determine the
type of dependence between the datasets. Fisher’s
method, while assuming independence across the

4For simplicity we refer to dependent/independent datasets
as those for which the test statistics are dependent/independent.
We assume the test statistics are independent if the correspond-
ing datasets do not have mutual samples, and one dataset is not
a transformation of the other.

participating datasets, is often more powerful than
Bonferroni’s method (see Loughin (2004) and Ben-
jamini and Heller (2008) for other methods and a
comparison between them). Our recommendation
is hence to use the Bonferroni’s method when the
datasets are dependent and to use the more powerful
Fisher’s method when the datasets are independent.

Let p(i) be the i-th smallest p−value among
p1, . . . , pN . The partial conjunction p−values are:

p
u/N
Bonferroni = (N − u+ 1)p(u) (2)

p
u/N
Fisher = P

(
χ2
2(N−u+1) ≥ −2

N∑

i=u

ln p(i)

)
(3)

where χ2
2(N−u+1) denotes a chi-squared random

variable with 2(N − u+ 1) degrees of freedom.
To understand the reasoning behind these meth-

ods, let us consider first the above p−values for test-
ing the global null, i.e., for the case of u = 1. Re-
jecting the global null hypothesis requires evidence
that at least one null hypothesis is false. Intuitively,
we would like to see one or more small p−values.

Both of the methods above agree with this intu-
ition. Bonferroni’s method rejects the global null
if p(1) ≤ α/N , i.e. if the minimum p−value is
small enough, where the threshold guarantees that
the significance level of the test is α for any de-
pendency among the p−values p1, . . . , pN . Fisher’s
method rejects the global null for large values of
−2∑N

i=1 ln p(i), or equivalently for small values of∏N
i=1 pi. That is, while both these methods are intu-

itive, they are different. Fisher’s method requires a
small enough product of p−values as evidence that
at least one null hypothesis is false. Bonferroni’s
method, on the other hand, requires as evidence at
least one small enough p−value.

For the case u = N , i.e., when the alternative
states that all null hypotheses are false, both methods
require that the maximal p−value is small enough
for rejection of HN/N

0 . This is also intuitive because
we expect that all the p−values will be small when
all the null hypotheses are false. For other cases,
where 1 < u < N , the reasoning is more compli-
cated and is beyond the scope of this paper.

The partial conjunction test for a specific u an-
swers the question “Does algorithm A perform bet-
ter than B on at least u datasets?” The next step is
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the estimation of the number of datasets for which
algorithm A performs better than B.

4.2 Dataset Counting (Question 1)

Recall that the number of datasets where algorithm
A outperforms algorithm B (denoted with k in Def-
inition 1) is the true number of false null hypothe-
ses in our problem. Benjamini and Heller (2008)
proposed to estimate k to be the largest u for which
H
u/N
0 , along with H1/N

0 , . . . ,H
(u−1)/N
0 is rejected.

Specifically, the estimator k̂ is defined as follows:

k̂ = max{u : p
u/N
∗ ≤ α}, (4)

where pu/N∗ = max{p(u−1)/N∗ , pu/N}, p1/N = p
1/N
∗

and α is the desired upper bound on the probabil-
ity to overestimate the true k. It is guaranteed that
P(k̂ > k) ≤ α as long as the p−value combi-
nation method used for constructing pu/N is valid
for the given dependency across the test statistics.5

When k̂ is based on pu/NBonferroni it is denoted with

k̂Bonferroni; when it is based on pu/NFisher, it is de-
noted with k̂Fisher.

A crucial practical consideration, when choosing
between k̂Bonferroni and k̂Fisher, is the assumed de-
pendency between the datasets. As discussed in Sec-
tion 4.1, pu/NFisher is recommended when the partici-
pating datasets are assumed to be independent; when
this assumption cannot be made, only pu/NBonferroni is

appropriate. As the k̂ estimators are based on the re-
spective pu/N s, the same considerations hold when
choosing between them.

With the k̂ estimators, one can answer the count-
ing question of Section 1, reporting that algorithm
A is better than algorithm B in at least k̂ out of N
datasets with a confidence level of 1 − α. Regard-
ing the identification question, a natural approach
would be to declare the k̂ datasets with the small-
est p−values as those for which the effect holds.
However, with k̂Fisher this approach does not guar-
antee control over type I errors. In contrast, for
k̂Bonferroni, the above approach comes with such
guarantees, as described in the next section.

5This result is a special case of Theorem 4 in Benjamini and
Heller (2008).

4.3 Dataset Identification (Question 2)
As demonstrated in Section 3.2, identifying the
datasets with p−value below the nominal signifi-
cance level and declaring them as those where al-
gorithm A is better than B may lead to a very high
number of erroneous claims. A variety of methods
exist for addressing this problem. A classical and
very simple method for addressing this problem is
named the Bonferroni’s procedure, which compen-
sates for the increased probability of making at least
one type I error by testing each individual hypoth-
esis at a significance level of α′ = α/N , where α
is the predefined bound on this probability and N
is the number of hypotheses tested.6 While Bonfer-
roni’s procedure is valid for any dependency among
the p−values, the probability of detecting a true ef-
fect using this procedure is often very low, because
of its strict p−value threshold.

Many other procedures controlling the above or
other error criteria, and having less strict p−value
thresholds, have been proposed. Below we advocate
one of these methods: the Holm procedure (Holm,
1979). This is a simple p−value based procedure
that is concordant with the partial conjunction anal-
ysis when pu/NBonferroni is used in that analysis. Im-
portantly for NLP applications, Holm controls the
probability of making at least one type I error for
any type of dependency between the participating
datasets (see a demonstration in Section 6).

Let α be the desired upper bound on the probabil-
ity that at least one false rejection occurs, let p(1) ≤
p(2) ≤ . . . ≤ p(N) be the ordered p−values and
let the associated hypotheses be H(1) . . . H(N). The
Holm procedure for identifying the datasets with a
significant effect is given below.

Procedure Holm
1) Let k be the minimal index such that

p(k) >
α

N+1−k .
2) Reject the null hypotheses H(1) . . . H(k−1) and

do not reject H(k) . . . H(N). If no such k
exists, then reject all null hypotheses.

The output of the Holm procedure is a rejection
6Bonferroni’s correction is based on similar considerations

as pu/NBonferroni for u = 1 (Eq. 2). The partial conjunction
framework (Sec. 4.1) extends this idea for other values of u.
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list of null hypotheses; the corresponding datasets
are those we return in response to the identification
question of Section 1. Note that the Holm procedure
rejects a subset of hypotheses with p-value below
α. Each p-value is compared to a threshold which
is smaller or equal to α and depends on the num-
ber of evaluation datasets N. The dependence of the
thresholds on N can be intuitively explained as fol-
lows: the probability of making one or more erro-
neous claims may increase with N, as demonstrated
in Section 3.2. Therefore, in order to bound this
probability by a pre-specified level α, the thresholds
for p-values should depend on N.

It can be shown that the Holm procedure at level
α always rejects the k̂Bonferroni hypotheses with
the smallest p−values, where k̂Bonferroni is the
lower bound for k with a confidence level of 1 − α.
Therefore, k̂Bonferroni corresponding to a confi-
dence level of 1 − α is always smaller or equal
to the number of datasets for which the difference
between the compared algorithms is significant at
level α. This is not surprising in view of the fact
that, without making any assumptions on the depen-
dencies among the datasets, k̂Bonferroni guarantees
that the probability of making a too optimistic claim
(k̂ > k) is bounded by α, when simply counting the
number of datasets with p-value below α, the proba-
bility of making a too optimistic claim may be close
to 1, as demonstrated in Section 5.

Framework Summary Following Section 4.2 we
answer the counting question of Section 1 by report-
ing either k̂Fisher (when all datasets can be assumed
to be independent) or k̂Bonferroni (when such an in-
dependence assumption cannot be made). Based on
Section 4.3 we suggest to answer the identification
question of Section 1 by reporting the rejection list
returned by the Holm procedure.

Our proposed framework is based on certain as-
sumptions regarding the experiments conducted in
NLP setups. The most prominent of these assump-
tions states that for dependent datasets the type of
dependency cannot be determined. Indeed, to the
best of our knowledge, the nature of the dependency
between dependent test sets in NLP work has not
been analyzed before. In Section 7 we revisit our
assumptions and point to alternative methods for an-
swering our questions. These methods may be ap-

Figure 1: k̂ histogram for the independent datasets simu-
lation.

propriate under other assumptions that may become
relevant in future.

We next demonstrate the value of the proposed
replicability analysis through toy examples with
synthetic data (Section 5) as well as analysis of
state-of-the-art algorithms for four major NLP ap-
plications (Section 6). Our point of reference is
the standard, yet statistically unjustified, counting
method that sets its estimator, k̂count, to the num-
ber of datasets for which the difference between
the compared algorithms is significant with p−value
≤ α (i.e. k̂count = #{i : pi ≤ α}).7

5 Toy Examples

For the examples of this section we synthesize
p−values to emulate a test with N = 100 hypothe-
ses (domains), and set α to 0.05. We start with a
simulation of a scenario where algorithmA is equiv-
alent to B for each domain, and the datasets repre-
senting these domains are independent. We sample
the 100 p−values from a standard uniform distribu-
tion, which is the p−value distribution under the null
hypothesis, repeating the simulation 1,000 times.

Since all the null hypotheses are true then k,
the number of false null hypotheses, is 0. Fig-
ure 1 presents the histogram of k̂ values from all
1,000 iterations according to k̂Bonferroni, k̂Fisher
and k̂count.

The figure clearly demonstrates that k̂count pro-
vides an overestimation of k while k̂Bonferroni and
k̂Fisher do much better. Indeed, the histogram yields
the following probability estimates: P̂ (k̂count >

7We use α in two different contexts: the significance level of
an individual test and the bound on the probability to overesti-
mate k. This is the standard notation in the statistical literature.
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k) = 0.963, P̂ (k̂Bonferroni > k) = 0.001 and
P̂ (k̂Fisher > k) = 0.021 (only the latter two are
lower than 0.05). This simulation strongly supports
the theoretical results of Section 4.2.

To consider a scenario where a dependency be-
tween the participating datasets does exist, we con-
sider a second toy example. In this example we gen-
erate N = 100 p−values corresponding to 34 inde-
pendent normal test statistics, and two other groups
of 33 positively correlated normal test statistics with
ρ = 0.2 and ρ = 0.5, respectively. We again as-
sume that all null hypotheses are true and thus all
the p−values are distributed uniformly, repeating
the simulation 1,000 times. To generate positively
dependent p−values, we followed the process de-
scribed in Section 6.1 of Benjamini et al. (2006).

We estimate the probability that k̂ > k = 0 for
the three k̂ estimators based on the 1000 repetitions
and get the values of: P̂ (k̂count > k) = 0.943,
P̂ (k̂Bonferroni > k) = 0.046 and P̂ (k̂Fisher >
k) = 0.234. This simulation demonstrates the im-
portance of using Bonferroni’s method rather than
Fisher’s method when the datasets are dependent,
even if some of the datasets are independent.

6 NLP Applications

In this section we demonstrate the potential impact
of replicability analysis on the way experimental re-
sults are analyzed in NLP setups. We explore four
NLP applications: (a) two where the datasets are in-
dependent: multi-domain dependency parsing and
multilingual POS tagging; and (b) two where depen-
dency between the datasets does exist: cross-domain
sentiment classification and word similarity predic-
tion with word embedding models.

6.1 Data

Dependency Parsing We consider a multi-
domain setup, analyzing the results reported in
Choi et al. (2015). The authors compared ten
state-of-the-art parsers from which we pick three:
(a) Mate (Bohnet, 2010)8 that performed best on
the majority of datasets; (b) Redshift (Honnibal et
al., 2013)9 which demonstrated comparable, still
somewhat lower, performance compared to Mate;

8code.google.com/p/mate-tools.
9github.com/syllog1sm/Redshift.

and (c) SpaCy (Honnibal and Johnson, 2015) that
was substantially outperformed by Mate.

All parsers were trained and tested on the En-
glish portion of the OntoNotes 5 corpus (Weischedel
et al., 2011; Pradhan et al., 2013), a large multi-
genre corpus consisting of the following 7 genres:
broadcasting conversations (BC), broadcasting news
(BN), news magazine (MZ), newswire (NW), pivot
text (PT), telephone conversations (TC) and web text
(WB). Train and test set size (in sentences) range
from 6672 to 34,492 and from 280 to 2327, respec-
tively (see Table 1 of Choi et al. (2015)). We copy
the test set UAS results of Choi et al. (2015) and
compute p−values using the data downloaded from
http://amandastent.com/dependable/.

POS Tagging We consider a multilingual setup,
analyzing the results reported in (Pinter et al., 2017).
The authors compare their MIMICK model with
the model of Ling et al. (2015), denoted with
CHAR→TAG. Evaluation is performed on 23 of the
44 languages shared by the Polyglot word embed-
ding dataset (Al-Rfou et al., 2013) and the univer-
sal dependencies (UD) dataset (De Marneffe et al.,
2014). Pinter et al. (2017) choose their languages so
that they reflect a variety of typological, and partic-
ularly morphological, properties. The training/test
split is the standard UD split. We copy the word
level accuracy figures of Pinter et al. (2017) for the
low resource training set setup, the focus setup of
that paper. The authors kindly sent us their p-values.

Sentiment Classification In this task, an algo-
rithm is trained on reviews from one domain and
should classify the sentiment of reviews from an-
other domain to the positive and negative classes.
For replicability analysis we explore the results of
Ziser and Reichart (2017) for the cross-domain sen-
timent classification task of Blitzer et al. (2007). The
data in this task consists of Amazon product reviews
from 4 domains: books (B), DVDs (D), electronic
items (E), and kitchen appliances (K), for the total
of 12 domain pairs, each domain having a 2000 re-
view test set.10 Ziser and Reichart (2017) compared
the accuracy of their AE-SCL-SR model to MSDA
(Chen et al., 2011), a well known domain adaptation

10http://www.cs.jhu.edu/˜mdredze/
datasets/sentiment
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method, and kindly sent us the required p-values.

Word Similarity We compare two state-of-the-art
word embedding collections: (a) word2vec CBOW
(Mikolov et al., 2013) vectors, generated by the
model titled the best “predict” model in Baroni et al.
(2014);11 and (b) GloVe (Pennington et al., 2014)
vectors generated by a model trained on a 42B to-
ken common web crawl.12 We employed the demo
of Faruqui and Dyer (2014) to perform a Spearman
correlation evaluation of these vector collections on
12 English word pair datasets: WS-353 (Finkelstein
et al., 2001b), WS-353-SIM (Agirre et al., 2009),
WS-353-REL (Agirre et al., 2009), MC-30 (Miller
and Charles, 1991), RG-65 (Rubenstein and Good-
enough, 1965), Rare-Word (Luong et al., 2013),
MEN (Bruni et al., 2012), MTurk-287 (Radinsky et
al., 2011), MTurk-771 (Halawi et al., 2012), YP-130
(Yang and Powers, ), SimLex-999 (Hill et al., 2016),
and Verb-143 (Baker et al., 2014).

6.2 Statistical Significance Tests

We first calculate the p−values for each task and
dataset according to the principals of p−values com-
putation for NLP as discussed in Yeh (2000), Berg-
Kirkpatrick et al. (2012) and Søgaard et al. (2014).

For dependency parsing, we employ the a-
parametric paired bootstrap test (Efron and Tibshi-
rani, 1994) that does not assume any distribution on
the test statistics. We chose this test because the dis-
tribution of the values for the measures commonly
applied in this task is unknown. We implemented
the test as in (Berg-Kirkpatrick et al., 2012) with a
bootstrap size of 500 and with 105 repetitions.

For multilingual POS tagging, we employ the
Wilcoxon signed-rank test (Wilcoxon, 1945) on the
differences of the sentence level accuracy scores
of the two compared models. This test is a non-
parametric test for differences in measure, testing
the null hypothesis that the difference has a sym-
metric distribution around zero. It is appropriate for
tasks with paired continuous measures for each ob-
servation, which is the case when comparing sen-
tence level accuracies.

11http://clic.cimec.unitn.it/composes/
semantic-vectors.html. Parameters: 5-word context
window, 10 negative samples, subsampling, 400 dimensions.

12http://nlp.stanford.edu/projects/glove/. 300 dimensions.

For sentiment classification we employ the Mc-
Nemar test for paired nominal data (McNemar,
1947). This test is appropriate for binary classifi-
cation tasks and since we compare the results of the
algorithms when applied on the same datasets, we
employ its paired version. Finally, for word simi-
larity with its Spearman correlation evaluation, we
choose the Steiger test (Steiger, 1980) for compar-
ing elements in a correlation matrix.

We consider the case of α = 0.05 for all four ap-
plications. For the dependent datasets experiments
(sentiment classification and word similarity predic-
tion) with their generally lower p−values (see be-
low), we also consider the case where α = 0.01.

6.3 Results

Table 1 summarizes the replicability analysis results
while Table 2 – 5 present task specific performance
measures and p−values.

k̂count k̂Bonf. k̂Fish.
Independent Datasets

Dependency Parsing (7 datasets)
Mate-SpaCy 7 7 7

Mate-Redshift 2 1 5
Multilingual POS Tagging (23 datasets)

MIMICK-Char→Tag 11 6 16
Dependent Datasets

Sentiment Classification (12 setups)
AE-SCL-SR-MSDA 10 6 10

(α = 0.05)
AE-SCL-SR-MSDA 6 2 8

(α = 0.01)
Word Similarity (12 datasets)

W2V-GloVe 8 6 7
(α = 0.05)

W2V-GloVe 6 4 6
(α = 0.01)

Table 1: Replicability analysis results. The appropriate
estimator for each scenario is in bold. For independent
datasets α = 0.05. k̂count is based on the current practice
in the NLP literature and does not have statistical guar-
antees regarding overestimation of the true k. Likewise,
k̂Fisher does not provide statistical guarantees regarding
the overestimation of the true k for dependent datasets.
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Model | Data BC BN MZ NW PT TC WB
Mate 90.73 90.82 91.92 91.68 96.64 89.87 89.89

SpaCy 89.05 89.31 89.29 89.52 95.27 87.65 87.40
p−val (Mate,SpaCy) (10−4) (10−4) (0.0) (0.0) (2 · 10−4) (9 · 10−4) (0.0)

Redshift 90.19 90.46 90.90 90.99 96.22 88.99 89.31
p−val (Mate,Redshift) (0.0979) (0.1662) (0.0046) (0.0376) (0.0969) (0.0912) (0.0823)

Table 2: UAS results for multi-domain dependency parsing. p−values are in parentheses.

Language MIMICK Char→Tag p−value
Kazakh 83.95 83.64 0.0944
Tamil∗ 81.55 84.97 0.0001
Latvian 84.32 84.49 0.0623

Vietnamese 84.22 84.85 0.0359
Hungarian∗ 88.93 85.83 1.12e-08

Turkish 85.60 84.23 0.1461
Greek 93.63 94.05 0.0104

Bulgarian 93.16 93.03 0.1957
Swedish 92.30 92.27 0.0939
Basque∗ 84.44 86.01 3.87e-10
Russian 89.72 88.65 0.0081
Danish 90.13 89.96 0.1016

Indonesian∗ 89.34 89.81 0.0008
Chinese∗ 85.69 81.84 0
Persian 93.58 93.53 0.4450
Hebrew 91.69 91.93 0.1025

Romanian 89.18 88.96 0.2198
English 88.45 88.89 0.0208
Arabic 90.58 90.49 0.0731
Hindi 87.77 87.92 0.0288
Italian 92.50 92.45 0.4812

Spanish 91.41 91.71 0.1176
Czech∗ 90.81 90.17 2.91e-05

Table 3: Multilingual POS tagging accuracy for the MIM-
ICK and the Char→Tag models. ∗ indicates languages
identified by the Holm procedure with α = 0.05 .

Independent Datasets Dependency parsing (Ta-
ble 2) and multilingual POS tagging (Table 3) are
our example tasks for this setup, where k̂Fisher is
our recommended valid estimator for the number of
cases where one algorithm outperforms another.

For dependency parsing, we compare two scenar-
ios: (a) where in most domains the differences be-
tween the compared algorithms are quite large and
the p−values are small (Mate vs. SpaCy); and (b)

Dataset AE-SCL-SR MSDA p−value
B → K 0.8005 0.788 0.0268
B → D∗ 0.8105 0.783 0.0011
B → E 0.7675 0.7455 0.0119
K → B∗ 0.7295 0.7 0.0038
K → D∗,+ 0.763 0.714 1.9e-06
K → E 0.84 0.824 0.018
D → B 0.773 0.7605 0.0186
D → K∗ 0.8025 0.774 0.0014
D → E∗ 0.781 0.75 0.0011
E → B 0.7115 0.7185 0.4823
E → K 0.8455 0.845 0.9507
E → D∗,+ 0.745 0.71 0.0003

Table 4: Cross-domain sentiment classification accuracy
for models taken from (Ziser and Reichart, 2017). In an
X → Y setup,X is the source domain and Y is the target
domain. ∗ and + indicate domains identified by the Holm
procedure with α = 0.05 and α = 0.01, respectively.

where in most domains the differences between the
compared algorithms are smaller and the p−values
are higher (Mate vs. Redshift). Our multilingual
POS tagging scenario (MIMICK vs. Char→Tag) is
more similar to scenario (b) in terms of the differ-
ences between the participating algorithms.

Table 1 demonstrates the k̂ estimators for the var-
ious tasks and scenarios. For dependency parsing,
as expected, in scenario (a) where all the p−values
are small, all estimators, even the error-prone k̂count,
provide the same information. In case (b) of depen-
dency parsing, however, k̂Fisher estimates the num-
ber of domains where Mate outperforms Redshift to
be 5, while k̂count estimates this number to be 2.
This is a substantial difference given that the num-
ber of domains is 7. The k̂Bonferroni estimator, that
is valid under arbitrary dependencies, is even more
conservative than k̂count and its estimation is only 1.

Perhaps not surprisingly, the multilingual POS
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Dataset W2V GLOVE p−val.
WS353∗,+ 0.7362 0.629 2e−5

WS353-SIM∗,+ 0.7805 0.6979 0.0
WS353-REL 0.6814 0.5706 0.2123

MC-30∗,+ 0.8221 0.7773 0.0001
RG-65 0.8348 0.8117 0.3053

RW 0.4819 0.4144 0.2426
MEN∗ 0.796 0.7362 0.0021

MTurk-287 0.671 0.6475 0.2076
MTurk-771 0.7116 0.6842 0.0425
YP-130∗,+ 0.504 0.5315 0.0

SimLex999∗ 0.4621 0.3725 0.0015
V erb− 143 0.4479 0.3275 0.0431

Table 5: Spearman’s ρ values for the best performing pre-
dict model (W2V-CBOW) of (Baroni et al., 2014) and the
GLOVE model. ∗ and + are as in Table 4.

tagging results are similar to case (b) of dependency
parsing. Here, again, k̂count is too conservative, es-
timating the number of languages with effect to be
11 (out of 23) while k̂Fisher estimates this number
to be 16 (an increase of 5/23 in the estimated num-
ber of languages with effect). k̂Bonferroni is again
more conservative, estimating the number of lan-
guages with effect to be only 6, which is not very
surprising given that it does not exploit the indepen-
dence between the datasets. These two examples of
case (b) demonstrate that when the differences be-
tween the algorithms are quite small, k̂Fisher may
be more sensitive than the current practice in NLP
for discovering the number of datasets with effect.

To complete the analysis, we would like to name
the datasets with effect. As discussed in Section 4.2,
while this can be straightforwardly done by naming
the datasets with the k̂ smallest p−values, in gen-
eral, this approach does not control the probability of
identifying at least one dataset erroneously. We thus
employ the Holm procedure for the identification
task, noticing that the number of datasets it identi-
fies should be equal to the value of the k̂Bonferroni
estimator (Section 4.3).

Indeed, for dependency parsing in case (a), the
Holm procedure identifies all seven domains as
cases where Mate outperforms SpaCy, while in case
(b) it identifies only the MZ domain as a case where
Mate outperforms Redshift. For multilingual POS

tagging the Holm procedure identifies Tamil, Hun-
garian, Basque, Indonesian, Chinese and Czech as
languages where MIMICK outperforms Char→Tag.
This analysis demonstrates that when the perfor-
mance gap between two algorithms becomes nar-
rower, inquiring for more information (i.e. identify-
ing the domains with effect rather than just estimat-
ing their number), may result in weaker results.13

Dependent Datasets In cross-domain sentiment
classification (Table 4) and word similarity predic-
tion (Table 5), the involved datasets manifest mu-
tual dependence. Particularly, each sentiment setup
shares its test dataset with 2 other setups, while in
word similarity WS-353 is the union of WS-353-
REL and WS-353-SIM. As discussed in Section 4,
k̂Bonferroni is the appropriate estimator of the num-
ber of cases one algorithm outperforms another.

The results in Table 1 manifest the phenomenon
demonstrated by the second toy example in Sec-
tion 5, which shows that when the datasets are de-
pendent, k̂Fisher as well as the error-prone k̂count
may be too optimistic regarding the number of
datasets with effect. This stands in contrast to
k̂Bonferroni which controls the probability to over-
estimate the number of such datasets.

Indeed, k̂Bonferroni is much more conservative,
yielding values of 6 (α = 0.05) and 2 (α = 0.01)
for sentiment, and of 6 (α = 0.05) and 4 (α =
0.01) for word similarity. The differences from the
conclusions that might have been drawn by k̂count
are again quite substantial. The difference between
k̂Bonferroni and k̂count in sentiment classification is
4, which accounts to 1/3 of the 12 test setups. Even
for word similarity, the difference between the two
methods, which account to 2 for both α values, rep-
resents 1/6 of the 12 test setups. The domains identi-
fied by the Holm procedure are marked in the tables.

Results Overview Our goal in this section is to
demonstrate that the approach of simply looking at
the number of datasets for which the difference be-
tween the performance of the algorithms reaches a
predefined significance level, gives different results

13For completeness, we also performed the analysis for the
independent dataset setups with α = 0.01. The results are
(k̂count, k̂Bonferroni, k̂Fisher): Mate vs. SpaCy: (7,7,7); Mate
vs. Redshift (1,0,2); MIMICK vs. Char→Tag: (7,5,13). The
patterns are very similar to those discussed in the text.
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from our suggested statistically sound analysis. This
approach is denoted here with k̂count and shown to
be statistically not valid in Sections 3.2 and 5. We
observe that this happens especially in evaluation se-
tups where the differences between the algorithms
are small for most datasets. In some cases, when
the datasets are independent, our analysis has the
power to declare a larger number of datasets with
effect than the number of individual significant test
values (k̂count). In other cases, when the datasets are
interdependent, k̂count is much too optimistic.

Our proposed analysis changes the observations
that might have been made based on the papers
where the results analyzed here were originally re-
ported. For example, for the Mate-Redshift com-
parison (independent evaluation sets), we show that
there is evidence that the number of datasets with
effect is much higher than one would assume based
on counting the significant sets (5 vs. 2 out of 7
evaluation sets), giving a stronger claim regarding
the superiority of Mate. In multilingual POS tag-
ging (again, a setup of independent evaluation sets)
our analysis shows evidence for 16 sets with ef-
fect compared to only 11 of the erroneous count
method - a difference in 5 out of 23 evaluation sets
(21.7%). Finally, in the cross-domain sentiment
classification and the word similarity judgment tasks
(dependent evaluation sets), the unjustified counting
method may be too optimistic (e.g. 10 vs. 6 out of
12 evaluation sets, for α = 0.05 in the sentiment
task), in favor of the new algorithms.

7 Discussion and Future Directions

We proposed a statistically sound replicability anal-
ysis framework for cases where algorithms are com-
pared across multiple datasets. Our main contribu-
tions are: (a) analyzing the limitations of the current
practice in NLP work; and (b) proposing a frame-
work that addresses both the estimation of the num-
ber of datasets with effect and their identification.

The framework we propose addresses two differ-
ent situations encountered in NLP: independent and
dependent datasets. For dependent datasets, we as-
sumed that the type of dependency cannot be deter-
mined. One could use more powerful methods if cer-
tain assumptions on the dependency between the test
statistics could be made. For example, one could use

the partial conjunction p-value based on Simes test
for the global null hypothesis (Simes, 1986), which
was proposed by Benjamini and Heller (2008) for
the case where the test statistics satisfy certain posi-
tive dependency properties (see Theorem 1 in (Ben-
jamini and Heller, 2008)). Using this partial con-
junction p-value rather than the one based on Bon-
ferroni, one may obtain higher values of k̂ with the
same statistical guarantee. Similarly, for the iden-
tification question, if certain positive dependency
properties hold, Holm’s procedure could be replaced
by Hochberg’s or Hommel’s procedures (Hochberg,
1988; Hommel, 1988) which are more powerful.

An alternative, more powerful multiple testing
procedure for identification of datasets with effect, is
the method in Benjamini and Hochberg (1995), that
controls the false discovery rate (FDR), a less strict
error criterion than the one considered here. This
method is more appropriate in cases where one may
tolerate some errors as long as the proportion of er-
rors among all the claims made is small, as expected
to happen when the number of datasets grows.

We note that the increase in the number of evalua-
tion datasets may have positive and negative aspects.
As noted in Section 2, we believe that multiple com-
parisons are integral to NLP research when aiming
to develop algorithms that perform well across lan-
guages and domains. On the other hand, exper-
imenting with multiple evaluation sets that reflect
very similar linguistic phenomena may only compli-
cate the comparison between alternative algorithms.

In fact, our analysis is useful mostly where the
datasets are heterogeneous, coming from different
languages or domains. When they are just techni-
cally different but could potentially be just combined
into a one big dataset, then we believe the ques-
tion of Demšar (2006), whether at least one dataset
shows evidence for effect, is more appropriate.
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