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Abstract

The growing work in multi-lingual parsing
faces the challenge of fair comparative eval-
uation and performance analysis across lan-
guages and their treebanks. The difficulty lies
in teasing apart the properties of treebanks,
such as their size or average sentence length,
from those of the annotation scheme, and from
the linguistic properties of languages. We pro-
pose a method to evaluate the effects of word
order of a language on dependency parsing
performance, while controlling for confound-
ing treebank properties. The method uses
artificially-generated treebanks that are mini-
mal permutations of actual treebanks with re-
spect to two word order properties: word or-
der variation and dependency lengths. Based
on these artificial data on twelve languages,
we show that longer dependencies and higher
word order variability degrade parsing perfor-
mance. Our method also extends to mini-
mal pairs of individual sentences, leading to a
finer-grained understanding of parsing errors.

1 Introduction

Fair comparative performance evaluation across lan-
guages and their treebanks is one of the difficul-
ties for work on multi-lingual parsing (Buchholz and
Marsi, 2006; Nivre et al., 2007; Seddah et al., 2011).
The differences in parsing performance can be the
result of disparate properties of treebanks (such as
their size or average sentence length), choices in an-
notation schemes, and the linguistic properties of
languages. Despite recent attempts to create and
apply cross-linguistic and cross-framework evalua-
tion procedures (Tsarfaty et al., 2011; Seddah et al.,
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2013), there is no commonly used method of anal-
ysis of parsing performance which accounts for dif-
ferent linguistic and extra-linguistic factors of tree-
banks and teases them apart.

When investigating possible causal factors for ob-
served phenomena, one powerful method, if avail-
able, consists in intervening on the postulated causes
to observe possible changes in the observed effects.
In other words, if A causes B, then changing A
or properties of A should result in an observable
change in B. This interventionist approach to the
study of causality creates counterfactual data and a
type of controlled modification that is wide-spread
in experimental methodology, but that is not widely
used in fields that rely on observational data, such as
corpus-driven natural language processing.

In analyses of parsing performance, it is custom-
ary to manipulate and control word-level features,
such as part-of-speech tags or morphological fea-
tures. These types of features can be easily omit-
ted or modified to assess their contribution to pars-
ing performance. However, higher-order features,
such as linear word order precedence properties, are
much harder to define and to manipulate. A parsing
performance analysis based on controlled modifica-
tion of word order, in fact, has not been reported pre-
viously. We propose such a method based on word
order permutations which allows us to manipulate
word order properties analogously to familiar word-
level properties and study their effect on parsing per-
formance.

Specifically, given a dependency treebank, we ob-
tain new synthetic data by permuting the original or-
der of words in the sentences, keeping the unordered
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dependency tree constant. These permuted sen-
tences are not necessarily grammatical in the orig-
inal language. They constitute an alternative “lan-
guage” which forms a minimal pair with the original
one, where the only changed property is the order of
words, but all the other properties of the unordered
tree and the confounding variables between the two
datasets are kept constant, such as the size of the
training data, the average sentence length, the num-
ber of PoS tags and the dependency labels.

We perform two types of word order permutations
to the treebanks in our sample: a permutation which
minimises the lengths of the dependencies in a de-
pendency tree and a permutation which minimises
the variability of word order. We then compare how
the parsing performances on the original and the per-
muted trees vary in relation to the quantified mea-
sures of the dependency length and word order vari-
ation properties of the treebanks. To quantify de-
pendency length, we use the ratio of minimisation of
the length of dependencies between words in the tree
(dependency length minimisation, DLM (Gildea and
Temperley, 2010)). To quantify the property intu-
itively referred to as variability of word order, we
use the entropy of the linear precedence ordering be-
tween a head and a child in dependency arcs (Liu,
2010).

The reason to concentrate on these two word or-
der properties comes from previous parsing results.
Morphologically-rich languages are known to be
hard for parsing, as rich morphology increases the
percentage of new words in the test set (Nivre et al.,
2007; Tsarfaty et al., 2010). These languages how-
ever also often exhibit very flexible word order. It
has not so far been investigated how much rich mor-
phology contributes to parsing difficulty compared
to the difficulty introduced by word order variation
in such languages. The length of the dependencies in
the tree has also been shown to affect performance:
almost all types of dependency parsers, in differ-
ent measure, show degraded performance for longer
sentences and longer dependencies (McDonald and
Nivre, 2011).! We use arc direction entropy and
DLM ratio, respectively, as the measures of these
two word order properties because they are formally

"But see Titov and Henderson (2007) for an exception and
comparison to Malt.
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defined in the previous literature and can be quanti-
fied on a dependency treebank in any language.

To preview our results, in a set of pairwise com-
parisons between original and permuted treebanks,
we confirm the influence of word order variability
and dependency length on parsing performance, at
the large scale provided by fourteen different tree-
banks across twelve different languages.>? Our re-
sults suggest, in addition, that word order entropy
applies a stronger negative pressure on parsing per-
formance than longer dependencies. Finally, on an
example of one treebank, we show how our method
can be extended to provide finer-grained analyses at
the sentence level and relate the parsing errors to
properties of the parsing architecture.

2 Parsing analysis using synthetic data

In this section, we introduce our new approach to
using synthetic data for cross-linguistic analysis of
parsing performance.

2.1

Our experiments with artificial data consist in mod-
ifying a treebank 7" to create its minimal pair 7" and
evaluating parsing performance by comparing these
pairs of treebanks. We create several kinds of arti-
ficial treebanks in the same manner: each sentence
in 7" is a permutation of the words of the original
sentence in 7. We permute words in various ways
according to the word order property whose effect
on parsing we want to analyse. Importantly, we only
change the order of words in a sentence. In con-
trast, the dependency tree structure of a permuted
sentence in 7" is the same as in the original sentence
inT.

For each treebank in our sample of languages and
a type of permutation, we conduct two parsing eval-
vations:  Tryain — Trest and Tp . — T ..
The training-test data split for 7" and 7" is always
the same, that is T, ;,, = Permuted(Trrqin) and
T} = Permuted(Trest). The parsing perfor-
mance is measured as Unlabeled and Labeled At-
tachment Scores (UAS and LAS), the proportion of
correctly attached arcs in the unlabelled or labelled
tree, respectively.

Methodology

2Polish, Italian, Finnish, Spanish, French, English, Bulgar-
ian, Latin (Vulgate, Cicero), Dutch, Ancient Greek (New Testa-
ment, Herodotus), German and Persian.



Given the training-testing setup, the differences
in unlabelled attachment scores UAS(Trest) —
UAS(TY.,;) can be directly attributed to the dif-
ferences in word order properties o between 1" and
T’, abstracting away from other treebank proper-
ties h. More formally, we assume that UAS(T') =
f(oT, ATy and UAS(T') = f(o" ,hT). Except for
word order properties o’ and ol’, the two equations
share all other treebank properties h’ — such as
size, average dependency length, size of PoS tagset
— and f is a function that applies to all languages,
here embodied by a given parser.

Our method can be further extended to analyse
parsing performance at the sentence level. Con-
sider the pair consisting of a sentence in an origi-
nal treebank and its correspondence in a permuted
treebank. The two sentences share all lexical items
and underlying dependencies between them: the ex-
planation for different parsing accuracies must be
sought therefore in their different word orders. In
standard treebank evaluation settings, instead, exact
sentence-level comparisons are not possible, as two
sentences very rarely constitute a truly minimal pair
with respect to any specific syntactic property. Our
approach opens up the possibility of deeper under-
standing of parsing behaviour at the sentence-level
and even of individual dependencies based on large
sets of minimal pairs.

2.2 Word order properties

To be able to compare parsing performance across
the actual and the synthetic data, we must manip-
ulate the causal property we want to study. In this
work, we concentrate on variability of word order
and length of dependencies. We define and discuss
these two properties and their measures below.

Arc direction entropy One dimension that can
greatly affect parsing performance across languages
is word order freedom, the ability languages have
to express the same or similar meaning in the same
context with a free choice of different word orders.
The extent of word order freedom in a sentence is
reflected in the entropy of word order, given the
words and the syntactic structure of the sentence,
H (order|words, tree).

One approximation of word order entropy is the
entropy of the direction of dependencies in a tree-
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bank. This measure has been proposed in several re-
cent works to quantitatively describe the typology of
word order freedom in many languages (Liu, 2010;
Futrell et al., 2015b).

Arc direction entropy can be used, for instance,
to capture the difference between adjective-noun
word order properties in Germanic and Romance
languages. In English, this word order is fixed, as
adjectives appear almost exclusively prenominally;
the adjective-noun arc direction entropy will there-
fore be close to 0. In Italian, by contrast, the same
adjective can both precede and follow nouns; the
adjective-noun arc direction entropy will be greater
than 0.

We calculate the overall entropy of arc directions
in a treebank conditioned on the relation type de-
fined by the dependency label Rel and the PoS tags
of the head H and the child C"

(D H(Dir|Rel, H,C')

= Z p(rel, h,c)H(Dir|rel, h,c)

rel,h,c

Dir in (1) is the order between the child and the
head in the dependency arc (Left or Right). In
other words, we compute the entropy of arc direc-
tion H(Dir) = —p(L) - log p(L) — p(R) - log p(R)
for each observed tuple (rel, h, ¢) independently and
weigh them according to the tuple frequency in the
corpora.

DLM ratio Another property that has been shown
to affect parsing performance across languages and
across parsers is the length of the dependencies in
the tree.> A global measure of average dependency
length of a whole treebank has been proposed in
the literature on dependency length minimisation
(DLM). This measure allows comparisons across
treebanks with sentences of different size and across
dependency trees of different topology.
Experimental and theoretical language research
has yielded a large and diverse body of evidence
showing that languages, synchronically and di-
achronically, tend to minimise the length of their
dependencies (Hawkins, 1994; Gibson, 1998; Dem-
berg and Keller, 2008; Tily, 2010; Gulordava and

3The length of a dependency, D L (arc) below, is the number
of words in the span covered by the dependency arc.



Merlo, 2015; Gulordava et al., 2015). Languages
differ, however, in the degree to which they min-
imise dependencies. A low degree of DLM is as-
sociated with flexibility of word order and in partic-
ular with high non-projectivity, i.e., the presence of
crossing arcs in a tree, a feature that has been treated
in dependency parsing using local word order per-
mutations (Hajicova et al., 2004; Nivre, 2009; Titov
et al., 2009; Henderson et al., 2013). To estimate
the degree of DLM in a language, we follow previ-
ous work which analysed the dependency lengths in
a treebank with respect to their random and minimal
potential alternatives (Temperley, 2007; Gildea and
Temperley, 2010; Futrell et al., 2015a; Gulordava
and Merlo, 2015).

We calculate the overall ratio of DLM in a tree-
bank as shown in equation 2.

DL, OptD Ly

T PP
For each sentence s and its dependency tree ¢,
we compute the overall dependency length of
the original sentence DL(s) = >, ., DL(arc)
and its minimal projective dependency length
OptDL(s) = DL(s'), where s is obtained by
reordering the words in the sentence s using the
algorithm described in the next section (following
Gildea and Temperley (2010)). To average these
values across all sentences, we normalise them by
5|2, since it has been observed empirically that the
relation between the dependency lengths DL and
OptDL and the length |s| of a sentence is not lin-
ear, but rather quadratic (Ferrer-i-Cancho and Liu,
2014; Futrell et al., 2015a).*

In the next section, we illustrate how we create
two pairs of (7', T") treebanks, manipulating the two
word order properties just discussed.

2) DLM Ratio =%

3 Word order permutations

We create two types of permuted treebanks to opti-
mise for the two word order parameters considered
in the previous section.

*We follow previous work in using DL(s) as the measure
for DLM ratio calculation. Equivalently, we could use the av-
erage length of a single dependency (DL(arc)). Given that
(DL(s)) = |s| - (DL(arc)), the fact that (DL(s)) ~ |s|?
can be more naturally stated as (DL(arc)) ~ |s|: the aver-
age length of a single dependency is linear with respect to the
sentence length.
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3.1 Creating trees with optimal DL

Given a sentence s and its dependency tree ¢ in a
natural language, we employ the algorithm proposed
by Gildea and Temperley (2010) to create a new ar-
tificial sentence s’ with a permuted order of words.
The algorithm reorders the words in a sentence s to
yield the projective dependency tree with the mini-
mal overall dependency length DL(s’).> To do so,
it recursively places the children on the left and on
the right of the head in alternation, so that the chil-
dren on the same side of the head are ordered based
on their sizes — shortest phrases closer to the head.
Children of the same size are ordered between each
other as found in the original sentence.

This algorithm is deterministic and the depen-
dency length of each sentence is optimised indepen-
dently. We exclude from our analysis sentences with
any non-final punctuation tokens and sentences with
multiple roots. By definition, the DLM ratio for sen-
tences permuted in such a way is equal to 1.

3.2 Creating trees with optimal Entropy

To obtain treebanks with a minimal arc direction en-
tropy equal to zero, we can fix the order of each
type of dependency, defined by a tuple (rel, h, c).
There exist therefore many possible permutations re-
sulting in zero arc direction entropy. We choose to
assign the same direction (either Left or Right) to
all the dependencies. This results in two permuta-
tions yielding fully right-branching (RB) and fully
left-branching (LB) treebanks. We order the chil-
dren on the same side of a head in the same way
as in the OptDL permutation: the shortest children
are closest to the head. For RB permutation, chil-
dren of the same size are kept in the order of the
original sentence; for LB permutation, this order is
reversed, so that the RB and LB orders are symmet-
rical. These two permutations are particularly in-
teresting, as they give us the two extremes in the
space of possible tree-branching structures. More-
over, since the LB/RB word orders for each sen-
tence are completely symmetrical, the two treebanks

>In principle, an order with minimal DL can be non-
projective. However, such cases are rare in natural language
trees, which have limited topology. In particular, natural lan-
guage trees have small average branching factors, while a non-
projective order with minimal DL occurs only if at least one
node of out-degree 3 is present in the tree (Chung, 1984).



constitute a minimal pair with respect to the tree-
branching parameter.

Importantly, there exist both predominantly right-
branching (e.g. English) and left-branching natural
languages (Japanese, Persian) and the comparison
between LB/RB-permuted treebanks will show how
much of the difference in parsing of typologically
different natural languages can be attributed to their
different branching directions. Of course, the pars-
ing sensitivity to the parameter depends on the pars-
ing architecture. As discussed in detail below, we in-
vestigate both graph-based and transition-based ar-
chitectures. For a graph-based parser, we do not ex-
pect to observe much difference in parsing perfor-
mance due to directionality, given its global optimi-
sation strategy. On the other hand, a transition-based
parser relies on left-to-right processing of words and
the fully right-branching or fully left-branching or-
ders can yield different results.

3.3 Dependency Treebanks

We use a sample of fourteen dependency treebanks
for twelve languages. The treebanks for Bulgarian,
English, Finnish, French, German, Italian and Span-
ish come from the Universal Dependency Project
and are annotated with the same annotation scheme
(Agié et al., 2015). We use the treebank for Dutch
from the CONLL 2006 shared task (Buchholz and
Marsi, 2006). The Polish treebank is described
in Wolinski et al. (2011) and the Persian treebank
in Rasooli et al. (2013). In addition, we use two
Latin and two Ancient Greek dependency annotated
texts (Haug and Jghndal, 2008) because these lan-
guages are well-known for having very free word
order.® The quantitative properties of these tree-
banks are presented in Table 1 (second and third col-
umn). This set of treebanks includes those treebanks
which had at least 3,000 sentences in their training
set after eliminating sentences not fit for permutation
(with punctuation tokens or multiple roots). This ex-
cluded from our analysis some otherwise typologi-

®The Latin corpora comprise works of Cicero (circa 40 BC)
and Vulgate (Bible translation, 4th century AD). The Ancient
Greek corpora are works of Herodotus (4th century BC) and
New Testament (4th century AD). Despite the fact that they be-
long to the same language, these pairs of texts of different time
periods show quite different word order properties (Gulordava
and Merlo, 2015).
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cally interesting languages such as Basque and Ara-
bic. Where available, we used the training-test split
of a treebank provided by its distributors; in other
cases we split the treebank randomly with a 9-to-1
training-test set proportion.

3.4 Word order properties of original and
permuted treebanks

Table 1 presents the treebanks in our sample and the
values of DLM ratio and Entropy measures calcu-
lated on the training set of the original non-permuted
treebanks. From these data, we confirm that the
DLM ratio and Entropy measures capture differ-
ent word order properties as they are not correlated
(Spearman correlation » = 0.32, p > 0.1). For ex-
ample, we can find languages with both low DLM
ratio and high Entropy (Finnish) and high DLM ra-
tio and low Entropy (Persian). Furthermore, these
two measures are not a simple reflex of genetic simi-
larity between languages of the same family: for ex-
ample, Polish (Indo-European family) and Finnish
(Finno-Ugric family) are clustered together accord-
ing to their word order properties.

Table 1 also shows how the DLM ratio and En-
tropy values change, when we apply the two per-
mutations to the treebanks. For the treebanks per-
muted to obtain minimal dependency length (DLM
ratio = 1), we present Entropy values in the column
‘OptDL Entropy’. For the treebanks permuted to
obtain minimal entropy (Entropy = 0), we present
DLM ratio values in the column ‘LB/RB DLM ra-
tio’. With respect to the values of the original tree-
banks, the DLM ratio and Entropy values of the arti-
ficial treebanks are much more narrowly distributed:
1.17+£0.02 (mean 4= SD) compared to 1.19+0.07 for
DLM ratio and 0.59 + 0.03 compared to 0.27 £0.17
for Entropy.

Notice also that, on average, the treebanks in the
LB/RB permuted set have both lower entropy and
lower DLM ratio than the original treebanks. The
treebanks in the OptDL set have lower DLM ratio,
but also higher entropy than the original treebanks.

3.5 Parsing setup

To evaluate the impact of word order properties on
parsing performance, we use MSTParser (McDon-
ald et al., 2006) and MaltParser (Nivre et al., 2006)
— two widely used representatives of two main de-



Language Abbr. Size Av. sentence Original treebanks LB/RB OptDL
length DLM ratio Entropy | DLMratio Entropy
Polish pl 29k 6.8 1.13 0.34 1.18 0.55
Italian it 57k 12.1 1.13 0.18 1.18 0.60
Finnish fi 46k 5.7 1.13 0.34 1.19 0.53
Spanish es 63k 15.1 1.15 0.15 1.17 0.62
French fr 72k 14.5 1.15 0.11 1.20 0.62
English en 62k 9.5 1.17 0.09 1.16 0.58
Bulgarian bg 30k 8.5 1.17 0.20 1.17 0.58
Vulgate (La) la.V 63k 8.8 1.17 0.43 1.18 0.59
Dutch nl 38k 8.4 1.17 0.26 1.12 0.52
NewTest (AG)  grc.NT | 69k 10.5 1.19 0.38 1.17 0.62
German de 65k 11.5 1.24 0.21 1.21 0.62
Cicero (La) la.C 35k 11.6 1.26 0.42 1.15 0.61
Persian fa 35k 9.4 1.33 0.13 1.15 0.61
Herodotus (AG) grc.H 59k 14.4 1.33 0.46 1.20 0.64
Mean (& st. deviation) 1.194007 0.2740.17 1.1710.02 0.59+0.03

Table 1: Training size (in number of words), average sentence length, DLM ratio and arc direction entropy (Entropy)
measures for the treebanks in our sample. The column ‘LB/RB DLM ratio’ presents the DLM ratio for LB/RB-
permuted treebanks optimised for zero entropy; the column ‘OptDL Entropy’ presents the arc direction entropy for
OptDL-permuted treebanks optimised for minimal DLM ratio.

Language Original OptDL LB RB
UAS LAS | UAS LAS | UAS LAS | UAS LAS

Polish 92 88 94 88 94 89 94 89
Italian 94 91 91 85 94 90 95 91
Finnish 83 80 85 81 90 85 91 87
Spanish 86 81 80 72 85 76 88 80
French 84 80 81 74 90 82 91 85
English 90 88 85 79 89 83 89 83
Bulgarian 93 89 92 85 92 85 93 87
Vulgate (La) 86 81 88 81 93 86 93 86
Dutch 88 84 93 87 95 90 95 90
NewTestament (AG) | 85 79 88 81 93 85 91 73
German 86 80 84 75 89 78 89 81
Cicero (La) 67 59 79 67 88 76 87 76
Persian 83 74 84 73 90 80 90 80
Herodotus (AG) 72 65 83 74 89 79 88 67
Average | 85 80 [ 86 79 [ 91 83 [ 91 83

Table 2: Percent labelled and unlabelled accuracies of MaltParser on the original treebanks, on the treebanks permuted
for optimal dependency length (OptDL), and on the left-branching (LB) and right-branching (RB) permuted data that
minimise entropy.
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pendency parsing architectures: a graph-based pars-
ing architecture and a transition-based architecture.
The graph-based architecture is known to be less de-
pendent on word order and dependency length than
transition-based dependency parsers, as it searches
the whole space of possible parse trees and solves a
global optimisation problem (McDonald and Nivre,
2011).

To achieve competitive performance, the
transition-based MaltParser must be provided with
a list of features tailored for each treebank and each
language. We used the MaltOptimizer package
(Ballesteros and Nivre, 2012), to find the best
features based on the training set. By contrast,
MSTParser is trained on all the treebanks in our
sample using the default configuration (first-order
projective).

4 Experiments and results

In this section, we illustrate the power of the tech-
nique and the fine-grained analyses supported by it
with a range of planned, pairwise quantitative and
qualitative analyses of the parsing results.

4.1 Comparison of parsing performance
between original and permuted treebanks

Table 2 presents the parsing results for MaltParser
for the original treebanks and the three sets of per-
muted treebanks (OptDL, LB, RB). Table 3 presents
the results on the same data for MSTParser. For
MST, the parsing performances on the fully left-
branching and right-branching treebanks are identi-
cal, as expected, when percentages are rounded at
the two-digit level, which is what we report here.
As discussed in the introduction, a comparison
between parsers in a multilingual setting is not
straightforward. Instead, we attempt to understand
their common behaviour with respect to the word or-
der properties of languages. The first observation is
that, overall, all three sets of permuted data are eas-
ier to parse than the original data, for both parsers.
We observe an increase of +1% and +6% UAS for
OptDL and LB/RB data, respectively, for Malt, and
an increase of +4% and +8% UAS for OptDL and
LB/RB data, respectively, for MST. The better re-
sults on the LB/RB permuted data must be due to
the observation above: the LB/RB data have both
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Lang. Original OptDL LB/RB

UAS LAS | UAS LAS | UAS LAS
pl 93 8 [ 95 8 | 95 85
it 93 8 | 91 8 | 94 87
fi 84 79 | 87 80 | 91 84
es 85 67 | 84 64 | 91 68
fr 84 70 | 86 68 | 92 71
en 88 85 | 8 79 | 91 8
bg 93 87 | 91 83 | 92 84
la.V 84 75 | 90 79 | 94 82
nl 8 79 | 93 8 | 95 88
greNT| 84 74 | 89 78 | 93 83
de 87 67 | 8 66 | 91 69
la.C 68 54 | 84 67 | 89 12
fa 84 73 | 86 74 | 91 79
grcH | 69 57 | 86 71 | 90 176
Av. 84 74 [ 8 76 [ 92 179

Table 3: Percent labelled and unlabelled accuracies of
MSTParser on the original treebanks, on the treebanks
permuted for optimal dependency length (OptDL), and
on the left/right-branching (LB/RB) permuted data.

lower Entropy and DLM ratio than the original data.

Overall, the performance of the parsers on our ar-
tificial treebanks confirms that the lengths of the de-
pendencies and the word order variability are two
factors that negatively affect parsing accuracy. Two
illustrative examples are Latin, a language well-
known for its variable word order (as confirmed by
the high entropy values of 0.42 and 0.43 for our two
treebanks), and German, a language known for its
long dependencies (as confirmed by its high DML
ratio of 1.24). For the Cicero text, for example, we
can conclude that indeed its variable word order is
the primary reason for the very low parsing perfor-
mances (67%—-68% UAS). These numbers improve
significantly when the treebanks are rearranged in
a fixed word order (87%—89% UAS). This permu-
tation reduces DLM by 0.11 and reduces entropy
by 0.42, yielding the very considerable increase in
UAS of 21%. The other permutation, which opti-
mises DL, reduces DLM by 0.26, but increases en-
tropy by 0.19. This increase in entropy dampens the
beneficial effect of DL reduction and performance
increases 12%, less than in the fixed-order permu-
tation. For German, our analysis gives the same
overall results. The DLM ratio in the RB/LB sce-



nario decreases slightly (from 1.24 to 1.21) and its
entropy also decreases (-0.21). The performance of
the parsers on RB/LB-permuted data is better than
on the original data (89%-91% against 86%—87%
UAS). Moreover, when DLM is reduced (-0.24, in
the OptDL permutation), but entropy is increased
(from 0.21 to 0.62), we find a reduction in perfor-
mance for Malt (from 86% to 84% for UAS). These
data weakly suggest that the word order variabil-
ity of German, minimised in the RB/LB case, has
higher impact on parsing difficulty than its well-
known long dependencies.

A more detailed picture emerges when we com-
pare pairwise the original treebanks to the permuted
treebanks for each of the languages. For this analy-
sis, we use the measure of unlabelled accuracy, since
attachment decisions are more directly dependent on
word order than labelling decisions, which are me-
diated by correct attachments. Hence, we limit our
analysis to the space of three parameters: DLM ra-
tio, Entropy and UAS.

Figures 1 (OptDL) and 2 (RB) plot the differ-
ences in UAS of MaltParser between pairs of the
permuted and the original treebanks for each lan-
guage to the differences in DLM ratio and En-
tropy between these treebanks. Our dependent vari-
able is AUAS = UAS(T') — UAS(T) computed
from Table 2. The x-axis and the y-axis values
ADLM = DLM Ratio(T)— DLM Ratio(T") and
AFEntropy = Entropy(T) — Entropy(T’) com-
pute the differences of the measures between the
original treebank and the permuted treebank based
on the numbers in Table 1. We have chosen to cal-
culate these differences reversing the two factors,
compared to the AUAS value, for better readabil-
ity of the figures: an increase in the axes values (en-
tropy or dependency lengths) should correspond to
the decrease in difficulty of parsing and therefore to
the increase of the dependent variable AUAS. The
same relative values of the measures and the parsing
accuracy for MSTParser result in very similar plots,
which we do not include here for reasons of space.

For the OptDL data (Figure 1), the overall picture
is very coherent: the more DLs are minimised and
the less entropy is added to the artificial treebank,
the larger the gain in parsing performance (blue cir-
cles in the lower left corner and red circles in the up-
per right corner). Again, we observe an interaction

350

a3~ AUAS

Entropy - Entropy(OptDL)

&

AEntropy

ADLM ratio = DLM - DLM(OptDL)

Figure 1: Differences in UAS of MaltParser between
OptDL-permuted and original pairs of treebanks for the
corpora in our sample.

between DLM ratio and Entropy parameters: for the
languages with originally relatively low DLM ratio
and low Entropy, such as English or Spanish, the
performance on the permuted data decreases. This
is because while DLM decreases, Entropy increases
and, for this group of languages, the particular trade-
off between these two properties leads to lower pars-
ing accuracy.

RB-permuted data show similar trends (Figure
2). An interesting regularity is shown by four lan-
guages (Latin Vulgate, Ancient Greek New Tes-
tament, Dutch and Persian) on the off-diagonal.
Although they have different relative Entropy and
DLM ratio values, which span from near minimal
to maximal values, the improvement in parsing per-
formance on these languages is very similar (as in-
dicated by the same purple colour). This again
strongly points to the fact that both DLM ratio and
Entropy contribute to the observed parsing perfor-
mance values.

We can further confirm the effect of dependency
length by comparing the parsing accuracy across
sentences.’ Consider the Dutch treebank and its RB-
permuted pair. For each sentence and its permuted
counterpart, we can compute the difference in their
dependency lengths (ADLM = DLM —DLMRgpg)

"The Entropy measure is computed on a whole treebank and
cannot be meaningfully compared across sentences.
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Figure 2: Differences in UAS of MaltParser between RB-
permuted and original pairs of treebanks for the corpora
in our sample.

and compare it to the difference in parsing perfor-
mance (AUAS = UASrp — UAS). We expect
to observe that AUAS increases when ADLM in-
creases. Indeed, the parsing results on Dutch show
a positive correlation between these two values (r =
0.40,p < 0.001 for Malt and r = 0.55,p < 0.001
for MST).

All these analyses confirm and quantify that de-
pendency length and, more significantly, word order
variability affect parsing performance.

4.2 Sentence-level analysis of parsing
performance

Referring back to the results in Table 2, we observe
that MaltParser shows the same average accuracy
for RB and LB-permuted data. However, some lan-
guages show significantly different results between
their LB and RB-permuted data, especially in their
labelled accuracy scores. The New Testament cor-
pus, for example, is much easier to parse when it is
rearranged in left-branching order (91% RB vs 93%
LB UAS, 73% RB vs 85% LB LAS). Our artificial
data allows us to investigate this difference in the
scores by looking at parsing accuracy at the sentence
level.

The differences in Malt accuracies on RB-
permuted and LB-permuted data are striking, be-
cause these data have the same head-direction en-
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tropy and dependency lengths properties. The only
word order difference is in the branching parame-
ter resulting in two completely symmetrical word
orders for each sentence of the original treebank.
To understand the behaviour of MaltParser, and of
transition-based parsers in general, we looked at
the out-degree, or branching factor, of the syntactic
trees. The intuition is that when many children ap-
pear on one side of a head, the parser behaviour on
head-final and head-initial orders can diverge due to
sequences of different operations, such as shift ver-
sus aftach, that must be chosen in the two cases.®

The data for the New Testament shows that the
branching factor plays a role in the LB/RB differ-
ences found in this treebank. For each pair of sen-
tences with LB/RB orders, we computed the parsing
accuracies (UAS and LAS) and the branching factor
as the average out-degree of the dependency tree.
We then tested whether the better performance on
the LB data is correlated with the branching factor
across the sentences (UASg — UASgg ~ BF).
The Pearson correlation for UAS values was 0.08
(p = 0.02), but for LAS values the correlation was
0.30 and highly significant (p < 0.001). On sen-
tences with larger branching factors, the labelled ac-
curacy scores on the LB data were better compared
to the RB data.

We combine our result for the branching factor
with an observation based on the confusion ma-
trix of the labels, to provide a more accurate ex-
planation of the comparatively low LAS in the RB-
permuted treebank of the New Testament corpus.
We found that when a verb or a noun has several one-
word children, such as ‘aux’ (auxiliaries), ‘atr’ (at-
tributes), ‘obl’ (obliques), ‘adv’ (adverbs) etc, these
are frequently confused and receive the wrong label,
if they appear after the head (RB data), but the la-
bels are assigned correctly if these elements appear
before the head (LB data). It appears that the left-
ward placement of children is advantageous for the
transition-based MaltParser, as at the moment of first
attachment decision for the child closest to the head
it has access to a larger left context. When children
appear after the head, the first one is attached before
any other children are seen by the parser and the la-

8The MaltParser configurations for LB and RB data had the
same parsing algorithm (Covington projective).



belling decision is less informed, leading to more
labelling errors.

It should be noted that it is not always possible
to identify a single source of difficulty in the error
analysis. Contrary to New Testament, Spanish is
easier to parse when it is rearranged into the right-
branching order (88% RB vs 85% LB UAS, 80%
RB vs 76% LB LAS). However, the types of difficult
dependencies emerging from the different branching
of the LB/RB data were not similar or symmetric to
that of New Testament. In the case of Spanish, we
did not observe a distinct dimension of errors which
would explain the 4% difference in UAS scores.’

5 General discussion

Our results highlight both the contributions and the
challenges of the proposed method. On the one
hand, the results show that we can identify and ma-
nipulate word order properties of treebanks to anal-
yse the impact of these properties on parsing perfor-
mance and suggest avenues to improve it. In this
respect, our framework is similar to standard anal-
yses of parsing performance based on separate ma-
nipulations of individual word-level features (such
as omitting morphological annotation or changing
coarse PoS tags to fine PoS tags). Similarly to these
evaluation procedures, our approach can lead to im-
proved parsing models or better choice of parsing
model by finding out their strengths and weaknesses.
The performance of Malt and MST (Tables 2 and
3) — while not directly comparable to each other
due to differences in the training set-up (Malt fea-
tures are optimised for each language and permuta-
tion) — show that MST performs better on average
on permuted datasets than Malt. This can suggest
that MST handles the high entropy of the OptDL
permuted set as well as the long dependencies of
LB/RB permuted sets better, or, conversely, that the
MaltParser does not perform well on treebanks with
high word order variability between the children at-
tached to the same head (see Section 4.2). When
two parsing systems are known to have different
strengths and weaknesses they can be successfully

°QOverall, the variance in the LB/RB performances on Span-
ish is relatively high and the mean difference (computed across
UAS scores for sentences) is not statistically significant (t-test:
p > 0.5) —aresult we would expect if errors cannot be imputed
to clear structural factors.
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combined in an ensemble model for more robust per-
formance (Surdeanu and Manning, 2010).

A contribution of the parsing performance anal-
yses in a multilingual setting is the identification
of difficult properties of treebanks. For Cicero and
Herodotus texts, for example, our method reveals
that their word order properties are important rea-
sons for the very low parsing performances. This
result confirms intuition, but it could not be firmly
concluded without factoring out confounds such as
the size of the training set or the dissimilarity be-
tween the training and test sets, which could also be
reasons for low parsing performance. For German,
our analysis gives more unexpected results and al-
lows us to conclude that the variability of word or-
der is a more negative factor on parsing performance
than long dependencies. Together, the knowledge of
word order properties of a language and the knowl-
edge of parsing performance related to these prop-
erties give us an a priori estimation of what parsing
system could be better suited for a particular lan-
guage.

On the other hand, our method also raises some
complexities. Compared to commonly used pars-
ing performance analyses related to word-level fea-
tures, the main challenges to a systematic analysis
of word order lie in its multifactorial nature and in
the large choice of quantifiable properties correlated
with parsing performance. First, the multifactorial
nature of word order precludes one from considering
word order properties separately. The two properties
we have looked at — DLM ratio and arc direction
entropy — cannot be teased apart completely since
minimising one property leads to the increase of the
other.

Another challenge is due to the fact that formal
quantitative approaches to studying word order vari-
ation cross-linguistically are just beginning to ap-
pear and not all word order features relevant for
parsing performance have been identified. In par-
ticular, our results suggest that the relative order be-
tween the children (and not only the order between
heads and their children) should be taken into ac-
count (Section 4.2). However, we are not aware of
previous work which proposes a measure for this
property and describes it typologically on a large
scale.

Finally, our method, which consists in creating ar-



tificial treebanks, can prove useful beyond parsing
evaluation. For instance, our data could enrich the
training data for tasks such as de-lexicalized parser
transfer (McDonald et al., 2011). Word order prop-
erties play an important role in computing similarity
between languages and finding the source language
leading to the best parser performance in the target
language (Naseem et al., 2012; Rosa and Zabokrt-
sky, 2015). A possibly large artificially permuted
treebank with word order properties similar to the
target language could then be a better training match
than a small treebank of an existing target natural
language.

6 Related work

Much previous work has been dedicated to the eval-
uation of parsing performance, also in a multilin-
gual setting. The shared tasks in multilingual depen-
dency parsing (Buchholz and Marsi, 2006; Nivre et
al., 2007) and parsing of morphologically-rich lan-
guages (Tsarfaty et al., 2010; Seddah et al., 2013)
collected a large set of parsing performance results.
Some steps towards comparability of the annotations
of multilingual treebanks and the parsing evaluation
measures were proposed and undertaken in Tsarfaty
etal. (2011), Seddah et al. (2013) and, most recently,
in the collaborative Universal Dependencies effort
(de Marneffe et al., 2014; Nivre et al., 2016). How-
ever, little work has suggested an analysis of the dif-
ferences in parsing performance across languages in
connection with the word order properties of tree-
banks.

Some papers have analysed the impact of de-
pendency lengths on parsing performance in En-
glish. McDonald and Nivre (2011) demonstrated
that parsers make more mistakes in longer sentences
and on longer dependencies. Rimell et al. (2009)
and Bender et al. (2011) created benchmark test sets
of constructions containing long dependencies, such
as subject and object relative clauses, and analysed
parsing behaviour on these selected constructions.
Other analyses on long-distance dependencies can
be found in Nivre et al. (2010) and Merlo (2015). We
are not familiar with any similar analysis of parsing
performance in English addressing other word order
variation properties (e.g. head-direction entropy).

In Gulordava and Merlo (2015), the parsing per-

353

formance on several Latin and Ancient Greek texts
is analysed with respect to the dependency length
and, indirectly, the head-direction entropy. The au-
thors compare the parsing performance across texts
of the same language (Latin or Ancient Greek) from
separated historical periods which differ slightly in
their word order properties.!? Gulordava and Merlo
(2015) show that texts with longer dependencies and
more varied word order are harder to parse. As-
suming the same lexical material of the texts, their
particular setting allows a more direct comparison
of parsing performance than a standard multilingual
setting where languages differ in many aspects other
than word order.

The calculation of the minimal dependency length
through the permutation of a dependency treebank
was proposed in the work of Temperley and Gildea
(Temperley, 2007; Gildea and Temperley, 2010). In
this work and the following work of Futrell et al.
(2015a), several types of permutations were em-
ployed to compute different lower bounds on de-
pendency length minimisation in English and across
dozens of languages.

Artificially permuted treebanks were previously
used in Fong and Berwick (2008) as stress-test di-
agnostics for cognitive plausibility of parsing sys-
tems. In particular, Fong and Berwick (2008) per-
muted the order of words in the English Penn Tree-
bank to obtain ‘unnatural’ languages. Their permu-
tations included transformations to head-final and
head-initial orders (applied with 50%-50% propor-
tion to sentences in the treebank) and reversing the
respective order of complements and adjuncts. The
parsing performances on these permuted treebanks
were 0.5—1 point lower than on the original treebank,
which the authors interpreted as too accurate to be a
cognitively plausible behaviour for a model of the
human parser. From the perspective of our paper,
the permuted treebanks of Fong and Berwick (2008)
were constructed to have longer dependencies and
higher word order variation; the lower performances
are therefore in agreement with our own results.

0The Latin and Ancient Greek data we used in this work
is a subset of the data that Gulordava and Merlo (2015) have
analysed, all coming from the PROIEL treebanks (Haug and
Jghndal, 2008).



7 Conclusions

We have proposed a method to analyse parsing per-
formance cross-linguistically. The method is based
on the generation and the evaluation of artificial data
obtained by permuting the sentences in a natural lan-
guage treebank. The main advantage of this ap-
proach is that it teases apart the linguistic factors
from the extra-linguistic factors in parsing evalua-
tion.

First, we have shown how this method can be
used to estimate the impact of two word order prop-
erties — dependency length and head-direction en-
tropy — on parsing performance. Previous obser-
vations that longer dependencies are harder to parse
are confirmed on a much larger scale than before,
while controlling for confounding treebank proper-
ties. It has also been found that variability of word
order is an even more prominent factor affecting per-
formance.

Second, we have shown that the construction of
artificial data opens a new way to analyse the be-
havior of parsers using sentence-level observations.
Sentence-level evaluations could be a very power-
ful tool for detailed investigations of how syntactic
properties of languages affect parsing performance
and could help creating more cross-linguistically
valid parsing techniques.

Two avenues are open for future work. First
we will investigate more properties related to word
order. Specifically, we will apply the method to
the non-projectivity property. On the one hand,
dependency lengths and non-projectivity are corre-
lated properties, as predicted theoretically (Ferrer-i-
Cancho, 2006). Our data confirm this relation em-
pirically: the Pearson correlation between DLM ra-
tio and the percentage of non-projective dependen-
cies across treebanks is 0.66 (p < 0.02). On the
other hand, this correlation is not perfect and both
dependency length and non-projectivity should be
taken into account to fully explain the variation in
parsing performance.

Second, we have not attempted in the current
work to estimate the function f (see section 2.1).
This task is equivalent to automatic prediction of
parsing accuracy of a treebank based on its proper-
ties. Ravi et al. (2008) have proposed an accuracy
prediction method for one language (English) based
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on simple lexical and syntactic properties. Combin-
ing their insights with our analysis of word order
could lead to a first language-independent approx-
imation of f.
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