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Abstract

In this paper we propose and carefully eval-
uate a sequence labeling framework which
solely utilizes sparse indicator features de-
rived from dense distributed word represen-
tations. The proposed model obtains (near)
state-of-the art performance for both part-of-
speech tagging and named entity recognition
for a variety of languages. Our model relies
only on a few thousand sparse coding-derived
features, without applying any modification
of the word representations employed for the
different tasks. The proposed model has fa-
vorable generalization properties as it retains
over 89.8% of its average POS tagging accu-
racy when trained at 1.2% of the total available
training data, i.e. 150 sentences per language.

1 Introduction

Determining the linguistic structure of natural lan-
guage texts based on rich hand-crafted features has
a long-going history in natural language processing.
The focus of traditional approaches has mostly been
on building linguistic analyzers for a particular kind
of analysis, which often leads to the incorporation
of extensive linguistic and/or domain knowledge for
defining the feature space. Consequently, traditional
models easily become language and/or task specific
resulting in improper generalization properties.

A new research direction has emerged recently,
that aims at building more general models that re-
quire far less feature engineering or none at all.
These advancements in natural language processing,
pioneered by Bengio et al. (2003), followed by Col-
lobert and Weston (2008), Collobert et al. (2011),

Mikolov et al. (2013a) among others, employ a dif-
ferent philosophy. The objective of these works is to
find representations for linguistic phenomena in an
unsupervised manner by relying on large amounts
of text.

Natural language phenomena are extremely
sparse by their nature, whereas continuous word em-
beddings employ dense representations of words. In
our paper we empirically verify via rigorous exper-
iments that turning these dense representations into
a much sparser (yet denser than one-hot encoding)
form can keep the most salient parts of word repre-
sentations that are highly suitable for sequence mod-
els.

Furthermore, our experiments reveal that our pro-
posed model performs substantially better than tra-
ditional feature-rich models in the absence of abun-
dant training data. Our proposed model also has the
advantage of performing well on multiple sequence
labeling tasks without any modification in the ap-
plied word representations thanks to the sparse fea-
tures derived from continuous word representations.

Our work aims at introducing a novel sequence la-
beling model solely utilizing features derived from
the sparse coding of continuous word embeddings.
Even though sparse coding had previously been uti-
lized in NLP prior to us (Faruqui et al., 2015; Chen
et al., 2016), to the best of our knowledge, we are
the first to propose a sequence labeling framework
incorporating it with the following contributions:

• We show that the proposed sparse represen-
tation is general as sequence labeling models
trained on them achieve (near) state-of-the-art
performances for both POS tagging and NER.
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• We show that the representation is general in
the other sense, that it produces reasonable re-
sults for more than 40 treebanks for POS tag-
ging,

• rigorously compare different sparse coding ap-
proaches in conjunction with differently trained
continuous word embeddings,

• highlight the favorable generalization proper-
ties of our model in settings when access to a
very limited training corpus is assumed,

• release the sparse word representations de-
termined for our experiments at https://
begab.github.io/sparse_embeds to
ensure the replicability of our results and to fos-
ter further multilingual NLP research.

2 Related work

The line of research introduced in this paper re-
lies on distributed word representations (Al-Rfou et
al., 2013) and dictionary learning for sparse coding
(Mairal et al., 2010) and also shows close resem-
blance to (Faruqui et al., 2015).

2.1 Distributed word representations

Distributed word representations assign some rela-
tively low-dimensional, dense vectors to each word
in a corpus such that words with similar context and
meaning tend to have similar representations. From
an algebraic point of view, the embedding of word i
having index idxi in a vocabulary V can be thought
of as the result of a matrix-vector multiplication
W1i, where the ith column of matrix W ∈ Rk×|V |
contains the k-dimensional (k � |V |) embedding
for word i and vector 1i ∈ R|V| is the one-hot rep-
resentation of word i. The one-hot representation of
word i is such a vector, which contains zeros for all
of its entries except for index idxi where it stores a
one. Depending on how the columns of W (i.e. the
word embeddings) get determined, we could distin-
guish a plethora of approaches (Bengio et al., 2003;
Lebret and Collobert, 2014; Mnih and Kavukcuoglu,
2013; Collobert and Weston, 2008; Mikolov et al.,
2013a; Pennington et al., 2014).

Prediction-based distributed word embedding ap-
proaches such as word2vec (Mikolov et al.,

2013a) have been conjectured to have superior per-
formance over count-based word representations
(Baroni et al., 2014). However, as Lebret and Col-
lobert (2015), Levy et al. (2015) and Qu et al. (2015)
point out count-based distributional models can per-
form on par with prediction-based distributed word
embedding models. Levy et al. (2015) illustrate that
the effectiveness of neural word embeddings largely
depend on the selection of model hyperparameters
and other design choices.

According to these findings, in order to avoid any
hassles of tuning the hyperparameters of the word
embedding model employed, we primarily use the
publicly available pre-trained polyglot word em-
beddings of Al-Rfou et al. (2013) instead, without
any task specific modification for our experiments.
A key thing to note is that polyglot word embed-
dings are not tailored toward any specific language
analysis task such as POS tagging or NER. These
word embeddings are instead trained in a manner fa-
voring the word analogy task introduced by Mikolov
et al. (2013c). The polyglot project distributes
word embeddings for more than 100 languages. Al-
Rfou et al. (2013) also report results on POS tagging,
however, word representations they apply for these
experiments are different from the task-agnostic rep-
resentations they made publicly available.

There has been previous research on training neu-
ral networks for learning distributed word represen-
tations for various specific language analysis tasks.
Collobert et al. (2011) propose neural network archi-
tectures to four natural language processing tasks,
i.e. POS tagging, named entity recognition, semantic
role labeling and chunking. Collobert et al. (2011)
train word representations on large amounts of unan-
notated texts from Wikipedia, then update the pre-
trained word representations for the individual tasks.
Our approach is different in that we do not up-
date our word representations for the different tasks
and most importantly that we use successfully the
features derived from sparse coding in a log-linear
model instead of a neural network architecture. A
final difference to (Collobert et al., 2011) is that we
experiment with a much wider range of languages
while they report results for English only.

Qu et al. (2015) evaluate the impacts of choos-
ing different embedding methods on four sequence
labeling tasks, i.e. POS tagging, NER, syntactic
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chunking and multiword expression identification.
The hand-crafted features they employ for POS tag-
ging and NER are the same as in Collobert et al.
(2011) and Turian et al. (2010).

2.2 Sparse coding

The general goal of sparse coding is to express sig-
nals in the form of sparse linear combination of ba-
sis vectors and the task of finding an appropriate set
of basis vectors is referred to as the dictionary learn-
ing problem (Mairal et al., 2010). Generally, given
a data matrix X ∈ Rk×n with its ith column xi rep-
resenting the ith k-dimensional signal, the task is to
findD ∈ Rk×m and α ∈ Rm×n, such thatX ≈ Dα.
This can be formalized into an `1-regularized linear
least-squares minimization problem having the form

min
D∈C,α

1

2n

n∑

i=1

(
‖xi −Dαi‖22 + λ‖αi‖1

)
, (1)

with C being the convex set of matrices of column
vectors having an `2 norm at most one, matrix D
acting as the shared dictionary across the signals,
and the columns of the sparse matrix α containing
the coefficients for the linear combinations of each
of the n observed signals.

Performing sparse coding of word embeddings
has recently been proposed by Faruqui et al. (2015),
however, the objective function they optimize dif-
fers from (1). In Section 4, we compare the effects
of employing different sparse coding paradigms in-
cluding the ones in (Faruqui et al., 2015).

In their work, Yogatama et al. (2015) proposed
an efficient learning algorithm for determining hi-
erarchically organized sparse word representations
using stochastic proximal methods. Most recently,
Sun et al. (2016) have proposed an online learn-
ing algorithm using regularized dual averaging to di-
rectly obtain `1 regularized continuous bag of words
(CBOW) representations (Mikolov et al., 2013a)
without the need to determine dense CBOW repre-
sentations first.

3 Sequence labeling framework

This section introduces the sequence labeling frame-
work we use for both POS tagging and NER. Since
our goal is to measure the effectiveness of sparse

word embeddings alone, we do not apply any fea-
tures based on gazetters, capitalization patterns or
character suffixes.

As described previously, word embedding meth-
ods turn a high-dimensional (i.e., as many dimen-
sions as words in the vocabulary) and extremely
sparse (i.e. containing only one non-zero element at
the vocabulary index of the word it represents) one-
hot encoded representation of words into a dense
embedding of much lower dimensionality k.

In our work, instead of using the low dimensional
dense word embeddings, we use a dictionary learn-
ing approach to obtain sparse codings for the em-
bedded word representations. Formally, given the
lookup matrix W ∈ Rk×|V | which contains the em-
bedding vectors, we learned D ∈ Rk×m being the
dictionary matrix shared across all the embedding
vectors and α ∈ Rm×|V | containing sparse linear
combination coefficients for each of the word em-
beddings so that ‖W−Dα‖2F+λ‖α‖1 is minimized.

Once the dictionary matrix D is learned, the
sparse linear combination coefficients αi can easily
be determined for a word embedding vector wi by
solving an `1-regularized linear least-squares mini-
mization problem (Mairal et al., 2010). We define
features based on vector αi by taking the signs and
indices of its non-zero coefficients, that is

f(wi) = {sign(αi[j])j | αi[j] 6= 0}, (2)

where αi[j] denotes the jth coefficient in the sparse
vector αi. The intuition behind this feature is that
words with similar meaning are expected to use an
overlapping set of basis vectors from dictionary D.
Incorporating the signs of coefficients into the fea-
ture function can help to distinguish cases when
a basis vector takes part in the reconstruction of
a word representation “destructively” or “construc-
tively”.

When assigning features to a target word at some
position within a sentence, we determine the same
set of feature functions for the target word itself
and its neighboring words of window size 1. Ex-
periments with window size 2 were also performed.
However, we omit these results for brevity as they
do not substantially differ from those obtained with
a window size of 1.

We then use the previously described set of fea-
tures in a linear chain CRF (Lafferty et al., 2001)
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using CRFsuite (Okazaki, 2007) with its default set-
tings for hyperparameters, i.e., the coefficients of 1.0
and 0.001 for `1 and `2 regularization, respectively.

4 Experiments

We rely on the SPArse Modeling Software1

(SPAMS) (Mairal et al., 2010) for performing sparse
coding of distributed word representations. For dic-
tionary learning as formulated in Equation 1, one
should choose m and λ, controlling the number of
the basis vectors and the regularization coefficient
affecting the sparsity of α, respectively. Starting
with m = 256 and doubling it at each iteration, our
preliminary investigations showed a steady growth
in the usefulness of sparse word representations as a
function of m, plateauing at m = 1024. We set m
to that value for further experiments.

4.1 Baseline methods

Brown clustering Various studies have identified
Brown clustering (Brown et al., 1992) as a useful
source of feature generation for sequence labeling
tasks (Ratinov and Roth, 2009; Turian et al., 2010;
Owoputi et al., 2013; Stratos and Collins, 2015; Der-
czynski et al., 2015). We should note that sparse
coding can also be viewed as a kind of clustering
that – unlike Brown clustering – has the capability of
assigning word forms to multiple clusters at a time
(corresponding to the non-zero coefficients in α).

We thus define a linear chain CRF relying on fea-
tures from the Brown cluster identifier of words as
one of our baseline approach. Since Brown clus-
tering defines a hierarchical clustering over words,
cluster supersets can easily function as features. We
generate features from length-p (p ∈ {4, 6, 10, 20})
prefixes of Brown cluster identifiers similar to Rati-
nov and Roth (2009) and Turian et al. (2010).

In our experiments we use the implementation by
Liang (2005) for performing Brown clustering2. We
provide the very same Wikipedia articles as input
text for determining Brown clusters that are used
for training the polyglot3 word embeddings. We

1http://spams-devel.gforge.inria.fr/
2https://github.com/percyliang/

brown-cluster
3https://sites.google.com/site/rmyeid/

projects/polyglot

# Level Feature name
1 char isNumber(wt)
2 char isTitleCase(wt)
3 char isNonAlnum(wt)
4 char prefix(wt, i) 1 ≤ i ≤ 4
5 char suffix(wt, i) 1 ≤ i ≤ 4
6 word wt+j −2 ≤ j ≤ 2
7 word wt ⊕ wt+i 1 ≤ i ≤ 9
8 word wt ⊕ wt−i 1 ≤ i ≤ 9

9 word ⊕t+j+1
i=t+jwi −2 ≤ j ≤ 1

10 word ⊕t+j+2
i=t+jwi −2 ≤ j ≤ 0

11 word ⊕t+j+2
i=t+j−1wi −1 ≤ j ≤ 0

12 word ⊕t+2
i=t−2wi

Table 1: Features and feature templates applied by our
feature-rich baseline for target word wt. ⊕ is a binary
operator forming a feature from words and their relative
positions by combining them together.

also set the number of Brown clusters to be identi-
fied to 1024, which is the number of basis vectors
applied during sparse coding (cf. D ∈ R64×1024).

Feature-rich representation We report results re-
lying on linear chain CRFs that assign standard
state-of-the-art feature-rich representation to se-
quences. We apply the very same features and fea-
ture templates included in the POS tagging model of
CRFSuite4. We summarize these features in Table 1,
where ⊕ denotes the binary operator which defines
features as a combination of word forms at different
(not necessarily contiguous) positions of a sentence.

We use the same pool of features described in Ta-
ble 1 for both POS tagging and NER. The reason
why we do not adjust the feature-rich representation
employed as our baseline for the different tasks is
that we do not alter our representation in any way
when using our sparse coding-based model either.

Note that features #1 through #5 in Table 1 oper-
ate at character-level, whereas our proposed frame-
work solely uses features derived from the sparse
coding of word forms. We thus distinguish two
feature-rich baselines, i.e. FRw+c including both
word and character-level features and FRw treating
word forms as atomic units to derive features from.

Using dense word representations As our ulti-
mate goal is to demonstrate the usefulness of sparse

4http://github.com/chokkan/crfsuite/
blob/master/example/pos.py
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features derived from dense word representations,
it is important to address the question of whether
sparse word representations are more beneficial for
sequence labeling tasks compared to their dense
counterparts. To this end, we developed a similar
model to the one proposed in Section 3, except for
using the original dense word representations for in-
ducing features.

According to this modification, we made the fol-
lowing change in our feature function: instead of
calculating Equation (2) for some word i, the modi-
fied feature function we use for this baseline is

f(wi) = {j : wi[j] | ∀j ∈ {1, . . . , k}}.

That is, instead of relying on the nonzero values in
αi, each word is characterized by its k real-valued
coordinates in the embedding space. In order to no-
tationally distinguish sparse and dense representa-
tions, we add subscript SC when we refer to a sparse
coded version of some word embedding (e.g. SGSC).

4.2 POS tagging experiments
Even though it is reasonable to assume that lan-
guages share a common coarse set of linguistic cat-
egories, linguistic resources had their own notations
for part-of-speech tags. The first notable attempt to
canonize the multiple tag sets was the Google uni-
versal part-of-speech tags introduced by Petrov et
al. (2012) in which the POS tags of various tagging
schemes were mapped to 12 language-independent
part-of-speech tags.

The recent initiative of universal dependencies
(UD) (Nivre, 2015) aims to provide a unified no-
tation for multiple linguistic phenomena, including
part-of-speech tags as well. The POS tag set pro-
posed for UD has 17 categories which partially over-
lap with those defined by Petrov et al. (2012).

4.2.1 Experiments using CoNLL 2006/07 data
We use 12 treebanks in the CoNLL-X format from

the CoNLL-2006/07 (Buchholz and Marsi, 2006;
Nivre et al., 2007) shared tasks. The complete list
of the treebanks included in our experiments is pre-
sented in Table 2.

We rely on the official scripts released by Petrov
et al. (2012)5 for mapping the treebank specific

5https://github.com/slavpetrov/
universal-pos-tags

Language Source
bg BTB/CoNLL06 (2005)
da DDT/CoNLL06 (2004)
de Tiger/CoNLL06 (2002)
en Penn Treebank (1993)
es Cast3LB/CoNLL06 (2008)
hu Szeged Treebank/CoNLL07 (2005)
it ISST/CoNLL07 (2003)
nl Alpino/CoNLL06 (2002)
pt Floresta Sint(c)tica/CoNLL06 (2002)
sl SDT/CoNLL06 (2006)
sv Talbanken05/CoNLL06 (2006)
tr METU-Sabanci/CoNLL07 (2003)

Table 2: Treebanks used for POS tagging experiments
from the CoNLL 2006/07 shared task.

bg da de en es hu it nl pt sl sv tr Avg.
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Figure 1: Token and word form-level coverages of the
word vectors against the combined train/test sets of the
CoNLL-2006/07 POS tagging datasets.

POS tags to the Google universal POS tags in or-
der to obtain results comparable across languages.
For our experiments we used the original CoNLL-X
train/test splits of the treebanks.

A key factor for the efficiency of our proposed
model resides in the coverage of word embeddings,
i.e. the proportion of tokens/word forms for which
distributed representation is determined. Figure 1
depicts these coverage scores calculated over the
merged training and test sets for the different lan-
guages. Figure 1 reveals that a substantial amount
of tokens has distributed representation defined for
(around 90% for the majority of languages, except
for Turkish where it is 5 point less). Token coverages
of the word embeddings are most likely affected by
the morphological richness of the languages and the
elaborateness of the corresponding Wikipedia arti-
cles used for training word embeddings.
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Figure 2: POS tagging results on the CoNLL 2006/07 treebanks evaluating against universal POS tags. Ticks are
placed for λ = 0.05, 0.1, 0.2, 0.3, 0.4, 0.5. The x-axis shows the sparsity of the representations.

Comparing word embeddings Our motivation
for choosing polyglot word embeddings as in-
put to sparse coding is that they are publicly avail-
able for a variety of languages. However, distributed
word representations trained in any other reasonable
manner can serve as input to our approach. In order
to investigate if some of the popular word embed-
ding techniques seem favorable for our algorithm,
we conduct experiments using alternatively trained
embeddings, i.e. skip-gram (SG), continuous bag-
of-words (CBOW) and Glove.

In order that the utility of different word embed-
dings not to be conflated with other factors, we train
them on the same Wikipedia dumps used for train-
ing the polyglotword vectors. We choose further
hyperparameters identically to polyglot, i.e. we

train 64 dimensional dense word representations us-
ing a symmetric context window of size 2 for both
SG/CBOW6 and Glove7.

Figure 2 includes POS tagging accuracies over
the 12 treebanks from the CoNLL 2006/07 shared
tasks evaluated against Google Universal POS tags.
Instead of reporting results as a function of λ, we
rather present accuracies as a function of the dif-
ferent sparsity levels induced by different λ val-
ues. Figure 2 demonstrates that POS tagging perfor-
mance is quite insensitive to the choice of λ unless
it yields some extreme sparsity level (>99.5%).

Figure 2 also reveals that the usage of
6https://code.google.com/archive/p/

word2vec/
7http://nlp.stanford.edu/projects/glove/
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bg da de en es hu it nl pt sl sv tr Avg.
polyglotSC 96.04 95.71 96.33 97.20 96.14 92.92 95.21 93.43 95.96 94.10 94.36 85.93 94.44
CBOWSC 95.10 95.35 95.61 97.08 95.75 92.17 94.51 92.61 95.42 92.96 93.18 85.12 93.74
SGSC 94.67 95.49 95.47 96.91 95.29 91.97 94.11 93.12 95.28 92.63 93.60 84.99 93.63
GloveSC 93.16 93.63 94.61 96.10 93.36 88.62 92.88 90.16 94.65 90.31 92.19 83.36 91.92

(a) Results obtained using sparse word representations (λ = 0.1,m = 1024).

bg da de en es hu it nl pt sl sv tr Avg.
polyglot 92.11 93.03 93.10 94.80 94.64 89.23 92.90 90.07 94.36 89.36 89.14 81.33 91.17
CBOW 90.19 90.36 88.46 91.22 91.55 86.07 87.11 88.09 92.45 87.82 87.00 79.30 88.30
SG 88.10 88.84 86.48 90.19 91.34 84.38 85.09 85.11 91.77 88.17 84.48 78.72 86.89
Glove 83.10 81.95 83.07 86.64 84.65 77.34 79.98 78.54 86.62 80.91 78.77 76.77 81.53

(b) Results obtained using dense word representations.

Table 3: Performances of sparse and dense word representations for POS tagging over the 12 CoNLL-X datasets.

polyglotSC word representations tend to produce
superior results over all alternative representations
we experiment with. Furthermore, models using
polyglotSC consistently outperform the FRw and
Brown clustering-based baselines.

Models relying on SGSC and CBOWSC represen-
tations have an average tagging accuracy of 93.74
and 93.63, respectively, and they typically perform
better than the baseline using Brown clustering with
an average tagging performance of 93.27. Al-
though utilizing Glove embeddings produce the low-
est scores (91.92 on average), its scores still surpass
those of the FRw baseline for all languages except
for Turkish.

The average tagging performance over the 12
languages when relying on features based on
polyglotSC is only 1.3 points below that of
FRw+c (i.e. 94.4 versus 95.7). Recall that FRw+c
uses a feature-rich representation, whereas our pro-
posed model uses only O(m) features, i.e. it is tied
to the number of the basis vectors employed for
sparse coding. Furthermore, our model does not
employ word identity features, nor does it rely on
character-level features of words.

Analyzing the effects of window size Hyper-
parameters for training word representations can
greatly impact their quality as also concluded by
Levy et al. (2015). We thus investigate if provid-
ing a larger context window size during the training
of CBOW, SG and Glove embeddings can improve
their performance in our model.

According to Figure 3 applying context window
sizes of 2 for training the word embeddings tend to
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λ

0.88
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0.92
0.94
0.96
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1.00

A
cc

ur
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λ

GloveSC

w=2 w=10

Figure 3: Overview of POS tagging accuracies over the
12 CoNLL-X datasets when relying on sparse coded ver-
sions of alternative word embeddings trained with context
window size of 2 and 10.

produce better overall POS tagging accuracies than
applying a larger window size of 10. Differences are
the most pronounced in case of skip-gram represen-
tation, confirming the findings of Lin et al. (2015),
i.e. embedding models that model short-range con-
text are more effective for POS tagging.

Comparing dense and sparse representations
Unless stated otherwise, we use λ = 0.1 for the
experiments below in accordance to Figure 2. Ta-
ble 3 demonstrates that performances obtained by
models using dense word representations as features
are consistently inferior to those models relying on
sparse word representations.

In Table 3b, we can see that polyglot em-
beddings perform the best for dense representations
as well. When using dense features, the CBOW
representation-based model tends to produce results
better than by a 1.4 points margin on average com-
pared to SG embeddings. This performance gap be-
tween the two word2vec variants vanishes, how-
ever, when dense representations are replaced by
their sparse counterparts. Table 3 also reveals that
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model bg da de en es hu it nl pt sl sv tr Avg.
polyglotSC 96.04 95.71 96.33 97.20 96.14 92.92 95.21 93.43 95.96 94.10 94.36 85.93 94.44
FRw 92.55 91.68 95.86 96.99 92.31 86.33 89.32 88.79 93.28 87.12 91.51 83.50 90.77
FRw+c 97.20 96.67 98.42 97.74 96.43 95.36 95.94 94.47 97.73 93.90 95.56 89.63 95.75
#train sents. 12823 5190 39216 39832 3306 6035 3110 13349 9071 1534 11042 4997 12458

(a) Results obtained with different models when all the training corpora was used.

model bg da de en es hu it nl pt sl sv tr Avg.
polyglotSC 88.20 94.04 93.47 95.76 95.63 91.15 94.19 87.28 94.60 94.12 91.14 83.23 91.90
FRw 79.63 87.75 85.58 90.93 89.87 80.01 86.60 74.40 89.13 86.93 80.16 77.59 85.05
FRw+c 88.71 93.52 95.77 94.59 95.42 92.74 93.66 84.94 95.13 93.82 88.56 84.92 91.82
train sents. % 11.70 28.90 3.82 3.77 45.37 24.86 48.23 11.24 16.54 97.78 13.58 30.02 12.04

(b) Results obtained with different models when the first 1,500 sentences of the training corpora were used.

model bg da de en es hu it nl pt sl sv tr Avg.
polyglotSC 76.46 89.51 88.29 90.46 91.32 86.51 89.13 75.24 90.74 86.67 82.50 71.17 84.83
FRw 62.44 74.88 72.46 78.10 77.80 67.20 75.45 56.67 79.38 72.46 65.13 61.38 70.28
FRw+c 74.87 83.34 89.64 85.75 85.88 83.54 84.99 69.28 87.52 83.88 76.71 67.40 81.07
train sents. % 1.17 2.89 0.38 0.38 4.54 2.49 4.82 1.12 1.65 9.78 1.36 3.00 1.20

(c) Results obtained with different models when the first 150 sentences of the training corpora were used.

Table 4: Comparison of models based on different amount of training data. Bold numbers indicate the best results for a
given training regime (i.e. either training on 150/1,500/all training sentences). polyglotSC usesm = 1024, λ = 0.1.

sparse word representations improve average POS
tagging accuracy by 3.3, 5.4, 6.7 and 10.4 points for
polylgot, CBOW, SG and Glove word represen-
tations, respectively.

Comparing the effects of training corpus size
We also investigate the generalization characteristics
of the proposed representation by training models
that have access to substantially different amounts
of training data per language. We distinguish three
scenarios, i.e. when using only the first 150, the first
1,500 and all the available training sentences from
each corpus. Figure 4 illustrates the average POS
tagging accuracy over the 12 CoNLL-X datasets for
different amounts of training data and models.

Table 4 further reveals that the average perfor-
mance of polyglotSC is 14.55 and 3.76 points
better compared to the FRw and FRw+c baselines
when using only 1.2% of all the available training
data, i.e. 150 sentences per language. By discard-
ing 98.8% of the training data polyglotSC obtains
89.8% of its average performance compared to the
scenario when it has access to all the training sen-
tences. However, under the same scenario the FRw+c
and FRw models only manage to preserve 85% and
77% of their original performance, respectively.

Our model performs on par with FRw+c and has a

150 1500 all
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Figure 4: Average tagging accuracies over the 12
CoNLL-X languages using varying amount of training
sentences.

6.85 points advantage over FRw with a training cor-
pus of 1,500 sentences. FRw+c has an average of 1.3
points advantage over polyglotSC when we pro-
vide access to all training data during training, nev-
ertheless FRw still underperforms polyglotSC in
that setting by 3.67 points.

Comparing sparse coding techniques Next, we
compare different sparse coding approaches on the
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pre-trained polyglot word representations. The
recent work of Faruqui et al. (2015) formulated al-
ternative approaches to determine sparse word rep-
resentations. One of the objective functions Faruqui
et al. (2015) apply is

min
D,α

1

2n

n∑

i=1

‖xi−Dαi‖22+λ‖αi‖1+ τ‖D‖22. (3)

The main difference in Eq. 1 and 3 is that the lat-
ter does not explicitly constrain D to be a member
of the convex set of matrices comprising of column
vectors having a pre-defined upper bound on their
norm. In order to implicitly control for the norms
of the basis vectors Faruqui et al. (2015) apply an
additional regularization term affected by an extra
parameter τ in their objective function.

Faruqui et al. (2015) also formulated a con-
strained objective function of the form

min
D∈Rk×m

≥0

α∈Rk×|V |
≥0

1

2n

n∑

i=1

‖xi−Dαi‖22+λ‖αi‖1+ τ‖D‖22, (4)

for which a non-negativity constraint on the ele-
ments of α (but no constraint on D) is imposed.
When using the objective functions introduced by
Faruqui et al. (2015), we use the default τ = 10−5

value. Notationally, we distinguish the sparse cod-
ing approaches based on the equation they use as
their objective function, i.e. SC-i, i ∈ {1, 3, 4}.

We applied λ = 0.05 for SC-1 and λ = 0.5 for
SC-3 and SC-4 in order to obtain word representa-
tions of comparable average sparsity levels across
the 12 languages, i.e. 95.3%, 94.5% and 95.2%, re-
spectively (cf. the left of Figure 5). The right of Fig-
ure 5 further illustrates the spread of POS tagging
accuracies over the 12 CoNLL-X treebanks when
using models that rely on different sparse coding
strategies with comparable sparsity levels.

Although Murphy et al. (2012) mentions non-
negativity as a desired property of word representa-
tions for cognitive plausibility, Figure 5 reveals that
our sequence labeling model cannot benefit from it
as the average POS tagging accuracy for SC-4 is
0.7 points below that of SC-3 approach. The aver-
age performances when applying SC-1 and SC-3 are
nearly identical with a 0.18 point difference between
the two.

SC­1 SC­3 SC­4
Sparse coding approach

90

91

92

93
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95
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97

%

Sparsity

SC­1 SC­3 SC­4
Sparse coding approach

84

86
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92

94

96

98
POS tagging accuracy

Figure 5: Comparison of the POS tagging accuracies of
different sparse coding techniques with comparable aver-
age sparseness levels over the 12 CoNLL-X languages.
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Figure 6: Characteristics of the different sparse coding
techniques over the 12 CoNLL-X languages.

It is instructive to analyze the patterns different
sparse coding approaches exhibit. Even though the
objective functions used by the different approaches
are similar, decompositions obtained by them con-
vey rather different sparsity structures.

Figure 6a illustrates that there exist substantial
variation in the length of the basis vectors obtained
by SC-3 and SC-4 both within and across languages.
However, SC-1 produces practically no variation in
the length of the basis vectors comprising D due to
the constraint present in the objective function it em-
ploys. Figure 6b shows similar differences about the
relative frequency of basis vectors taking part in the
reconstruction of word embeddings.

Figure 7 shows a strong correlation between the
`2 norm of basis vectors and the relative number of
times a non-zero coefficient is assigned to them in α
for SC-3 and SC-4 but not for SC-1.

It can be further noted from Figure 7 that the norm
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Figure 7: Relative frequency of basis vectors receiving
nonzero coefficients in α as a function of their `2 norm.

of the basis vectors determined by SC-3 and SC-4
are often orders of magnitude larger than those de-
termined by SC-1. This effect, however, can be nat-
urally mitigated by increasing τ .

Overall, the different approaches convey compa-
rable POS tagging accuracies but different decom-
positions due to the differences in the objective func-
tions they employ. Experiments described below are
conducted using the objective function in Eq. 1.

4.2.2 Experiments using UD treebanks

For POS tagging we also experiment with
UD v1.2 (Nivre et al., 2015) treebanks. We used
the default train-test splits of the treebanks not utiliz-
ing the development sets for fine tuning performance
on any of the languages during our experiments.
We omitted the Japanese treebank as words in it
are stripped off due to licensing issues. Also there
is no polyglot vector released for Old Church
Slavonic and Gothic. Even though polyglotword
representations are released for Arabic, it was of
no practical use as it contained unvocalized surface
forms of tokens in contrast to the vocalized forms in
UD v.1.2. For this reason, we discarded the Arabic
treebank as less than 30% of its tokens could be as-
sociated with a representation. By omitting these 4
languages from our experiments we are finally left
with 33 treebanks for 29 languages. We note that for

Ancient Greek treebanks (grc*) we use word embed-
dings trained on Modern Greek.

We should add that there are 4 languages (related
to 6 treebanks) for which polyglot word vectors
are accessible, however, the Wikipedia dumps used
for training them are not distributed. For this reason,
Brown clustering-based baselines are missing for the
affected treebanks.

We report our results on UD v1.2 in Table 5. Re-
call that the default behavior of our sparse coding-
based models (SC in Table 5) is that they do not
handle word identity as an explicit feature. We
now investigate how much contribution word iden-
tity features convey on their own and also when used
in conjunction with sparse coding-derived features.
For this end we introduce a simple linear chain CRF
model generating features solely on the identity of
the current word and the ones surrounding it (WI in
Table 5). Likewise, we define a model that relies on
WI and SC features simultaneously (WI+SC). Ta-
ble 5 reveals that SC outperforms WI by a large mar-
gin and that combining the two feature sets together
yields some further improvements over SC scores.

We also present in Table 5 the state-of-the-art re-
sults of the bidirectional LSTM models by Plank et
al. (2016) for comparative purposes. Note that the
authors reported results only on a subset of UD v1.2
(i.e. treebanks with at least 60k tokens), for which
reason we can include their results on 21 treebanks.
Out of these 21 UD v1.2 treebanks there are 15 and
20 cases, respectively, for which SC and WI+SC
produces better results than bi-LSTMw. Only FRw+c
and bi-LSTMw+c, models which enjoy the additional
benefit of employing character-level features besides
word-level ones, are capable of outperforming SC
and WI+SC.

4.3 Named entity recognition experiments
Besides the POS tagging experiments, we investi-
gated if the very same features as the ones applied
for POS tagging can be utilized in a different se-
quence labeling task, namely named entity recog-
nition. In order to evaluate our approach, we ob-
tained the English, Spanish and Dutch datasets from
the 2002 and 2003 CoNLL shared tasks on multilin-
gual Named Entity Recognition (Tjong Kim Sang,
2002; Tjong Kim Sang and De Meulder, 2003).

We use the train-test splits provided by the or-
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Baseline using Word Sparse
Words and characters Words only Identity coding Token

Treebank bi-LSTMw+c FRw+c bi-LSTMw FRw Brown (WI) (SC) WI+SC coverage
bg 98.25 96.88 95.12 90.40 93.36 90.75 95.33 95.63 92.64
cs 97.93 98.03 93.77 93.09 91.98 93.40 95.13 95.83 92.42
da 95.94 94.70 91.96 87.41 92.45 87.51 93.32 93.29 93.96
de 93.11 91.73 90.33 85.73 88.52 85.90 89.11 90.73 92.75
el — 96.77 — 90.91 95.96 91.53 96.91 97.12 95.80
en 94.61 93.52 92.10 89.28 91.40 89.36 93.03 93.47 97.61
es 95.34 94.37 93.60 90.93 93.83 91.31 94.43 94.69 97.08
et — 84.83 — 75.42 84.52 76.78 85.56 86.30 80.40
eu 94.91 93.03 88.00 83.36 — 84.83 90.19 90.63 90.98
fa 96.89 96.13 95.31 93.98 95.04 94.45 95.91 96.11 97.80
fi 95.18 92.93 87.95 82.31 85.98 83.17 88.80 89.19 84.37
fi ftb — 91.84 — 86.91 82.86 81.57 86.91 87.88 83.92
fr 96.04 95.30 94.44 92.80 92.42 92.88 93.52 94.96 92.06
ga — 89.64 — 84.32 — 85.21 88.22 88.82 88.80
grc — 93.57 — 84.35 57.13 84.44 70.27 85.04 43.58
grc proiel — 96.39 — 90.73 49.41 91.01 67.17 91.38 45.74
he 95.92 93.91 93.37 90.17 93.79 90.33 94.38 95.28 92.03
hi 96.64 95.96 95.99 94.32 94.61 94.25 95.37 96.09 96.40
hr 95.59 94.18 89.24 82.91 92.22 83.52 92.85 93.53 92.45
hu — 92.88 — 73.69 91.08 75.63 89.47 89.47 90.07
id 92.79 93.32 90.48 87.29 91.39 88.03 91.71 92.02 97.09
it 97.64 96.92 96.57 93.62 94.92 93.43 95.70 96.28 94.99
la — 92.03 — 77.75 — 79.99 85.49 86.34 83.03
la itt — 98.78 — 97.69 — 97.74 95.43 97.77 92.23
la proiel — 95.89 — 90.53 — 90.84 90.14 92.42 85.21
nl 92.07 88.79 84.96 81.11 84.28 81.27 84.32 85.10 92.28
no 97.77 96.53 94.39 91.58 94.29 91.87 95.42 95.67 94.53
pl 96.62 95.27 89.73 84.41 91.13 84.57 93.57 93.95 94.19
pt 97.48 96.59 94.24 90.69 93.74 91.11 94.00 95.50 92.53
ro — 86.46 — 76.32 89.93 75.96 88.99 88.27 93.06
sl 97.78 95.28 91.09 84.43 90.24 84.92 92.65 92.70 92.14
sv 96.30 94.94 93.32 88.84 93.50 88.94 94.46 94.62 92.50
ta — 85.37 — 68.02 — 70.69 81.25 81.80 85.35
Avg. 95.99 94.76 92.40 88.77 91.95 89.05 93.15 93.73 93.59

Table 5: Per token POS tagging accuracies for 33 UD treebanks. For sparse coding SPAMS is used on polyglot
vectors with λ = 0.1 and m = 1024. Results in bold are better than any of bi-LSTMw, FRw and Brown models
(i.e. the baselines using features based on words only). Average is calculated over the 20 highlighted treebanks for
which there are results in every column. The bi-LSTM results are from Plank et al. (2016).

ganizers and report our NER results using the F1
scores based on the official evaluation script of the
CoNLL shared task. Similar to Collobert et al.
(2011) we also apply the 17-tag IOBES tagging
scheme during training and inference. The best
F1 scores reported for English by Collobert et al.
(2011) without employing additional unlabeled texts
to enhance their language model is 81.47. When
pre-training their neural language model on large

amounts of Wikipedia texts they report an F1 score
of 87.58.

Figure 8 includes our NER results obtained us-
ing different word embedding representations as in-
put for sparse coding and different levels of spar-
sity. Similar to our POS tagging experiments, using
polyglotSC vectors tend to perform best for NER
as well. However, a substantial difference compared
to the POS tagging results is that NER performances
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en es nl Avg.
polyglotSC 82.92 77.03 72.66 77.54
CBOWSC 83.40 75.51 71.36 76.76
SGSC 82.83 75.22 70.86 76.30
GloveSC 82.31 75.78 69.85 75.98

(a) Sparse (m = 1024, λ = 0.1)

en es nl Avg.
polyglot 78.80 70.13 65.58 71.50
CBOW 72.68 64.49 64.80 67.32
SG 74.68 66.17 63.95 68.27
Glove 74.33 65.11 57.73 65.72

(b) Dense

Table 6: Comparison of the performance of sparse and
dense word representations for NER.

do not degrade even for extreme levels of sparsity.
Also, the sparse coding-based models perform much
better when compared to the FRw+c baseline.

In Table 6, we compare the effectiveness of mod-
els relying on sparse and dense word representations
for NER. In order not to fine-tune hyperparameters
for a particular experiment, similarly to our previ-
ous choices m and λ are set to 1024 and 0.1, re-
spectively. Results in Table 6 are in line with those
reported in Table 3 for POS tagging.

5 Conclusion

In this paper we show that it is possible to train se-
quence models that perform nearly as well as best
existing models on a variety of languages for both
POS tagging and NER. Our approach does not re-
quire word identity features to perform reliably, fur-
thermore, it is capable of achieving comparable re-
sults to traditional feature-rich models. We also il-

lustrate the advantageous generalization property of
our model as it retained 89.8% of its original average
POS tagging accuracy when trained on only 1.2% of
the total accessible training sentences.

As Mikolov et al. (2013b) pointed out the simi-
larities of continuous word embeddings across lan-
guages, we think that our proposed model could be
employed not in just multi-lingual, but also in cross-
lingual language analysis settings. In fact, we inves-
tigate its feasibility in our future work. Finally, we
have made the sparse coded word embedding vec-
tors publicly available in order to facilitate the re-
producibility of our results and to foster multilingual
and cross-lingual research.
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