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Abstract

General treebank analyses are graph struc-
tured, but parsers are typically restricted to
tree structures for efficiency and modeling rea-
sons. We propose a new representation and
algorithm for a class of graph structures that
is flexible enough to cover almost all treebank
structures, while still admitting efficient learn-
ing and inference. In particular, we consider
directed, acyclic, one-endpoint-crossing graph
structures, which cover most long-distance
dislocation, shared argumentation, and similar
tree-violating linguistic phenomena. We de-
scribe how to convert phrase structure parses,
including traces, to our new representation in
a reversible manner. Our dynamic program
uniquely decomposes structures, is sound and
complete, and covers 97.3% of the Penn En-
glish Treebank. We also implement a proof-
of-concept parser that recovers a range of null
elements and trace types.

1 Introduction

Many syntactic representations use graphs and/or
discontinuous structures, such as traces in Govern-
ment and Binding theory and f-structure in Lexi-
cal Functional Grammar (Chomsky 1981; Kaplan
and Bresnan 1982). Sentences in the Penn Tree-
bank (PTB, Marcus et al. 1993) have a core projec-
tive tree structure and trace edges that represent con-
trol structures, wh-movement and more. However,
most parsers and the standard evaluation metric ig-
nore these edges and all null elements. By leaving
out parts of the structure, they fail to provide key
relations to downstream tasks such as question an-
swering. While there has been work on capturing

some parts of this extra structure, it has generally ei-
ther been through post-processing on trees (Johnson
2002; Jijkoun 2003; Campbell 2004; Levy and Man-
ning 2004; Gabbard et al. 2006) or has only captured
a limited set of phenomena via grammar augmenta-
tion (Collins 1997; Dienes and Dubey 2003; Schmid
2006; Cai et al. 2011).

We propose a new general-purpose parsing algo-
rithm that can efficiently search over a wide range
of syntactic phenomena. Our algorithm extends a
non-projective tree parsing algorithm (Pitler et al.
2013; Pitler 2014) to graph structures, with improve-
ments to avoid derivational ambiguity while main-
taining an O(n4) runtime. Our algorithm also in-
cludes an optional extension to ensure parses contain
a directed projective tree of non-trace edges.

Our algorithm cannot apply directly to con-
stituency parses–it requires lexicalized structures
similar to dependency parses. We extend and im-
prove previous work on lexicalized constituent rep-
resentations (Shen et al. 2007; Carreras et al. 2008;
Hayashi and Nagata 2016) to handle traces. In this
form, traces can create problematic structures such
as directed cycles, but we show how careful choice
of head rules can minimize such issues.

We implement a proof-of-concept parser, scor-
ing 88.1 on trees in section 23 and 70.6 on traces.
Together, our representation and algorithm cover
97.3% of sentences, far above the coverage of pro-
jective tree parsers (43.9%).

2 Background

This work builds on two areas: non-projective tree
parsing, and parsing with null elements.

Non-projectivity is important in syntax for rep-
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resenting many structures, but inference over the
space of all non-projective graphs is intractable. For-
tunately, in practice almost all parses are covered
by well-defined subsets of this space. For depen-
dency parsing, recent work has defined algorithms
for inference within various subspaces (Gómez-
Rodrı́guez and Nivre 2010; Pitler et al. 2013). We
build upon these algorithms and adapt them to con-
stituency parsing. For constituency parsing, a range
of formalisms have been developed that are mildly-
context sensitive, such as CCG (Steedman 2000),
LFG (Kaplan and Bresnan 1982), and LTAG (Joshi
and Schabes 1997).

Concurrently with this work, Cao et al. (2017)
also proposed a graph version of Pitler et al. (2013)’s
One-Endpoint Crossing (1-EC) algorithm. How-
ever, Cao’s algorithm does not consider the direc-
tion of edges1 and so it could produce cycles, or
graphs with multiple root nodes. Their algorithm
also has spurious ambiguity, with multiple deriva-
tions of the same parse structure permitted. One
advantage of their algorithm is that by introducing
a new item type it can handle some cases of the
Locked-Chain we define below (specifically, when
N is even), though in practise they also restrict their
algorithm to ignore such cases. They also show that
the class of graphs they generate corresponds to the
1-EC pagenumber-2 space, a property that applies to
this work as well2.

Parsing with Null Elements in the PTB has taken
two general approaches. The first broadly effective
system was Johnson (2002), which post-processed
the output of a parser, inserting extra elements. This
was effective for some types of structure, such as
null complementizers, but had difficulty with long
distance dependencies. The other common approach
has been to thread a trace through the tree struc-
ture on the non-terminal symbols. Collins (1997)’s
third model used this approach to recover wh-traces,
while Cai et al. (2011) used it to recover null pro-
nouns, and others have used it for a range of move-
ment types (Dienes and Dubey 2003; Schmid 2006).
These approaches have the disadvantage that each

1 To produce directed edges, their parser treats the direction
as part of the edge label.

2 This is a topological space with two half-planes sharing a
boundary. All edges are drawn on one of the two half-planes
and each half-plane contains no crossings.

additional trace dramatically expands the grammar.
Our representation is similar to LTAG-Spinal

(Shen et al. 2007) but has the advantage that it
can be converted back into the PTB representation.
Hayashi and Nagata (2016) also incorporated null
elements into a spinal structure but did not include
a representation of co-indexation. In related work,
dependency parsers have been used to assist in con-
stituency parsing, with varying degrees of represen-
tation design, but only for trees (Hall, Nivre, and
Nilsson 2007; Hall and Nivre 2008; Fernández-
González and Martins 2015; Kong et al. 2015).

Kato and Matsubara (2016) described a new ap-
proach, modifying a transition-based parser to re-
cover null elements and traces, with strong results,
but using heuristics to determine trace referents.

3 Algorithm

Our algorithm is a dynamic program, similar at a
high level to CKY (Kasami 1966; Younger 1967;
Cocke 1969). The states of our dynamic program
(items) represent partial parses. Usually in CKY,
items are defined as covering the n words in a sen-
tence, starting and ending at the spaces between
words. We follow Eisner (1996), defining items as
covering the n−1 spaces in a sentence, starting and
ending on words, as shown in Figure 1. This means
that we process each word’s left and right depen-
dents separately, then combine the two halves.

We use three types of items: (1) a single edge,
linking two words, (2) a continuous span, going
from one word to another, representing all edges
linking pairs of words within the span, (3) a span
(as defined in 2) plus an additional word outside the
span, enabling the inclusion of edges between that
word and words in the span.

Within the CKY framework, the key to defining
our algorithm is a set of rules that specify which
items are allowed to combine. From a bottom-up
perspective, a parse is built in a series of steps, which
come in three types: (1) adding an edge to an item,
(2) combining two items that have non-overlapping
adjacent spans to produce a new item with a larger
span, (3) combining three items, similarly to (2).

Example: To build intuition for the algorithm, we
will describe the derivation in Figure 1. Note, item
sub-types (I, X, and N) are defined below, and in-
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ROOT We like running .

I0,1 I1,2 I2,3 I3,4
(1)

I1,2 I2,3 X3,4,2
(2)

X1,2,3
(3)

N0,2,3
(4)

N0,2,3
(5)

I0,4
(6)

Figure 1: An example derivation using our graph parsing
deduction rules.

cluded here for completeness.
(1) We initialize with spans of width one, going be-
tween adjacent words, e.g. between ROOT and We.

∅ 7→ I0,1
(2) Edges can be introduced in exactly two ways,
either by linking the two ends of a span, e.g. like–
running, or by linking one end of a span with a word
outside the span, e.g. like–. (which in this case forms
a new item that has a span and an external word).

I2,3 ∧ like–running 7→ I2,3
I3,4 ∧ like–. 7→ X3,4,2

(3) We add a second edge to one of the items.
I1,2 ∧ running–We 7→ X1,2,3

(4) Now that all the edges to We have been added,
the two items either side of it are combined to form
an item that covers it.

I0,1 ∧ X1,2,3 7→ N0,2,3

(5) We add an edge, creating a crossing because We
is an argument of a word to the right of like.

N0,2,3 ∧ ROOT–like 7→ N0,2,3

(7) We use a ternary rule to combine three adjacent
items. In the process we create another crossing.

N0,2,3 ∧ I2,3 ∧ X3,4,2 7→ I0,6

3.1 Algorithm definition

Notation Vertices are p, q, etc. Continuous ranges
are [pq], [pq), (pq], or (pq), where the brackets indi-
cate inclusion, [ ], or exclusion, ( ), of each endpoint.
A span [pq] and vertex o that are part of the same
item are [pq.o]. Two vertices and an arrow indicate
an edge, ~pq. Two vertices without an arrow are an
edge in either direction, pq. Ranges and/or vertices
connected by a dash define a set of edges, e.g. the

set of edges between o and (pq) is o–(pq) (in some
places we will also use this to refer to an edge from
the set, rather than the whole set). If there is a path
from p to q, q is reachable from p.

Item Types As shown in Figure 1, our items start
and end on words, fully covering the spaces in be-
tween. Earlier we described three item types: an
edge, a span, and a span plus an external vertex.
Here we define spans more precisely as I , and divide
the span plus an external point case into five types
differing in the type of edge crossing they contain:

p qI , Interval A span for which there are no
edges sr : r ∈ (pq) and s /∈ [pq].

o

X , Exterval An interval and either op
or oq, where o /∈ [pq].
B, Both A span and vertex [pq.o],
for which there are no edges sr :
r ∈ (pq) and s /∈ [pq] ∪ o. Edges o–[pq] may be
crossed by pq, p–(pq) or q–(pq), and at least one
crossing of the second and third types occurs. Edges
o–(pq) may not be crossed by (pq)–(pq) edges.
L, Left Same as B, but o–(pq)
edges may only cross p–(pq] edges.
R, Right Symmetric with L.
N , Neither An interval and a vertex
[pq.o], with at least one o–(pq) edge,
which can be crossed by pq, but no other [pq]–[pq]
edges.

Items are further specified as described in Alg. 1.
Most importantly, for each pair of o, p, and q in an
item, the rules specify whether one is a parent of the
other, and if they are directly linked by an edge.

For an item H with span [ij], define covered(H)
as (ij), and define visible(H) as {i, j}. When an
external vertex x is present, it is in visible(H). Call
the union of multiple such sets covered(F,G,H),
and visible(F,G,H).

Deduction Rules To make the deduction rules
manageable, we use templates to define some con-
straints explicitly, and then use code to generate the
rules. During rule generation, we automatically ap-
ply additional constraints to prevent rules that would
leave a word in the middle of a span without a parent
or that would form a cycle (proven possible below).
Algorithm 1 presents the explicit constraints. Once
expanded, these give rules that specify all properties
for each item (general type, external vertex position
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Algorithm 1 Dynamic program for Lock-Free, One-Endpoint Crossing, Directed, Acyclic graph parsing.
Adding Edges: Consider a span [lr] and vertex x /∈ [lr].
Edges between l and r can be added to items I , N , L, R, and B (making L̂ and N̂ in those cases).
Edges between l and x can be added to items I (forming an X), R, and N .
Edges between r and x can be added to items I (forming an X), L, and N .
The l–r edge cannot be added after another edge, and N items cannot get both l–x and r–x edges.
Combining Items: In the rules below the following notation is used:
For this explanation items are T [lr crl clr] and T [lrx crl cxl clr cxr clx crx].
T is the type of item. Multiple letters indicate any of those types are allowed.
For the next three types of notation, if an item does not have a mark, either option is valid.

˙
T and T

:
indicate the number of edges between the external vertex and the span: one or more than one respectively.

·T and T · indicate the position of the external vertex relative to the item’s span (left or right respectively).
T̂ indicates for N and L that ∀p ∈ (ij)∃rs : i≤r<p<s≤j. In (11) and (12) it is optional, but true for output iff true for input.
l, r, and x: the position of the left end of the span, the right end, and the external vertex, respectively.
crl, cxl, etc: connectivity of each pair of visible vertices, from the first subscript to the second. Using crl as an example, these can
be . (unconstrained), d ( ~rl must exist), p (l is reachable from r, but ~rl does not exist), n (l is not reachable from r), d (= p ∨ n),
n (= d ∨ p). Note: In the generated rules every value is d, p, or n, leading to multiple rules per template below.

I[ij nd]← max



(Init) j = i+1
(1) I[i i+1 nn] I[i+1 j nn]

maxk∈(i,j)



(2) I[ik nd] I[kj ..]

(3) BLRN · [ikj nndddd] I[kj ..]
maxl∈(k,j){

(4) RN · [ikl nndddd] I[kl ..] ·LNX[ljk .d..d.]

(5) BLRN · [ikl nndddd] I[kl ..] I[lj ..]
maxl∈(i,k){

(6) I[il n.] ·LN [lki .d.dnn] ·N
:
[kjl ddd.d.]

(7) RNX· [ilk nn.ddd] I[lk ..] ·LN
::

[kjl .d..d.]

B· [ijx nndddd]← maxk∈(i,j)



(8) L̂N̂ · [ikx nn.ddd] R· [kjx ...d.d]

(9) L̂N̂ · [ikx nn.ddd] N · [kjx d.dd.d]

(10) L̂N̂ · [ikx nn.ddd] N · [kjx d.dd.d]

˙
L̂[ijx dddddd]← maxk∈(i,j){

(11) X[ikx .d.dnn] · L̂N̂ [kji .d.ddd]

(12) X[ikx .d.ddd] · L̂N̂ [kji .d.ddd]

L
:
[ijx dddddd]← maxk∈(i,j)



(13) LN [ikx .d.ddd] ·N [kji dddddd]

(14) LN [ikx .d.ddd] ·N [kji dddddd]

(15) L[ikx .d.ddd] I[kj ..]

(16) L[ikx .d.ddd] I[kj ..]

(17) N [ikx dddddd] I[kj ..]

(18) N [ikx dddddd] I[kj ..]

(19) N [ikx dddddd] I[kj ..]

(20) N [ikx dddddd] I[kj ..]

N
:
[ijx dddddd]← maxk∈(i,j)




(21) ·N [ikx dddddd] I[kj ..]

(22) ·N [ikx dddddd] I[kj ..]

(23) I[ik ..] N · [kjx dddddd]

(24) I[ik ..] N · [kjx dddddd]

˙
N [ijx dddddd]← maxk∈(i,j)



(25) ·X[ikx .d.ddd] I[kj ..]

(26) ·X[ikx .d.ddd] I[kj ..]

(27) I[ik ..] X· [kjx .d.ddd]

(28) I[ik ..] X· [kjx .d.ddd]

I[ij pn], ·B[ijx ddnndd], R
:
[ijx dddddd], and

˙
R[ijx dddddd] are symmetric with cases above.

relative to the item spans, connectivity of every pair
of vertices in each item, etc).

The final item for n vertices is an interval where
the left end has a parent. For parsing we assume
there is a special root word at the end of the sentence.

3.2 Properties

Definition 1. A graph is One-Endpoint Crossing if,
when drawn with vertices along the edge of a half-
plane and edges drawn in the open half-plane above,
for any edge e, all edges that cross e share a vertex.
Let that vertex be Pt(e).

Aside from applying to graphs, this is the same as

Pitler et al. (2013)’s 1-EC tree definition.

Definition 2. A Locked-Chain (shown in Fig. 2)
is formed by a set of consecutive vertices in or-
der from 0 to N , where N > 3, with edges
{(0, N−1), (1, N)} ∪ {(i, i+2)∀i ∈ [0, N−2]}.
Definition 3. A graph is Lock-Free if it does not
contain edges that form a Locked-Chain.

Note that in practice, most parse structures satisfy
1-EC, and the Locked-Chain structure does not oc-
cur in the PTB when using our head rules.

Theorem 1. For the space of Lock-Free One-
Endpoint Crossing graphs, the algorithm is sound,
complete and gives unique decompositions.

444



Our proof is very similar in style and structure
to Pitler et al. (2013). The general approach is to
consider the set of structures an item could repre-
sent, and divide them into cases based on properties
of the internal structure. We then show how each
case can be decomposed into items, taking care to
ensure all the properties that defined the case are
satisfied. Uniqueness follows from having no am-
biguity in how a given structure could be decom-
posed. Completeness and soundness follow from the
fact that our rules apply equally well in either direc-
tion, and so our top-down decomposition implies a
bottom-up formation. To give intuition for the proof,
we show the derivation of one rule below. The com-
plete proof can be found in Kummerfeld (2016). We
do not include it here due to lack of space.

We do provide the complete set of rule templates
in Algorithm 1, and in the proof of Lemma 2 we
show that the case in which an item cannot be de-
composed occurs if and only if the graph contains a
Locked-Chain. To empirically check our rule gener-
ation code, we checked that our parser uniquely de-
composes all 1-EC parses in the PTB and is unable
to decompose the rest.

Note that by using subsets of our rules, we can
restrict the space of structures we generate, giving
parsing algorithms for projective DAGs, projective
trees (Eisner 1996), or 1-EC trees (Pitler et al. 2013).
Versions of these spaces with undirected edges could
also be easily handled with the same approach.

p qs t

Derivation of rule (4) in
Algorithm 1: This rule ap-
plies to intervals with the sub-
structure shown, and with no parent in this item for
p. They have at least one p–(pq) edge (otherwise
rule 1 applies). The longest p–(pq) edge, ps, is
crossed (otherwise rule 2 applies). Let C be the set
of (ps)–(sq) edges (note: these cross ps). Either all
of the edges in C have a common endpoint t ∈ (sq),
or if |C| = 1 let t be the endpoint in (sq) (otherwise
rule 6 or 7 applies). Let D be the set of s–(tq) edges.
|D| > 0 (otherwise rule 3 or 5 applies).

We will break this into three items. First,
(st)–(tq] edges would violate the 1-EC property
and (st)–[ps) edges do not exist by construction.
Therefore, the middle item is an Interval [st], the
left item is [ps.t], and the right item is [tq.s] (since
|C| > 0 and |D| > 0). The left item can be either

0 1 2 3 N−3 N−2 N−1 N

. . .

. . .

Figure 2: Visualization of Locked-Chain structures.
Note, the use of 0 to N does not imply this must span the
entire sentence, these numbers are just for convenience in
the definition.

an N or R, but not an L or B because that would
violate the 1-EC property for the C edges. The
right item can be an X , L, or N , but not an R or
B because that would violate the 1-EC property
for the D edges. We will require edge ps to be
present in the first item, and not allow pt. To avoid a
spurious ambiguity, we also prevent the first or third
items from having st (which could otherwise occur
in any of the three items). Now we have broken
down the original item into valid sub-items, and we
have ensured that those sub-items contain all of the
structure used to define the case in a unique way.

Now we will further characterize the nature of the
Lock-Free restriction to the space of graphs.

Lemma 1. No edge in a Locked-Chain in a 1-EC
graph is crossed by edges that are not part of it.
Proof. First, note that: Pt((0, N−1)) = N ,
Pt((1, N)) = 0, and {Pt((i, i+2)) = i+1 ∀i ∈
[0, N−2]} Call the set {(i, i+2)∀i ∈ [0, N−2]}, the
chain.

Consider an edge e that crosses an edge f in a
Locked-Chain. Let ein be the end of e that is be-
tween the two ends of f , and eout be the other end.
One of e’s endpoints is at Pt(f), and Pt(e) is an
endpoint of f . There are three cases:

(i) f = (1, N). Here, eout = Pt(f) = 0, and
ein ∈ (1, N). For all vertices v ∈ (1, N) there
is an edge g in the chain such that v is between
the endpoints of g. Therefore, e will cross such an
edge g. To satisfy the 1-EC property, g must share
an endpoint with f , which means g is either (1, 3)
or (N−2, N). In the first case, the 1-EC property
forces e = (0, 2), and in the second e = (0, N−1),
both of which are part of the Locked-Chain.

(ii) f = (0, N−1), symmetrical with (i).
(iii) f = (i, i+2), for some i ∈ [0, N−2]. Here,

ein = Pt(f) = i+1. We can assume e does not
cross (0, N−1) or (1, N), as those cases are covered
by (i). As in (i), e must cross another edge in the
chain, and that edge must share an endpoint with f .
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This forces e to be either (i−1, i+1) or (i+1, i+3)
(excluding one or both if they cross (0, N−1) or
(1, N)), which are both in the Locked-Chain.

Our rules define a unique way to decompose al-
most any item into a set of other items. The excep-
tion is B, which in some cases can not be divided
into two items (i.e. has no valid binary division).

Lemma 2. A B[ij.x] has no valid binary division if
and only if the graph has a Locked-Chain.
Proof. Consider the k and l that give the longest ik
and lj edges in a B with no valid binary division (at
least one edge of each type must exist by definition).
No vertex in (ik) or (jl) is a valid split point, as
they would all require one of the items to have two
external vertices.

Now, consider p ∈ [kj]. If there is no edge l1r1,
where i ≤ l1 < p < r1 ≤ j, then p would be a
valid split point. Therefore, such an edge must exist.
Consider l1, either l1 ∈ (ik) or there is an edge l2c,
where i ≤ l2 < l1 < c ≤ j (by the same logic as
for l1r1). Similarly, either r1 ∈ (jl) or there is an
edge cr2 (it must be c to satisfy 1-EC). We can also
apply this logic to edges l2c and cr2, giving edges
l3l1 and r1r3. This pattern will terminate when it
reaches lu ∈ (ik) and rv ∈ (jl) with edges lulu−2

and rv−2rv. Note that k = lu−1 and l = rv−1, to
satisfy 1-EC.

Since it is a B, there must be at least two x–(ij)
edges. To satisfy 1-EC, these end at lu−1 and rv−1.

Let x be to the right (the left is symmetrical), and
call i = 0, j = N−1, and x = N . Comparing with
the Locked-Chain definition, we have all the edges
except one: 0 to N−1. However, that edge must
be present in the overall graph, as all B items start
with an ij edge (see rules 3 and 5 in Algorithm 1).
Therefore, if there is no valid split point for a B, the
overall graph must contain a Locked-Chain.

Now, for a graph that contains a Locked-Chain,
consider the items that contain the Locked-Chain.
Grouping them by their span [ij], there are five valid
options: [0, N−1], [1, N ], [0, N ], (i ≤ 0 ∧ j > N ),
and (i < 0 ∧ j ≥ N ). Items of the last three types
would be divided by our rules into smaller items, one
of which contains the whole Locked-Chain. The first
two are Bs of the type discussed above.

Now we will prove that our code to generate rules
from the templates can guarantee a DAG is formed.

Lemma 3. For any item H , ∀v ∈ covered(H)
∃u ∈ visible(H) : v is reachable from u.
Proof. This is true for initial items because
covered(H) = ∅. To apply induction, consider
adding edges and combing items. The lemma clearly
remains true when adding an edge. Consider com-
bining items E, F , G to form H[ij.x], and as-
sume the lemma is true for E, F , and G (the bi-
nary case is similar). Since all vertices are reach-
able from visible(E,F,G), we only need to ensure
that ∀v ∈ visible(E,F,G) ∃u ∈ visible(H) : v is
reachable from u. The connectivity between all pairs
{(u, v) | u ∈ visible(H), v ∈ visible(E,F,G)}
can be inferred from the item definitions, and so this
requirement can be enforced in rule generation.

Lemma 4. The final item is a directed acyclic graph.
Proof. First, consider acyclicity. Initial items do not
contain any edges and so cannot contain a cycle. For
induction, there are two cases:

(i) Adding an Edge ~pq to an item H: Assume that
H does not contain any cycles. ~pq will create a cycle
if and only if p is reachable from q. By construction,
p and q ∈ visible(H), and so the item definition
contains whether p is reachable from q.

(ii) Combining Items: Assume that in isolation,
none of the items being combined contain cycles.
Therefore, a cycle in the combined item must be
composed of paths in multiple items. A path in one
item can only continue in another item by passing
through a visible vertex. Therefore, a cycle would
have to be formed by a set of paths between visible
vertices. But the connectivity of every pair of visible
vertices is specified in the item definitions.

In both cases, rules that create a cycle can be ex-
cluded during rule generation.

By induction, the items constructed by our algo-
rithm do not contain cycles. Together with Lemma 3
and the final item definition, this means the final
structure is an acyclic graph with all vertices reach-
able from vertex n.

Next, we will show two properties that give intu-
ition for the algorithm. Specifically, we will prove
which rules add edges that are crossed in the final
derivation.

Lemma 5. An edge ij added to I[ij] is not crossed.
Proof. First, we will show three properties of any
pair of items in a derivation (using [ij.x] and [kl.y]).
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(1) It is impossible for either i < k < j < l or
k < i < l < j, i.e., items cannot have partially
overlapping spans. As a base case, the final item
is an interval spanning all vertices, and so no other
item can partially overlap with it. Now assume it is
true for an item H and consider the rules in reverse,
breaking H up. By construction, each rule divides
H into items with spans that are adjacent, overlap-
ping only at their visible vertices. Since the new
items are nested within H , they do not overlap with
any items H did not overlap with. By induction, no
pair of items have partially overlapping spans.

(2) For items with nested spans (i ≤ k < l ≤ j),
y ∈ [ij]∪{x}. Following the argument for the previ-
ous case, the [ij.x] item must be decomposed into a
set of items that includes [kl.y]. Now, consider how
those items are combined. The rules that start with
an item with an external vertex produce an item that
either has the same external vertex, or with the ex-
ternal vertex inside the span of the new item. There-
fore, y must either be equal to x or inside [ij].

(3) For items without nested spans, x /∈ (kl). As-
sume x ∈ (kl) for two items without nested spans.
None of the rules combine such a pair of items, or
allow one to be extended so that the other is nested
within it. However, all items are eventually com-
bined to complete the derivation. By contradiction,
x /∈ (kl).

Together, these mean that given an interval H
with span [ij], and another item G, either ∀v ∈
visible(G), v ∈ [ij] or ∀v ∈ visible(G), v /∈ (ij).
Since edges are only created between visible ver-
tices, no edge can cross edge ij.

Lemma 6. All edges aside from those considered in
Lemma 5 are crossed.

Proof. First, consider an edge ij added to an item
[ij.x] of type B, L, R, or N. This edge is crossed by
all x–(ij) edges, and in these items |x–(ij)| ≥ 1 by
definition. Note, by the same argument as Lemma 5,
the edge is not crossed later in the derivation.

Second, consider adding e ∈ {xi, xj}, to H , an
item with [ij] or [ij.x], forming an item G[ij.x].
Note, e does not cross any edges in H . Let
E(F [kl.y]) be the set of y–[kl] edges in some item
F . Note that e ∈ E(G). We will show how this set
of edges is affected by the rules and what that im-
plies for e. Consider each input item A[kl.y] in each

rule, with output item C. Every item A falls into
one of four categories: (1) ∀f ∈ E(A), f is crossed
by an edge in another of the rule’s input items, (2)
E(A) ⊆ E(C), (3) A∧ kl 7→ C and there are no ky
or ly edges in A, (4) A contains edge kl and there
are no ky or ly edges in A.

Cases 2-4 are straightforward to identify. For an
example of the first case, consider the rightmost item
in rule 4. The relevant edges are k–(lj] (by construc-
tion, kl is not present). Since the leftmost item is
either an R or N, |l–(ik)| ≥ 1. Since i < k < l < j,
all k–(lj] edges will cross all l–[ik) edges. There-
fore applying this rule will cross all k–(lj] edges in
the rightmost item.

Initially, e is not crossed and e ∈ E(G). For each
rule application, edges in E(A) are either crossed (1
and 3), remain in the set E(C) (2), or must already
be crossed (4). Since the final item is an interval and
E(Interval) = ∅, there must be a subsequent rule
that is not in case 2. Therefore e will be crossed.

3.3 Comparison with Pitler et al. (2013)
Our algorithm is based on Pitler et al. (2013), which
had the crucial idea of One-Endpoint crossing and
a complete decomposition of the tree case. Our
changes and extensions provide several benefits:

Extension to graphs: By extending to support
multiple parents while preventing cycles, we sub-
stantially expand the space of generatable structures.

Uniqueness: By avoiding derivational ambigu-
ity we reduce the search space and enable efficient
summing as well as maxing. Most of the cases in
which ambiguity arises in Pitler et al. (2013)’s al-
gorithm are due to symmetry that is not explicitly
broken. For example, the rule we worked through in
the previous section defined t ∈ (sq) when |C| = 1.
Picking t ∈ (ps) would also lead to a valid set of
rules, but allowing either creates a spurious ambigu-
ity. This ambiguity is resolved by tracking whether
there is only one edge to the external vertex or more
than one, and requiring more than one in rules 6 and
7. Other changes include ensuring equivalent struc-
tures cannot be represented by multiple item types
and enforcing a unique split point in B items.

More concise algorithm definition: By separat-
ing edge creation from item merging, and defining
our rules via a combination of templates and code,
we are able to define our algorithm more concisely.
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3.4 Algorithm Extensions

3.4.1 Edge Labels and Word Labels
Edge labels can be added by calculating either the

sum or max over edge types when adding each edge.
Word labels (e.g., POS Tags) must be added to the
state, specifying a label for each visible word (p, q
and o). This state expansion is necessary to ensure
agreement when combining items.

3.4.2 Ensuring a Structural Tree is Present
Our algorithm constrains the space of graph struc-

tures, but we also want to ensure that our parse con-
tains a projective tree of non-trace edges.

To ensure every word gets one and only one struc-
tural parent, we add booleans to the state, indicating
whether p, q and o have structural parents. When
adding edges, a structural edge cannot be added if a
word already has a structural parent. When combin-
ing items, no word can receive more than one struc-
tural parent, and words that will end up in the middle
of the span must have exactly one. Together, these
constraints ensure we have a tree.

To ensure the tree is projective, we need to prevent
structural edges from crossing. Crossing edges are
introduced in two ways, and in both we can avoid
structural edges crossing by tracking whether there
are structural o–[pq] edges. Such edges are present
if a rule adds a structural op or oq edge, or if a rule
combines an item with structural o–[pq] edges and o
will still be external in the item formed by the rule.

For adding edges, every time we add a pq edge in
the N , L, R and B items we create a crossing with
all o–(pq) edges. We do not create a crossing with oq
or op, but our ordering of edge creation means these
are not present when we add a pq edge, so tracking
structural o–[pq] edges gives us the information we
need to prevent two structural edges crossing.

For combining items, in Lemma 6 we showed that
during combinations, o–[pq] edges in each pair of
items will cross. As a result, knowing whether any
o–[pq] edge is structural is sufficient to determine
whether two structural edges will cross.

3.5 Complexity

Consider a sentence with n tokens, and let E and S
be the number of edge types and word labels in our
grammar respectively.

We like *1 running .

NPSBJ VP

S

NPSBJ VP

S

ROOT NPSBJ
We

S VP
like

S (NPSBJ *) VP
running

-
.

Figure 3: Parse representations for graph structures, PTB
(top) and ours (bottom).

Parses without word or edge labels: Rules have
up to four positions, leading to complexity of O(n4).
Note, there is also an important constant–once our
templates are expanded, there are 49,292 rules.

With edge labels: When using a first-order
model, edge labels only impact the rules for edge
creation, leading to a complexity of O(n4 + En2).

With word labels: Since we need to track word
labels in the state, we need to adjust every n by a
factor of S, leading to O(S4n4 + ES2n2).

4 Parse Representation

Our algorithm relies on the assumption that we can
process the dependents to the left and right of a word
independently and then combine the two halves.
This means we need lexicalized structures, which
the PTB does not provide. We define a new repre-
sentation in which each non-terminal symbol is as-
sociated with a specific word (the head). Unlike de-
pendency parsing, we retain all the information re-
quired to reconstruct the constituency parse.

Our approach is related to Carreras et al. (2008)
and Hayashi and Nagata (2016), with three key dif-
ferences: (1) we encode non-terminals explicitly,
rather than implicitly through adjunction operations,
which can cause ambiguity, (2) we add represen-
tations of null elements and co-indexation, (3) we
modify head rules to avoid problematic structures.

Figure 3 shows a comparison of the PTB repre-
sentation and ours. We add lexicalization, assigning
each non-terminal to a word. The only other changes
are visual notation, with non-terminals moved to be
directly above the words to more clearly show the
distinction between spines and edges.

Spines: Each word is assigned a spine, shown im-
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cakes we baked *T*1

NP

0 NPSBJ VP

WHNP1 S

NP SBAR

NP

SBAR (WHNP 0) S VP (NP *T*)
baked

(a) Null to null

cooked soup today and curry yesterday

NP1 NPTMP,2 NP=1 NPTMP,=2

VP VP

VP

VP VP NP NPTMP - VP NP NPTMP
cooked soup today and curry yesterday

VP VP NP NPTMP - VP NP NPTMP
cooked soup today and curry yesterday

(b) Parallel Constructions
Figure 4: Examples of syntactic phenomena. Only rele-
vant edges and spines are shown.

mediately above the word. A spine is the ordered set
of non-terminals that the word is the head of, e.g. S-
VP for like. If a symbol occurs more than once in a
spine, we use indices to distinguish instances.

Edges: An edge is a link between two words, with
a label indicating the symbols it links in the child
and parent spines. In our figures, edge labels are
indicated by where edges start and end.

Null Elements: We include each null element
in the spine of its parent, unlike Hayashi and Na-
gata (2016), who effectively treated null elements as
words, assigning them independent spines. We also
considered encoding null elements entirely on edges
but found this led to poorer performance.

Co-indexation: The treebank represents move-
ment with index pairs on null elements and non-
terminals, e.g. *1 and NP1 in Figure 3. We represent
co-indexation with edges, one per reference, going
from the null element to the non-terminal. There are
three special cases of co-indexation:
(1) It is possible for trace edges to have the same
start and end points as a non-trace edge. We restrict
this case to allow at most one trace edge. This de-
creases edge coverage in the training set by 0.006%.
(2) In some cases the reference non-terminal only
spans a null element, e.g. the WHNP in Figure 4a.
For these we use a reversed edge to avoid creating
a cycle. Figure 4a shows a situation where the trace
edge links two positions in the same spine, which we
assign with the spine during parsing.
(3) For parallel constructions the treebank co-
indexes arguments that fulfill the same roles
(Fig. 4b). These are distinct from the previous cases
because neither index is on a null element. We con-
sidered two options: add edges from the repetition

which *T*1 proposed ...

NP VP

WHNP1 S

SBAR

SBAR WHNP
which

S (NP *T*) VP
proposed

(a) Cycle

Page was named *1 CEO today

NP NP

S ADJP

VP

NP1 VP

S

ROOT NP S VP VP S (NP *) NP ADJP
Page was named CEO today

(b) Not One-Endpoint Crossing
Figure 5: Examples of problematic graph structured syn-
tactic phenomena before our head rule changes.

to the referent (middle), or add edges from the rep-
etition to the parent of the first occurrence (bottom).
Option two produces fewer non-1-EC structures and
explicitly represents all predicates, but only implic-
itly captures the original structure.

4.1 Avoiding Adjunction Ambiguity

Prior work on parsing with spines has used r-
adjunction to add additional non-terminals to spines.
This introduces ambiguity, because edges modifying
the same spine from different sides may not have a
unique order of application. We resolve this issue
by using more articulated spines with the complete
set of non-terminals. We found that 0.045% of spine
instances in the development set are not observed in
training, though in 70% of those cases an equivalent
spine sans null elements is observed in training.

4.2 Head Rules

To construct the spines, we lexicalize with head
rules that consider the type of each non-terminal
and its children. Different heads often represent
more syntactic or semantic aspects of the phrase.
For trees, all head rules generate valid structures.
For graphs, head rules influence the creation of two
problematic structures:

Cycles: These arise when the head chosen for a
phrase is also an argument of another word in the
phrase. Figure 5a shows a cycle between which and
proposed. We resolve this by changing the head of
an SBAR to be an S rather than a Wh-noun phrase.

One-Endpoint Crossing Violations: Figure 5b
shows an example, with the trace from CEO to Page
crossing two edges with no endpoints in common.
We resolve this case by changing the head for VPs
to be a child VP rather than an auxiliary.
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5 Results

Algorithm Coverage: In Table 1 we show the
impact of design decisions for our representation.
The percentages indicate how many sentences in the
training set are completely recoverable by our algo-
rithm. Each row shows the outcome of an addition to
the previous row, starting from no traces at all, going
to our representation with the head rules of Carreras
et al. (2008), then changing the head rules, reversing
null-null edges, and changing the target of edges in
parallel constructions. The largest gain comes from
changing the head rules, which is unsurprising since
Carreras et al. (2008)’s rules were designed for trees
(any set of rules form valid structures for trees).

Problematic Structures: Of the sentences we do
not cover, 54% contain a cycle, 45% contain a 1-
EC violation, and 1% contain both. To understand
these problematic sentences, we manually inspected
a random sample of twenty parses that contained a
cycle and twenty parses with a 1-EC violation (these
forty are 6% of all problematic parses, enough to
identify the key remaining challenges).

For the cycles, eleven cases related to sentences
containing variations of NP said interposed between
two parts of a single quote. A cycle was present
because the top node of the parse was co-indexed
with a null argument of said while said was an ar-
gument of the head word of the quote. The remain-
ing cases were all instances of pseudo-attachment,
which the treebank uses to show that non-adjacent
constituents are related (Bies et al. 1995). These
cases were split between use of Expletive (5) and
Interpret Constituent Here (4) traces.

It was more difficult to determine trends for cases
where the parse structure has a 1-EC violation. The
same three cases, Expletive, Interpret Constituent
Here, and NP said accounted for half of the issues.

5.1 Implementation

We implemented a parser with a first-order model
using our algorithm and representation. Code for
the parser, for conversion to and from our repre-
sentation, and for our metrics is available3. Our
parser uses a linear discriminative model, with fea-
tures based on McDonald et al. (2005). We train

3 https://github.com/jkkummerfeld/
1ec-graph-parser

Coverage (%)
Representation Sentences Edges
Projective trees, no nulls 26.59 96.27
Projective trees, with nulls 43.85 96.27
Projective graphs 50.60 96.67
One-EC graphs 71.84 98.31
+ Head rule changes 92.35 99.23
+ Null reversal 97.02 99.45
+ Parallel construction shift 97.31 99.49

Table 1: Training set coverage for different representa-
tions. One-EC graphs uses our representation, but with
the head rules from Carreras et al. (2008). For the edge
results, we only exclude edges necessary to make each
parse representable (e.g. excluding only one edge in a cy-
cle and counting the rest).

with an online primal subgradient approach (Ratliff
et al. 2007) as described by Kummerfeld, Berg-
Kirkpatrick, et al. (2015), with parallel lock-free
sparse updates.

Loss Function: We use a weighted Hamming dis-
tance for loss-augmented decoding, as it can be ef-
ficiently decomposed within our dynamic program.
Calculating the loss for incorrect spines and extra
edges is easy. For missing edges, we add when a
deduction rule joins two spans that cover an end of
the edge, since if it does not exist in one of those
items it is not going to be created in future. To avoid
double counting we subtract when combining two
halves that contain the two ends of a gold edge4.

Inside–Outside Calculations: Assigning scores
to edges is simple, as they are introduced in a single
item in the derivation. Spines must be introduced
in multiple items (left, right, and external positions)
and must be assigned a score in every case to avoid
ties in beams. We add the score every time the spine
is introduced and then subtract when two items with
a spine in common are combined.

Algorithm rule pruning: Many 1-EC structures
are not seen in our data. We keep only the rules used
in gold training parses, reducing the set of 49,292
from the general algorithm to 627 (including rules
for both adding arcs and combining items). Almost
every template in Algorithm 1 generates some un-
necessary rules, and no items of type B are needed.

4 One alternative is to count half of it on each end, removing
the need for subtraction later. Another is to add it during the
combination step.
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The remaining rules still have high coverage of the
development set, missing only 15 rules, each applied
once (out of 78,692 rule applications). By pruning
in this way, we are considering the intersection of
1-EC graphs and the true space of structures used in
language.

Chart Pruning: To improve speed we use beams
and cube pruning (Chiang 2007), discarding items
based on their Viterbi inside score. We divide each
beam into sub-beams based on aspects of the state.
This ensures diversity and enables consideration of
only compatible items during binary and ternary
compositions.

Coarse to Fine Pruning: Rather than parsing
immediately with the full model we use several
passes with progressively richer structure (Good-
man 1997): (1) Projective parsing without traces
or spines, and simultaneously a trace classifier, (2)
Non-projective parsing without spines, and simul-
taneously a spine classifier, (3) Full structure pars-
ing. Each pass prunes using parse max-marginals
and classifier scores, tuned on the development set.
The third pass also prunes spines that are not consis-
tent with any unpruned edge from the second pass.
For the spine classifier we use a bidirectional LSTM
tagger, implemented in DyNet (Neubig et al. 2017).

Speed: Parsing took an average of 8.6 seconds
per sentence for graph parsing and 0.5 seconds when
the parser is restricted to trees5. Our algorithm is
also amenable to methods such as semi-supervised
and adaptive supertagging, which can improve the
speed of a parser after training (Kummerfeld, Roes-
ner, et al. 2010; Lewis and Steedman 2014).

Tree Accuracy: On the standard tree-metric, we
score 88.1. Using the same non-gold POS tags as
input, Carreras et al. (2008) score 90.9, probably
due to their second-order features and head rules
tuned for performance6. Shifting to use their head
rules, we score 88.9. Second-order features could be
added to our model through the use of forest rerank-
ing, an improvement that would be orthogonal to
this paper’s contributions.

We can also evaluate on spines and edges. Since
their system produces regular PTB trees, we con-

5 Using a single core of an Amazon EC2 m4.2xlarge in-
stance (2.4 GHz Xeon CPU and 32 Gb of RAM).

6 Previous work has shown that the choice of head can sig-
nificantly impact accuracy (Schwartz et al. 2012).

System P R F
Null Elements Only

Johnson (2002) 85 74 79
Hayashi and Nagata (2016) 90.3 81.7 85.8
Kato and Matsubara (2016) 88.5 82.1 85.2
This work 89.5 81.6 85.4

Null Elements and Co-indexation
Johnson (2002) 73 63 68
Kato and Matsubara (2016) 81.2 74.7 77.8
This work 74.3 67.3 70.6

Table 2: Accuracy on section 23 using Johnson’s metric.

vert its output to our representation and compare its
results with our system using their head rules. We
see slightly lower accuracy for our system on both
spines (94.0 vs. 94.3) and edges (90.4 vs. 91.1).

Trace Accuracy: Table 2 shows results using
Johnson (2002)’s trace metric. Our parser is compet-
itive with previous work that has highly-engineered
models: Johnson’s system has complex non-local
features on tree fragments, and similarly Kato and
Matsubara (K&M 2016) consider complete items
in the stack of their transition-based parser. On
co-indexation our results fall between Johnson and
K&M. Converting to our representation, our parser
has higher precision than K&M on trace edges (84.1
vs. 78.1) but lower recall (59.5 vs. 71.3). One mod-
eling challenge we observed is class imbalance: of
the many places a trace could be added, only a small
number are correct, and so our model tends to be
conservative (as shown by the P/R tradeoff).

6 Conclusion

We propose a representation and algorithm that
cover 97.3% of graph structures in the PTB. Our al-
gorithm is O(n4), uniquely decomposes parses, and
enforces the property that parses are composed of a
core tree with additional traces and null elements. A
proof of concept parser shows that our algorithm can
be used to parse and recover traces.
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