
J-NERD: Joint Named Entity Recognition and Disambiguation
with Rich Linguistic Features

Dat Ba Nguyen1, Martin Theobald2, Gerhard Weikum1

1 Max Planck Institute for Informatics
2 University of Ulm

{datnb,weikum}@mpi-inf.mpg.de
martin.theobald@uni-ulm.de

Abstract

Methods for Named Entity Recognition and
Disambiguation (NERD) perform NER and
NED in two separate stages. Therefore, NED
may be penalized with respect to precision
by NER false positives, and suffers in recall
from NER false negatives. Conversely, NED
does not fully exploit information computed
by NER such as types of mentions. This paper
presents J-NERD, a new approach to perform
NER and NED jointly, by means of a prob-
abilistic graphical model that captures men-
tion spans, mention types, and the mapping
of mentions to entities in a knowledge base.
We present experiments with different kinds
of texts from the CoNLL’03, ACE’05, and
ClueWeb’09-FACC1 corpora. J-NERD con-
sistently outperforms state-of-the-art competi-
tors in end-to-end NERD precision, recall, and
F1.

1 Introduction

Motivation: Methods for Named Entity Recogni-
tion and Disambiguation, NERD for short, typically
proceed in two stages:
• At the NER stage, text spans of entity mentions

are detected and tagged with coarse-grained
types like Person, Organization, Location, etc.
This is typically performed by a trained Condi-
tional Random Field (CRF) over word sequences
(e.g., Finkel et al. (2005)).
• At the NED stage, mentions are mapped to en-

tities in a knowledge base (KB) based on con-
textual similarity measures and the semantic co-
herence of the selected entities (e.g., Cucerzan
(2014); Hoffart et al. (2011); Ratinov et al.
(2011)).

This two-stage approach has limitations. First,
NER may produce false positives that can misguide
NED. Second, NER may miss out on some entity
mentions, and NED has no chance to compensate
for these false negatives. Third, NED is not able to
help NER, for example, by disambiguating “easy”
mentions (e.g., of prominent entities with more or
less unique names), and then using the entities and
knowledge about them as enriched features for NER.
Example: Consider the following sentences:

David played for manu, real, and la galaxy.
His wife posh performed with the spice girls.

This is difficult for NER because of the absence of
upper-case spelling, which is not untypical in so-
cial media, for example. Most NER methods will
miss out on multi-word mentions or words that are
also common nouns (“spice”) or adjectives (“posh”,
“real”). Typically, NER would pass only the men-
tions “David”, “manu”, and “la” to the NED stage,
which then is prone to many errors like mapping the
first two mentions to any prominent people with first
names David and Manu, and mapping the third one
to the city of Los Angeles. With NER and NED per-
formed jointly, the possible disambiguation of “la
galaxy” to the soccer club can guide NER to tag the
right mentions with the right types (e.g., recogniz-
ing that “manu” could be a short name for a soccer
team), which in turn helps NED to map “David” to
the right entity David Beckham.
Contribution: This paper presents a novel kind of
probabilistic graphical model for the joint recogni-
tion and disambiguation of named-entity mentions
in natural-language texts. With this integrated ap-
proach to NERD, we aim to overcome the limita-
tions of the two-stage NER/NED methods discussed
above.

215

Transactions of the Association for Computational Linguistics, vol. 4, pp. 215–229, 2016. Action Editor: Hwee Tou Ng.
Submission batch: 7/2015; Revision batch: 1/2016; 3/2016; Published 5/2016.

c©2016 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

Our method, called J-NERD1, is based on a
supervised, non-linear graphical model that com-
bines multiple per-sentence models into an entity-
coherence-aware global model. The global model
detects mention spans, tags them with coarse-
grained types, and maps them to entities in a single
joint-inference step based on the Viterbi algorithm
(for exact inference) or Gibbs sampling (for approx-
imate inference). The J-NERD method comprises
the following novel contributions:
• a tree-shaped model for each sentence, whose

structure is derived from the dependency parse
tree and thus captures linguistic context in a
deeper way compared to prior work with CRF’s
for NER and NED;
• richer linguistic features not considered in prior

work, harnessing dependency parse trees and
verbal patterns that indicate mention types as
part of their nsubj or dobj arguments;
• an inference method that maintains the uncer-

tainty of both mention candidates (i.e., token
spans) and entity candidates for competing men-
tion candidates, and makes joint decisions, as
opposed to fixing mentions before reasoning on
their disambiguation.

We present experiments with three major datasets:
the CoNLL’03 collection of newswire articles,
the ACE’05 corpus of news and blogs, and the
ClueWeb’09-FACC1 corpus of web pages. Base-
lines that we compare J-NERD with include AIDA-
light (Nguyen et al., 2014), Spotlight (Daiber et al.,
2013), and TagMe (Ferragina and Scaiella, 2010),
and the recent joint NER/NED method of Durrett
and Klein (2014). J-NERD consistently outper-
forms these competitors in terms of both precision
and recall.

2 Related Work

NER: Detecting the boundaries of text spans that de-
note named entities has been mostly addressed by
supervised CRF’s over word sequences (McCallum
and Li, 2003; Finkel et al., 2005). The work of Rati-
nov and Roth (2009) improved these techniques by
additional features from context aggregation and ex-
ternal lexical sources (gazetteers, etc.). Passos et

1The J-NERD source is available at the URL http://
download.mpi-inf.mpg.de/d5/tk/jnerd-tacl.zip.

al. (2014) harnessed skip-gram features and exter-
nal dictionaries for further improvement. An alter-
native line of NER techniques is based on dictionar-
ies of name-entity pairs, including nicknames, short-
hand names, and paraphrases (e.g., “the first man on
the moon”). The work of Ferragina and Scaiella
(2010) and Mendes et al. (2011) are examples of
dictionary-based NER. The work of Spitkovsky and
Chang (2012) is an example of a large-scale dictio-
nary that can be harnessed by such methods.

An additional output of the CRF’s are type tags
for the recognized word spans, typically limited to
coarse-grained types like Person, Organization, and
Location (and also Miscellaneous). The most widely
used tool of this kind is the Stanford NER Tagger
(Finkel et al., 2005). Many NED tools use the Stan-
ford NER Tagger in their first stage of detecting
mentions.
Mention Typing: The specific NER task of infer-
ring semantic types has been further refined and ex-
tended by various works on fine-grained typing (e.g.,
politicians, musicians, singers, guitarists) for entity
mentions and general noun phrases (Fleischman and
Hovy, 2002; Rahman and Ng, 2010; Ling and Weld,
2012; Yosef et al., 2012; Nakashole et al., 2013).
Most of these works are based on supervised classi-
fication, using linguistic features from mentions and
their surrounding text. One exception is the work
of Nakashole et al. (2013) which is based on text
patterns that connect entities of specific types, ac-
quired by sequence mining from the Wikipedia full-
text corpus. In contrast to our work, those are simple
surface patterns, and the task addressed here is lim-
ited to typing noun phrases that likely denote emerg-
ing entities that are not yet registered in a KB.
NED: Methods and tools for NED go back to the
seminal work of Dill et al. (2003), Bunescu and
Pasca (2006), Cucerzan (2007), and Milne and Wit-
ten (2008). More recent advances led to open-source
tools like the Wikipedia Miner Wikifier (Milne and
Witten, 2013), the Illinois Wikifier (Ratinov et al.,
2011), Spotlight (Mendes et al., 2011), Semanticizer
(Meij et al., 2012), TagMe (Ferragina and Scaiella,
2010; Cornolti et al., 2014), and AIDA (Hoffart
et al., 2011) with its improved variant AIDA-light
(Nguyen et al., 2014). We choose some, namely,
Spotlight, TagMe and AIDA-light, as baselines for
our experiments. These are the best-performing,

216

http://download.mpi-inf.mpg.de/d5/tk/jnerd-tacl.zip
http://download.mpi-inf.mpg.de/d5/tk/jnerd-tacl.zip

publicly available systems for news and web texts.
Most of these methods combine contextual similar-
ity measures with some form of consideration for
the coherence among a selected set of candidate en-
tities for disambiguation. The latter aspect can be
cast into a variety of computational models, like
graph algorithms (Hoffart et al., 2011), integer linear
programming (Ratinov et al., 2011), or probabilistic
graphical models (Kulkarni et al., 2009). All these
methods use the Stanford NER Tagger or dictionary-
based matching for their NER stages. Kulkarni et al.
(2009) uses an ILP or LP solver (with rounding) for
the NED inference, which is computationally expen-
sive. Note that some of the NED tools aim to link not
only named entities but also general concepts (e.g.
“world peace”) for which Wikipedia has articles. In
this paper, we solely focus on proper entities.
Joint NERD: There is little prior work on perform-
ing NER and NED jointly. Sil and Yates (2013), and
Durrett and Klein (2014) are the most notable meth-
ods. Sil and Yates (2013) first compile a liberal set
of mention and entity candidates, and then perform
joint ranking of the candidates. Durrett and Klein
(2014) present a CRF model for coreference res-
olution, mention typing, and mention disambigua-
tion. Our model is also based on CRF’s, but dis-
tinguishes itself from prior work in three ways: 1)
tree-shaped per-sentence CRF’s derived from depen-
dency parse trees, as opposed to merely having con-
nections among mentions and entity candidates; 2)
linguistic features about verbal phrases from depen-
dency parse trees; 3) the maintaining of candidates
for both mentions and entities and jointly reason-
ing on their uncertainty. Our experiments include
comparisons with the method of Durrett and Klein
(2014).

There are also benchmarking efforts on measuring
the performance for end-to-end NERD (Cornolti et
al., 2013; Carmel et al., 2014; Usbeck et al., 2015),
as opposed to assessing NER and NED separately.
However, to the best of our knowledge, none of the
participants in these competitions considered inte-
grating NER and NED.

3 J-NERD Factor Graph Model
3.1 Overview

To label a sequence of input tokens 〈x1, . . . , xm〉
with a sequence of output labels 〈y1, . . . , ym〉, con-

sisting of NER types and NED entities, we devise
a family of linear-chain and tree-shaped probabilis-
tic graphical models (Koller et al., 2007). We em-
ploy these models to compactly encode a multi-
variate probability distribution over random vari-
ables X ∪ Y , where X denotes the set of input
tokens xi we may observe, and Y denotes the set
of output labels yi we may associate with these
tokens. By writing x, we denote an assignment
of tokens to X , while y denotes an assignment
of labels to Y . In our running example, “David”
is the first token x1 with the desired label y1 =
PER:David Beckham where PER denotes the
NER type Person and David Beckham is the en-
tity of interest. Consecutive tokens with identical la-
bels are considered to be entity mentions. For exam-
ple, for x5 = la and x6 = galaxy, the output would
ideally be y5 = ORG:Los Angeles Galaxy and
y6 = ORG:Los Angeles Galaxy, denoting the
soccer club. Upfront these are merely candidate la-
bels, though. Our method may alternatively consider
the labels y5 = LOC:Los Angeles and y6 =
MISC:Samsung Galaxy. This would yield in-
correct output with two single-token mentions and
improper entities.

The feature templates f1–f17 we describe in detail
in Section 4 each take the possible assignments x, y
of tokens and labels, respectively, as input and give a
binary value or real number as output. Binary values
denote the presence or absence of a feature (e.g., a
particular token); real-valued ones typically denote
frequencies of observed features.

For tractability, probabilistic graphical models are
typically constrained by making conditional inde-
pendence assumptions, thus imposing structure and
locality on X ∪ Y . In our models, we postulate that
the following conditional independence assumptions
hold:

p(yi | x,y) = p(yi | x, yprev(i))

That is, the label yi for the ith token directly depends
only on the label yprev(i) of some previous token at
position prev(i) and potentially on all input tokens.
The case where prev(i) = i− 1 is the standard set-
ting for a linear-chain CRF, where the label of a to-
ken depends only on the label of its preceding token.
We generalize this approach to considering prev(i)
tokens based on the edges of a dependency parse

217

tree and prev(i) tokens derived from co-references
in preceding sentences.

By the Hammersley-Clifford Theorem, such a
graphical model can be factorized into a product
form where each factor captures a subsetA ⊆ X ∪Y
of the random variables. Typically, each factor con-
siders only those X and Y variables that are coupled
by a conditional (in-)dependence assumptions, with
overlapping A sets of different factors. The prob-
ability distribution encoded by the graphical model
can then be expressed as follows:

p(x,y) =
1

Z

∏

A

FA(xA,yA)

Here, FA(xA,yA) denotes the factors of the model,
each of which is of the following form:

FA(xA,yA) = exp

{∑

k

λk fA,k(xA,yA)

}

The normalization constant Z =∑
x,y

∏
AFA(xA,yA) ensures that this distri-

bution sums up to 1, while λk are the parameters
of the model, which we aim to learn from various
annotated background corpora.

Our inference objective then is to find the most
probable sequence of labels y∗ when given the token
sequence x as evidence:

y∗ = arg maxy p(y |x)

That is, in our setting, we fix x = 〈tok1, . . . ,
tokm〉 to the observed token sequence, while y =
〈y1, . . . , ym〉 ranges over all possible sequences of
associated labels. In our approach, which we hence
coined J-NERD, each yi label represents a combina-
tion of NER type and NED entity.

State-of-the-art NER methods, such as the Stan-
ford NER Tagger, employ linear-chain factor graph,
known as Conditional Random Fields (CRF’s) (Sut-
ton and McCallum, 2012). We also devise more so-
phisticated tree-shaped factor graphs whose struc-
ture is obtained from the dependency parse trees
of the input sentences. These per-sentence models
are optionally combined into a global factor graph
by adding also cross-sentence dependencies (Finkel
et al., 2005). These cross-sentence dependencies
are added whenever overlapping sets of entity can-
didates (i.e., potential co-references) are detected

among the input sentences. Figure 3 gives an ex-
ample of such a global graphical model for two sen-
tences.

The search space of candidate labels for our mod-
els depends on the candidates for mention spans
(with the same NER type) and their NED entities.
We use pruning heuristics to restrict this space: can-
didate spans for mentions are derived from dictio-
naries, and we consider only the top-20 entity can-
didates for each candidate mention. For a given sen-
tence, this typically leads to a few thousand candi-
date labels over which the CRF inference runs. The
candidates are determined independently for each
sentence.

3.2 Features

These models employ a variety of feature templates
that generate the factors of the joint probability dis-
tribution. Some of the features are fairly standard
for NER/NED, whereas others are novel.
• Standard features include lexico-syntactic prop-

erties of tokens like POS tags, matches in dic-
tionaries/gazetteers, and similarity measures be-
tween token strings and entity names. Also,
entity-entity coherence is an important feature
for NED – not exactly a standard feature, but
used in some prior works.

• Features about the topical domain of an input
text (e.g., politics, sports, football, etc.) are ob-
tained by a classifier based on “easy mentions”:
those mentions for which the NED decision can
be made with very high confidence without ad-
vanced features. The use of domains for NED
was introduced by Nguyen et al. (2014). Here,
we further extend this technique by harnessing
domain features for joint inference on NER and
NED.

• The third feature group captures typed depen-
dencies from the sentence parsing. To our
knowledge, these have not been used in prior
work on NER and NED.

The NER types that we consider are the standard
types PER for person, LOC for location and ORG
for organization. All other types that, for example,
the Stanford NER Tagger would mark, are collapsed
into a type MISC for miscellaneous. These include
labels like date and money (which are not genuine
entities anyway) and also entity types like events and

218

creative works such as movies, songs, etc. (which
are disregarded by the Stanford NER Tagger). We
add two dedicated tags for tokens to express the case
when no meaningful NER type or NED entity can
be assigned. For tokens that should not be labeled
as a named entity at all (e.g., “played” in our exam-
ple), we use the tag Other. For tokens with a valid
NER type, we add the virtual entity Out-of-KB
(for “out of knowledge base”) to its entity candi-
dates, to prepare for the possible situation where the
token (and its surrounding tokens) actually denotes
an emerging or long-tail entity that is not contained
in the knowledge base.

3.3 Linear-Chain Model

In the local models, J-NERD works on each sen-
tence S = 〈tok1, . . . , tokm〉 separately. We con-
struct a linear-chain CRF (see Figure 1) by intro-
ducing an observed variable xi for each token tok i
that represents a proper word. For each xi, we ad-
ditionally introduce a variable yi that represents the
combined NERD label. As in any CRF, the xi, yi
and yi, yi+1 pairs are connected via factors F(x,y),
whose weights we obtain from the feature functions
described in Section 4.

y1 y2 y3 y4 y5 y6

x1 x2 x3 x4 x5 x6

David played manu real la galaxy

Figure 1: Linear-chain model (CRF).

3.4 Tree Model

The factor graph for the tree-shaped model is con-
structed in a similar way. However, here we add a
factor that links a pair of labels yi, yj if their respec-
tive tokens tok i, tok j are connected via a typed de-
pendency which we obtain from the Stanford parser.
Figure 2 shows an example of such a tree model.
Thus, while the linear-chain model adds factors be-
tween labels of adjacent tokens only based on their
positions in the sentence, the tree model adds fac-
tors based on the dependency parse tree to enhance
the coherence of labels across tokens.

3.5 Global Models

For global models, we consider an entire input
text consisting of multiple sentences S1, . . . , Sn =
〈tok1, . . . , tokm〉, for augmenting either one of the

y1

y2

y3 y4 y5 y6

x1

x2

x3 x4 x5 x6

David

played

manu real la galaxy

[nsubj]

[p f]

[p f]

[p f]

[det]

Figure 2: Tree model ([p f] is [prep for]).

linear-chain model or tree-shaped model. As shown
in Figure 3, cross-sentence edges among pairs of
labels yi, yj are introduced for candidate sets Ci,
Cj that share at least one candidate entity, such as
“David” and “David Beckham”. Additionally, we
introduce factors for all pairs of tokens in adjacent
mentions within the same sentence, such as “David”
and “manu”.
3.6 Inference & Learning
Our inference objective is to find the most probable
sequence of NERD labels y∗ = arg maxy p(y |x)
according to the objective function we defined in
Section 3. Instead of considering the actual distri-
bution

p(x,y) =
1

Z

∏

A

exp

{∑

k

λk fA,k(xA,yA)

}

for this purpose, we aim to maximize an equivalent
objective function as follows. Each factor A in our
model couples a label variable yt with a variable
yprev(t): either its immediately preceding token in
the same sentence, or a parsing-dependency-linked
token in the same sentence, or a co-reference-linked
token in a different sentence. Each of these factors
has its feature functions, and we can regroup these
features on a per-token basis given the log-linear
nature of the objective function. This leads to the
following optimization problem which has its max-
imum for the same label assignment as the original
problem:

y∗ = arg max
y1...ym

exp

(
m∑
t=1

K∑
k=1

λk featurek(yt, yprev(t), x1 . . . xm)

)

where
• prev(t) is the index of label yj on which yt de-

pends,
• feature1..K are the feature functions generated

from templates f1–f17 of Section 4,

219

y1

y2

y3 y4 y5 y6

x1

x2

x3 x4 x5 x6

David

played

manu real la galaxy

y7 y8

y9

y10 y11

x7 x8

x9

x10 x11

David Beckham

born

London England

[nsubj]

[p f]
[p f]

[p f]

[det] [nn] [nn]

[nsubjpass]

[prep in]

Figure 3: Global model, linking two tree models ([p f] is short for [prep for]).

• and λk are the feature weights, i.e., the model
parameters to be learned.

The actual number of generated features, K, de-
pends on the training corpus and the choice of the
graphical model. For the CoNLL-YAGO2 training
set, the tree models have K = 1, 767 parameters.
Given a trained model, exact inference with respect
to the above objective function can be efficiently
performed by variants of the Viterbi algorithm (Sut-
ton and McCallum, 2012) for the local models, both
in the linear-chain and tree-shaped cases. For the
global models, however, exact solutions are compu-
tationally intractable. Therefore, we employ Gibbs
sampling (Finkel et al., 2005) to approximate the so-
lution.

As for the model parameters, J-NERD learns the
feature weights λk from the training data by max-
imizing a respective conditional likelihood func-
tion (Sutton and McCallum, 2012), using a vari-
ant of the L-BFGS optimization algorithm (Liu and
Nocedal, 1989). We do this for each local model
(linear-chain and tree models), and apply the same
learned weights to the corresponding global models.
Our implementation uses the RISO toolkit2 for be-
lief networks.

4 Feature Templates

We define feature templates for detecting the com-
bined NER/NED labels of token that denote or are
part of an entity mention. Once these labels are de-
termined, the actual boundaries of the mentions, i.e.,
their token spans, are trivially derived by combining
adjacent tokens with the same label (and disregard-
ing all tokens with the tag Other).
Language Preprocessing. We employ the Stan-

2http://riso.sourceforge.net/

ford CoreNLP tool suite3 for processing input doc-
uments. This includes tokenization, sentence detec-
tion, POS tagging, lemmatization, and dependency
parsing. All of these provide features for our graph-
ical model. In particular, we harness dependency
types between noun phrases (de Marneffe et al.,
2006), like nsubj, dobj, prep in, prep for, etc.

In the following, we introduce the complete set
of feature templates f1 through f17 used by our
method. Templates are instantiated based on the ob-
served input and the candidate space of possible la-
bels for this input, and guided by distant resources
like knowledge bases and dictionaries. Templates
f1, f8–f13, f17 generate real numbers as values de-
rived from frequencies in training data; all other
templates generate binary values denoting presence
or absence of certain features. The generated feature
values depend on the assignment of input tokens to
variables xi ∈ X . In addition, our graphical models
often consider only a specific subset of candidate la-
bels as assignments to the output variables yi ∈ Y .
Therefore, we formulate the feature-generation pro-
cess as a set of feature functions that depend on both
(per-factor subsets of) X and Y .

Table 1 illustrates the feature generation by the set
of active feature functions for the token “manu” in
our running example, using three different candidate
labels.
Entity Repository and Name-Entity Dictionary.
Many feature templates harness a knowledge base,
namely, YAGO2 (Hoffart et al., 2013), as an en-
tity repository and as a dictionary of name-to-entity
pairs (i.e., aliases and paraphrases). We import
the YAGO2 means and hasName relations, a total
of more than 6 Million name-entity pairs (for ca.
3 Million distinct entities). We derive additional

3http://stanfordnlp.github.io/CoreNLP/

220

http://riso.sourceforge.net/
http://stanfordnlp.github.io/CoreNLP/

Table 1: Positive features (value set to true or real
number > 0) for the token “manu” (x3) with can-
didate labels ORG:Manchester United F.C. (y3),
PER:Manu Chao (y′3) and Other (y′′3). The domain is
Football and the linguistic pattern is prep for[played, *].

Feature y3 y′3 y′′3
f1: Token-Type Prior X X X
f2: Current POS X X X
f3: In-Dictionary X X
f4: Uppercase
f5: Surrounding POS X X X
f6: Surrounding Tokens X X X
f7: Surrounding In-Dictionary X X X
f8: Token-Entity Prior X X
f9: Token-Entity n-Gram Similarity X X
f10: Token-Entity Token Contexts X X
f11: Entity-Entity Token Coherence X X
f12: Entity-Domain Coherence X
f13: Entity-Entity Type Coherence X X
f14: Typed-Dependency X X
f15: Typed-Dependency/POS X X
f16: Typed-Dependency/In-Dictionary X
f17: Token-Entity Linguistic Contexts X

NER-type-specific phrase dictionaries from support-
ing phrases of GATE (Cunningham et al., 2011),
e.g., “Mr.”, “Mrs.”, “Dr.”, “President”, etc. for the
type PER; “city”, “river”, “park”, etc. for the type
LOC; “company”, “institute”, “Inc.”, “Ltd.”, etc. for
the type ORG.

Pruning the Candidate Space. To reduce the di-
mensionality of the generated feature space and to
make the factor-graph inference tractable, we use
pruning techniques based on the knowledge base
and the dictionaries. To determine if a token can
be a mention or part of a mention, we first perform
exact-match lookups of all sub-sequences against
the name-entity dictionary. As an option (and by
default), this can be limited to sub-sequences that
are tagged as noun phrases by the Stanford parser.
For higher recall, we then add partial-match lookups
when a token sub-sequence matches only some but
not all tokens of an entity name in the dictionary. For
example, for the sentence “David played for manu,
real and la galaxy”, we obtain “David”, “manu”,
“real”, “la galaxy”, “la”, and “galaxy” as candidate
mentions. For each such candidate mention, we look
up the knowledge base for entities and consider only

the best n (using n = 20 in our experiments) high-
est ranked candidate entities. The ranking is based
on the string similarity between the mention and the
entity name, the prior popularity of the entity, and
the local context similarity (using feature functions
f8, f9, f10 described in Subsection 4.1).

4.1 Standard Features

For the following definitions of the feature tem-
plates, let pos i denote the POS tag of tok i, dici
denote the NER tag from the dictionary lookup of
tok i, and depi denote the parsing dependency that
connects tok i with another token. Further, we write
sur i = 〈tok i−1, tok i, tok i+1〉 to refer to the se-
quence of tokens surrounding tok i. As for the pos-
sible labels, we denote by typei and ent i an NER
type and candidate entity for the current token tok i,
respectively.
Token-Type Prior. Feature f1(typei, tok i) captures
a prior probability for tok i being of NER type typei.
These probabilities are estimated from an NER-
annotated training corpus. In our experiments, we
used training subsets of different test corpora such
as CoNLL. For example, we may thus obtain a prior
of f1(ORG, “Ltd.”) = 0.8.
Current POS. Template f2(typei, tok i) generates a
binary feature function if token toki occurs in the
training corpus with POS tag posi and NER label
typei. For example, f2(PER, “David”) = 1 if the
current token “David” has occurred with POS tag
NNP and NER label PER in the training corpus.
For combinations of tokens with POS tags and NER
types that do not occur in the training corpus, no
actual feature function is generated from the tem-
plate (i.e., the value of function would be 0). For the
rest of this section, we assume that all binary feature
functions are generated from their feature templates
in an analogous manner.
In-Dictionary. Template f3(typei, tok i) generates a
binary feature function if the current token tok i oc-
curs in the name-to-entity dictionary for some entity
of NER label typei.
Uppercase. Template f4(typei, tok i) generates a
binary feature function if the current token tok i ap-
pears in upper-case form and additionally has the
NER label typei in the training corpus.
Surrounding POS. Template f5(typei, tok i) gener-
ates a binary feature function if the current token

221

tok i and the POS sequence of its surrounding tokens
sur i both appear in the training corpus, where tok i
also has the NER label typei.
Surrounding Tokens. Template f6(typei, tok i)
generates a binary feature function if the current to-
ken tok i has NER label typei, given that tok i also
appears with surrounding tokens sur i in the train-
ing corpus. When instantiated, this template could
possibly lead to a huge number of feature functions.
For tractability, we thus ignore sequences that occur
only once in the training corpus.
Surrounding In-Dictionary. Template
f7(typei, tok i) performs dictionary lookups
for surrounding tokens in sur i. Similar to f6, it gen-
erates a binary feature function if the current token
tok i and the dictionary lookups of its surrounding
tokens suri appear in the training corpus, where
tok i also has NER label typei.
Token-Entity Prior. Feature f8(ent i, tok i)
captures a prior probability of tok i having
NED label ent i. These probabilities are es-
timated from co-occurrence frequencies of
name-to-entity pairs in the background cor-
pus, thus harnessing link-anchor texts in
Wikipedia. For example, we may have a prior
of f8(David Beckham, “Beckham”) = 0.7,
as David is more popular (today) than
his wife Victoria. On the other hand,
f8(David Beckham, “David”) may be lower
than f8(David Bowie, “David”), for example,
as this still active pop star is more frequently and
prominently mentioned than the retired football
player.
Token-Entity n-Gram Similarity. Feature
f9(ent i, tok i) measures the Jaccard similarity of
character-level n-grams of a name in the dictio-
nary that includes tok i and is the primary (i.e.,
full and most frequently used) name of an en-
tity ent j . For example, for n = 2 the value of
f9(David Beckham, “Becks”) is 3

11 . In our
experiments, we set n = 3.
Token-Entity Token Contexts. Feature
f10(ent i, tok i) measures the weighted overlap
similarity between the token contexts (tok-cxt) of
token tok i and entity ent j . Specifically, we use
a weighted generalization of the standard overlap
coefficient, WO, between two sets X,Y of weighted

elements, Xk ∈ X and Yk ∈ Y :

WO(X,Y) =

∑
k min(Xk, Yk)

min(
∑

kXk,
∑

k Yk)

We set the weights to be tf-idf scores, and hence we
obtain:
f10(ent i, tok i) =

WO
(

tok-cxt(ent i), tok-cxt(tok i)
)

Entity-Entity Token Coherence. Feature
f11(ent i, ent j) measures the coherence between
the token contexts of two entity candidates enti and
entj :
f11(ent i, ent j) =

WO
(

tok-cxt(ent i), tok-cxt(ent j)
)

f11 allows us to establish cross-dependencies
among labels in our graphical model. For ex-
ample, the two entities David Beckham and
Manchester United are highly coherent as they
share many tokens in their contexts, such as “cham-
pions”, “league”, “premier”, “cup”, etc. Thus, they
should mapped jointly.

4.2 Domain Features
We use WordNet domains, created by Miller (1995),
Magnini and Cavagli (2000), and Bentivogli et
al. (2004), to construct a taxonomy of 46 do-
mains, including Politics, Economy, Sports, Science,
Medicine, Biology, Art, Music, etc. We combine
the domains with semantic types (classes of enti-
ties) provided by YAGO2, by assigning them to their
respective domains. This is based on the manual
assignment of WordNet synsets to domains, intro-
duced by Magnini and Cavagli (2000), and Ben-
tivogli et al. (2004), and extends to additional types
in YAGO2. For example, Singer is assigned to Mu-
sic, and Football Player to Football, a sub-domain
of Sports. These types include the standard NER
types Person (PER), Organization (ORG), Location
(LOC), and Miscellaneous (MISC) which are further
refined by the YAGO2 subclassOf hierarchy. In to-
tal, the 46 domains are enhanced with ca. 350,000
types imported from YAGO2.

J-NERD classifies input texts into domains by
means of “easy mentions”. An easy mention is a
match in the name-to-entity dictionary for which
there exist at most three candidate entities (Nguyen
et al., 2014). Although the mention boundaries are

222

not explicitly provided as input, J-NERD still can
extract these easy mentions from the entirety of all
mention candidates.

In the following, let C∗ be the set of candidate
entities for the “easy” mentions in the input docu-
ment. For each domain d (see Section 3), we com-
pute the coherence of the easy mentions M∗ =
{m1,m2, . . . }:

coh(M∗) =
|C∗ ∩ Cd|
|C∗|

where Cd is the set of all entities under domain d.
We classify the document into the domain with the
highest coherence score.

Although the mentions and their entities may be
inferred incorrectly, the domain classification still
tends to work very reliably as it aggregates over all
“easy” mention candidates. The following feature
templates exploit domains.
Entity-Domain Coherence. Template
f12(ent i, tok i) generates a binary feature function
that captures the coherence between an entity
candidate ent i of token tok i and the domain d
which the input text is classified into. That is,
f12(ent i, tok i) = 1 if d ∈ dom(ent i). Otherwise,
the feature value is 0.
Entity-Entity Type Coherence. Feature
f13(ent i, ent j) computes the relatedness be-
tween the Wikipedia categories of two candidate
entities ent i ∈ Ci and ent j ∈ Cj , where Ci, Cj

denote the two sets of candidate entities associated
with tok i, tok j , respectively:
f13(ent i, ent j) = maxcu∈cat(enti)

cv∈cat(entj)
rel(cu, cv)

where the function rel(cu, cv) computes the recip-
rocal length of the shortest path between categories
cu, cv in the domain taxonomy (Nguyen et al.,
2014). Recall that our domain taxonomy contains a
few hundred thousands of Wikipedia categories in-
tegrated in the YAGO2 type hierarchy.

4.3 Linguistic Features

Recall that we harvest dependency-parsing patterns
by using Wikipedia as a large background corpus.
Here we harness that Wikipedia contains many men-
tions with explicit links to entities and that the
knowledge base provides us with the NER types for
these entities.

Typed-Dependency. Template f14(typei, tok i)
generates a binary feature function if the back-
ground corpus contains the pattern depi =
deptype(arg1 , arg2) where the current token tok i
is either arg1 or arg2 , and tok i is labeled with NER
label typei.
Typed-Dependency/POS. Template
f15(typei, tok i) captures linguistic patterns that
combine parsing dependencies (like in f14) and POS
tags (like in f2) learned from an annotated training
corpus. It generates binary features if the current
token tok i appears in the dependency pattern depi
with POS tag pos i and this combination also occurs
in the training data under NER label typei.
Typed-Dependency/In-Dictionary. Template
f16(typei, tok i) captures linguistic patterns that
combine parsing dependencies (like in f14) and
dictionary lookups (like in f3) learned from an
annotated training corpus. It generates a binary
feature function if the current token tok i appears
in the dependency pattern depi and has an entry
dici in the name-to-entity dictionary for some entity
with NER label typei.
Token-Entity Linguistic Contexts. Feature
f17(ent i, tok i) measures the weighted overlap be-
tween the linguistic contexts (ling-cxt) of token tok i
and candidate entity ent i:
f17(ent i, tok i) =

WO
(

ling-cxt(ent i), ling-cxt(tok i)
)

5 Experiments

5.1 Data Collections

Our evaluation is mainly based on the CoNLL-
YAGO2 corpus of newswire articles. Additionally,
we report on experiments with an extended version
of the ACE-2005 corpus and a large sample of the
entity-annotated ClueWeb’09-FACC1 Web crawl.

CoNLL-YAGO2 is derived from the CoNLL-
YAGO corpus (Hoffart et al., 2011)4 by removing
tables where mentions in table cells do not have lin-
guistic context; a typical example is sports results.
The resulting corpus contains 1,244 documents with
20,924 mentions including 4,774 Out-of-KB en-
tities. Ground-truth entities in YAGO2 are provided
by Hoffart et al. (2011). For a consistent ground-

4https://www.mpi-inf.mpg.de/yago-naga/yago/

223

https://www.mpi-inf.mpg.de/yago-naga/yago/

truth set, we derived the NER types from the NED
ground-truth entities, fixing some errors in the orig-
inal annotations related to metonymy (e.g., label-
ing the mentions in “India beats Pakistan 2:1” in-
correctly as LOC, whereas the entities are the sports
teams of type ORG). This makes the dataset not only
cleaner but also more demanding, as metonymous
mentions are among the most difficult cases.

For our evaluation, we use the “testb” subset of
CoNLL-YAGO, which – after the removal of tables
– has 231 documents with 5,616 mentions including
1,131 Out-of-KB entities. The other 1,045 doc-
uments with a total of 17,870 mentions (including
4,057 Out-of-KB mentions) are used for training.
ACE is an extended variant of the ACE 2005 cor-
pus5, with additional NED labels by Bentivogli et
al. (2010). We consider only proper entities and
exclude mentions of general concepts such as “rev-
enue”, “world economy”, “financial crisis”, etc., as
they do not correspond to individual entities in a
knowledge base. This reduces the number of men-
tions, but gives the task a crisp focus. We disal-
low overlapping mention spans and consider only
maximum-length mentions, following the rationale
of the ERD Challenge 2014. The test set contains
117 documents with 2,958 mentions.
ClueWeb contains two randomly sampled subsets
of the ClueWeb’09-FACC16 corpus with Freebase
annotations:
• ClueWeb: 1,000 documents (24,289 mentions)

each with at least 5 entities.
• ClueWeblong−tail: 1,000 documents (49,604

mentions) each with at least 3 long-tail entities.
We consider an entity to be “long-tail” if it has at
most 10 incoming links in the English Wikipedia.
Note that these Web documents are very different in
style from the news-centric articles in CoNLL and
ACE. Also note that the entity markup is automat-
ically generated, but with emphasis on high preci-
sion. So the data captures only a small subset of the
potential entity mentions, and it may contain a small
fraction of false entities.

In addition to these larger test corpora, we ran
experiments with several smaller datasets used in
prior work: KORE (Hoffart et al., 2012), MSNBC

5http://projects.ldc.upenn.edu/ace/
6http://lemurproject.org/clueweb09/FACC1/

(Cucerzan, 2007), and a subset of AQUAINT (Milne
and Witten, 2008). Each of these has only a few
hundred mentions, but they exhibit different charac-
teristics. The findings on these datasets are fully in
line with those of our main experiments; hence no
explicit results are presented here.

In all of these test datasets, the ground-truth con-
siders only individual entities and excludes gen-
eral concepts, such as “climate change”, “harmony”,
“logic”, “algebra”, etc. These proper entities are
identified by the intersection of Wikipedia articles
and YAGO2 entities. This way, we focus on NERD.
Systems that are designed for the broader task of
“Wikification” are not penalized by their (typically
lower) performance on inputs other than proper en-
tity mentions.

5.2 Methods under Comparison

We compare J-NERD in its four variants (linear vs.
tree and local vs. global) to various state-of-the-art
NER/NED methods.

For NER (i.e., mention boundaries and types) we
use the recent version 3.4.1 of the Stanford NER
Tagger7 (Finkel et al., 2005) and the recent version
2.8.4 of the Illinois Tagger8 (Ratinov and Roth,
2009) as baselines. These systems have NER bench-
mark results on CoNLL’03 that are as good as the
result reported in Passos et al. (2014). We retrained
this model by using the same corpus-specific train-
ing data that we use for J-NERD .

For NED, we compared J-NERD against the fol-
lowing methods for which we obtained open-source
software or could call a Web service:
• Berkeley-entity (Durrett and Klein, 2014) uses

a joint model for coreference resolution, NER
and NED with linkage to Wikipedia.

• AIDA-light (Nguyen et al., 2014) is an opti-
mized variant of the AIDA system (Hoffart et
al., 2011), based on YAGO2. It uses the Stan-
ford tool for NER.

• TagMe (Ferragina and Scaiella, 2010) is a Wik-
ifier that maps mentions to entities or concepts
in Wikipedia. It uses a Wikipedia-derived dic-
tionary for NER.

• Spotlight (Mendes et al., 2011) links mentions

7nlp.stanford.edu/software/CRF-NER.shtml
8http://cogcomp.cs.illinois.edu/

224

http://projects.ldc.upenn.edu/ace/
http://lemurproject.org/clueweb09/FACC1/
nlp.stanford.edu/software/CRF-NER.shtml
http://cogcomp.cs.illinois.edu/

to entities in DBpedia. It uses the LingPipe
dictionary-based chunker for NER.

Some systems use confidence thresholds to decide
on when to map a mention to Out-of-KB. For each
dataset, we used withheld data to tune these system-
specific thresholds. Figure 4 illustrates the sensitiv-
ity of the thresholds for the CoNLL-YAGO2 dataset.

Figure 4: F1 for varying confidence thresholds.

5.3 Evaluation Measures
We evalute the output quality at the NER level alone
and for the end-to-end NERD task. We do not
evaluate NED alone, as this would require giving a
ground-truth set of mentions to the systems to rule
out that NER errors affect NED. Most competitors
do not have interfaces for such a controlled NED-
only evaluation.

Each test collection has ground-truth annotations
(G) consisting of text spans for mentions, NER
types of the mentions, and mapping mentions to
entities in the KB or to Out-of-KB. Recall that
the Out-of-KB case captures entities that are not
in the KB at all. Let X be the output of system
X: detected mentions, NER types, NED mappings.
Following the ERD 2014 Challenge (Carmel et al.,
2014), we define precision and recall of X for end-
to-end NERD as:

Prec(X) = |X agrees with G|/|X|
Rec(X) = |X agrees with G|/|G|

where agreement means thatX andG overlap in the
text spans (i.e., have at least one token in common)
for a mention, have the same NER type, and have
the same mapping to an entity or Out-of-KB. The
F1 score ofX is the harmonic mean of precision and
recall.

For evaluating the mention-boundary detection
alone, we consider only the overlap of text spans; for
evaluating NER completely, we consider both men-
tion overlap and agreement based on the assigned
NER types.

5.4 Results for CoNLL-YAGO2

Our first experiment on CoNLL-YAGO2 is compar-
ing the four CRF variants of J-NERD for three tasks:
mention boundary detection, NER typing and end-
to-end NERD. Then, the best model of J-NERD is
compared against various baselines and a pipelined
configuration of our method. Finally, we test the in-
fluence of different features groups.

5.4.1 Experiments on CRF Variants

Table 2 compares the different CRF variants. All
CRFs have the same features, but differ in their fac-
tors. Therefore, some features are not effective for
the linear model and the tree model. For the lin-
ear CRF, the parsing-based linguistic features and
the cross-sentence features do not contribute; for the
tree CRF, the cross-sentence features are not effec-
tive.

Table 2: Experiments on CoNLL-YAGO2.

Perspective Variants Prec Rec F1

Mention
Boundary
Detection

J-NERDlinear-local 94.2 89.6 91.8
J-NERDtree-local 94.4 89.4 91.8

J-NERDlinear-global 95.1 90.3 92.6
J-NERDtree-global 95.8 90.6 93.1

NER Typing

J-NERDlinear-local 87.8 83.0 85.3
J-NERDtree-local 89.5 82.2 85.6

J-NERDlinear-global 88.6 83.4 85.9
J-NERDtree-global 90.4 83.8 86.9

End-to-End
NERD

J-NERDlinear-local 71.8 74.9 73.3
J-NERDtree-local 75.1 74.5 74.7

J-NERDlinear-global 77.6 74.8 76.1
J-NERDtree-global 81.9 75.8 78.7

We see that all variants perform very well on
boundary detection and NER typing, with small
differences only. For end-to-end NERD, however,
J-NERDtree-global outperforms all other variants by
a large margin. This results in achieving the best
F1 score of 78.7%, which is 2.6% higher than
J-NERDlinear-global. We performed a paired t-test be-
tween these two variants, and obtained a p-value of
0.01. The local variants of J-NERD lose around
4% of F1 because they do not capture the coherence
among mentions in different sentences.

In the rest of our experiments, we focus on J-
NERDtree-global and the task of end-to-end NERD.

225

5.4.2 Comparison of Joint vs. Pipelined Models
and Baselines

In this subsection, we demonstrate the benefits
of joint models against pipelined models including
state-of-the-art baselines. In addition to the competi-
tors introduced in Section 5.2, we add a pipelined
configuration of J-NERD , coined P-NERD. That is,
we first run J-NERD in NER mode (thus only con-
sidering NER features f1..7 and f14..16). The best
sequence of NER labels is then given to J-NERD to
run in NED mode (only considering NED features
f8..13 and f17).

Table 3: Comparison between joint models and pipelined
models on end-to-end NERD.

Method Prec Rec F1

P-NERD 80.1 75.1 77.5
J-NERD 81.9 75.8 78.7

AIDA-light 78.7 76.1 77.3
TagMe 64.6 43.2 51.8

SpotLight 71.1 47.9 57.3

The results are shown in Table 3. J-NERD
achieves the highest precision of 81.9% for end-
to-end NERD, outperforming all competitors by a
significant margin. This results in achieving the
best F1 score of 78.7%, which is 1.2% higher than
P-NERD and 1.4% higher than AIDA-light. Note
that Nguyen et al. (2014) reported higher precision
for AIDA-light, but that experiment did not consider
Out-of-KB entities which pose an extra difficulty
in our setting. Also, the test corpora – CoNLL-
YAGO2 vs. CoNLL-YAGO – are not quite compa-
rable (see above).

TagMe and Spotlight are clearly inferior on this
dataset (more than 20% lower in F1 than J-NERD).
These systems are more geared towards efficiency
and coping with popular and thus frequent entities,
whereas the CoNLL-YAGO2 dataset contains very
difficult test cases. For the best F1 score of J-NERD,
we performed a paired t-test against the other meth-
ods’ F1 values and obtained a p-value of 0.075.

We also compared the NER performance of
J-NERD against the state-of-the-art method for
NER alone, the Stanford NER Tagger version 3.4.1
and the Illinois Tagger 2.8.4 (Table 4). For mention
boundary detection, J-NERD achieved an F1 score
of 93.1% versus 93.4% by Stanford NER, 93.3% by

Table 4: Experiments on NER against state-of-the-art
NER systems.

Perspective Variants Prec Rec F1

Mention
Boundary
Detection

P-NERD 95.6 90.5 92.9
J-NERD 95.8 90.6 93.1

Stanford NER 95.6 91.3 93.4
Illinois Tagger 95.5 91.2 93.3

NER Typing

P-NERD 89.6 83.4 86.3
J-NERD 90.4 83.8 86.9

Stanford NER 89.3 84.5 86.8
Illinois Tagger 87.5 83.2 85.3

Illinois Tagger, and 92.9% by P-NERD. For NER
typing, J-NERD achieved an F1 score of 86.9% ver-
sus 86.8% by Stanford NER, 85.3% by Illinois Tag-
ger, and 86.3% by P-NERD. So we could not out-
perform the best prior method for NER alone, but
achieved very competitive results. Here, we do not
really leverage any form of joint inference (combin-
ing CRF’s across sentences is used in Stanford NER,
too), but harness rich features on domains, entity
candidates, and linguistic dependencies.

5.4.3 Influence of Features

To analyze the influence of the features, we per-
formed an additional ablation study on the global
J-NERD tree model, which is the best variant of
J-NERD , as follows:
• Standard features only include features intro-

duced in Section 4.1.
• Standard and domain features exclude the lin-

guistic features f14, f15, f16, f17.
• Standard and linguistic features excludes the do-

main features f12 and f13.
• All features is the full-fledged J-NERDtree-global

model.

Table 5: Feature Influence on CoNLL-YAGO2.

Perspective Setting F1

NER Typing

Standard features 85.1
Standard and domain features 85.7

Standard and linguistic features 86.4
All features 86.9

End-to-End
NERD

Standard features 74.3
Standard and domain features 76.4

Standard and linguistic features 76.6
All features 78.7

226

Table 5 shows the results, demonstrating that
linguistic features are crucial for both NER and
NERD. For example, in the sentence “Woolmer
played 19 tests for England”, the mention “Eng-
land” refers to an organization (the English cricket
team), not to a location. The dependency-type fea-
ture prep for[play, England] is a decisive cue to
handle such cases properly. Domain features help in
NED to eliminate, for example, football teams when
the domain is cricket.

5.5 End-to-End NERD on ACE

For comparison to the recently developed Berkeley-
entity system (Durrett and Klein, 2014), the authors
of that system provided us with detailed results for
the entity-annotated ACE’2005 corpus, which al-
lowed us to discount non-entity (so-called “NOM-
type”) mappings (see Subsection 5.1). All other sys-
tems, including the best J-NERD method, were run
on the corpus under the same conditions.

Table 6: NERD results on ACE.

Method Prec Rec F1

P-NERD 68.2 60.8 64.2
J-NERD 69.1 62.3 65.5

Berkeley-entity 65.6 61.8 63.7
AIDA-light 66.8 59.3 62.8

TagMe 60.6 43.5 50.7
SpotLight 68.7 29.6 41.4

J-NERD outperforms P-NERD and Berkeley-
entity: F1 scores are 1.3% and 1.8% better, respec-
tively, with a t-test p-value of 0.05 (Table 6). Fol-
lowing these three best-performing systems, AIDA-
light also achieves decent results. The other systems
show substantially inferior performance.

The performance gains that J-NERD achieves
over Berkeley-entity can be attributed to two factors.
First, the rich linguistic features of J-NERD help to
correctly cope with more of the difficult cases, e.g.,
when common nouns are actually names of people.
Second, the coherence features of global J-NERD
help to properly couple decisions on related entity
mentions.

5.6 End-to-End NERD on ClueWeb

The results for ClueWeb are shown in Table 7.
Again, J-NERD outperforms all other systems with
a t-test p-value of 0.05. The differences between

J-NERD and fast NED systems such as TagMe
or SpotLight become smaller as the number of
prominent entities (i.e., prominent people, organiza-
tions and locations) is higher on ClueWeb than on
CoNLL-YAGO2.

Table 7: NERD results on ClueWeb.

Dataset Method Prec Rec F1

ClueWeb

P-NERD 80.9 67.1 73.3
J-NERD 81.5 67.5 73.8

AIDA-light 80.2 66.4 72.6
TagMe 78.4 60.5 68.3

SpotLight 79.7 57.1 66.5

ClueWeblong−tail

P-NERD 81.2 64.4 71.8
J-NERD 81.4 65.1 72.3

AIDA-light 81.2 63.7 71.3
TagMe 78.4 58.3 66.9

SpotLight 81.2 56.3 66.5

6 Conclusions
We have shown that coupling the tasks of NER and
NED in a joint CRF-like model is beneficial. Our
J-NERD method outperforms strong baselines on a
variety of test datasets. The strength of J-NERD
comes from three novel assets. First, our tree-
shaped models capture the structure of dependency
parse trees, and we couple multiple such tree models
across sentences. Second, we harness non-standard
features about domains and novel features based on
linguistic patterns derived from parsing. Third, our
joint inference maintains uncertain candidates for
both mentions and entities and makes decisions as
late as possible. In our future work, we plan to ex-
plore more use cases for joint NERD, especially for
content analytics over news streams and social me-
dia.

7 Acknowledgments

We would like to thank Greg Durrett for helpful dis-
cussions about entity disambiguation on ACE. We
also thank the anonymous reviewers, and our action
editors Lillian Lee and Hwee Tou Ng for their very
thoughtful and helpful comments.

References
Luisa Bentivogli, Pamela Forner, Bernardo Magnini, and

Emanuele Pianta. 2004. Revising the Wordnet Do-
mains Hierarchy: Semantics, Coverage and Balancing.

227

In Proceedings of the Workshop on Multilingual Lin-
guistic Ressources, MLR ’04, pages 101–108. ACL.

Luisa Bentivogli, Pamela Forner, Claudio Giuliano,
Alessandro Marchetti, Emanuele Pianta, and Kateryna
Tymoshenko. 2010. Extending English ACE
2005 Corpus Annotation with Ground-truth Links to
Wikipedia. In The People’s Web Meets NLP: Collab-
oratively Constructed Semantic Resources ’10, pages
19–27. COLING.

Razvan Bunescu and Marius Pasca. 2006. Using En-
cyclopedic Knowledge for Named Entity Disambigua-
tion. In EACL ’06, pages 9–16. ACL.

David Carmel, Ming-Wei Chang, Evgeniy Gabrilovich,
Bo-June Paul Hsu, and Kuansan Wang. 2014.
ERD’14: Entity Recognition and Disambiguation
Challenge. In SIGIR ’14, page 1292. ACM.

Marco Cornolti, Paolo Ferragina, and Massimiliano Cia-
ramita. 2013. A Framework for Benchmarking
Entity-annotation Systems. In WWW ’13, pages 249–
260. ACM.

Marco Cornolti, Paolo Ferragina, Massimiliano Cia-
ramita, Hinrich Schütze, and Stefan Rüd. 2014. The
SMAPH System for Query Entity Recognition and
Disambiguation. In Proceedings of the First Inter-
national Workshop on Entity Recognition and Disam-
biguation, ERD ’14, pages 25–30. ACM.

Silviu Cucerzan. 2007. Large-Scale Named Entity Dis-
ambiguation Based on Wikipedia Data. In EMNLP-
CONLL ’07, pages 708–716. ACL.

Silviu Cucerzan. 2014. Name Entities Made Obvious:
The Participation in the ERD 2014 Evaluation. In Pro-
ceedings of the First International Workshop on Entity
Recognition and Disambiguation, ERD ’14, pages 95–
100. ACM.

Hamish Cunningham, Diana Maynard, Kalina
Bontcheva, Valentin Tablan, Niraj Aswani, Ian
Roberts, Genevieve Gorrell, Adam Funk, An-
gus Roberts, Danica Damljanovic, Thomas Heitz,
Mark A. Greenwood, Horacio Saggion, Johann
Petrak, Yaoyong Li, and Wim Peters. 2011. Text
Processing with GATE. University of Sheffield.

Joachim Daiber, Max Jakob, Chris Hokamp, and
Pablo N. Mendes. 2013. Improving Efficiency and
Accuracy in Multilingual Entity Extraction. In Pro-
ceedings of the 9th International Conference on Se-
mantic Systems, I-SEMANTICS ’13, pages 121–124.
ACM.

Marie-Catherine de Marneffe, Bill MacCartney, and
Christopher D. Manning. 2006. Generating typed de-
pendency parses from phrase structure parses. In Pro-
ceedings of the International Conference on Language
Resources and Evaluation, LREC ’06, pages 449–454.
ELRA.

Stephen Dill, Nadav Eiron, David Gibson, Daniel Gruhl,
R. Guha, Anant Jhingran, Tapas Kanungo, Sridhar Ra-
jagopalan, Andrew Tomkins, John A. Tomlin, and Ja-
son Y. Zien. 2003. SemTag and Seeker: Bootstrap-
ping the Semantic Web via Automated Semantic An-
notation. In WWW ’03, pages 178–186. ACM.

Greg Durrett and Dan Klein. 2014. A Joint Model for
Entity Analysis: Coreference, Typing, and Linking. In
TACL ’14. ACL.

Paolo Ferragina and Ugo Scaiella. 2010. TAGME:
On-the-fly Annotation of Short Text Fragments (by
Wikipedia Entities). In CIKM ’10, pages 1625–1628.
ACM.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating Non-local Information
into Information Extraction Systems by Gibbs Sam-
pling. In ACL ’05, pages 363–370. ACL.

Michael Fleischman and Eduard Hovy. 2002. Fine
Grained Classification of Named Entities. In COLING
’02, pages 1–7. ACL.

Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bordino,
Hagen Fürstenau, Manfred Pinkal, Marc Spaniol,
Bilyana Taneva, Stefan Thater, and Gerhard Weikum.
2011. Robust Disambiguation of Named Entities in
Text. In EMNLP ’11, pages 782–792. ACL.

Johannes Hoffart, Stephan Seufert, Dat Ba Nguyen, Mar-
tin Theobald, and Gerhard Weikum. 2012. KORE:
Keyphrase Overlap Relatedness for Entity Disam-
biguation. In CIKM ’12, pages 545–554. ACM.

Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich,
and Gerhard Weikum. 2013. YAGO2: A Spa-
tially and Temporally Enhanced Knowledge Base from
Wikipedia. Artificial Intelligence, 194:28–61.

Daphne Koller, Nir Friedman, Lise Getoor, and Benjamin
Taskar. 2007. Graphical Models in a Nutshell. In An
Introduction to Statistical Relational Learning. MIT
Press.

Sayali Kulkarni, Amit Singh, Ganesh Ramakrishnan, and
Soumen Chakrabarti. 2009. Collective Annotation of
Wikipedia Entities in Web Text. In KDD ’09, pages
457–466. ACM.

Xiao Ling and Daniel S. Weld. 2012. Fine-grained En-
tity Recognition. In AAAI ’12. AAAI Press.

Dong C. Liu and Jorge Nocedal. 1989. On the Limited
Memory BFGS Method for Large Scale Optimization.
Mathematical Programming, 45(3):503–528.

Bernardo Magnini and Gabriela Cavagli. 2000. Integrat-
ing Subject Field Codes into Wordnet. In Proceed-
ings of the International Conference on Language Re-
sources and Evaluation, LREC ’00, pages 1413–1418.
ELRA.

Andrew McCallum and Wei Li. 2003. Early Results for
Named Entity Recognition with Conditional Random

228

Fields, Feature Induction and Web-enhanced Lexi-
cons. In HLT-NAACL ’03, pages 188–191. ACL.

Edgar Meij, Wouter Weerkamp, and Maarten de Rijke.
2012. Adding Semantics to Microblog Posts. In
WSDM ’12, pages 563–572. ACM.

Pablo N. Mendes, Max Jakob, Andrés Garcı́a-Silva, and
Christian Bizer. 2011. Dbpedia Spotlight: Shedding
Light on the Web of Documents. In Proceedings of
the 7th International Conference on Semantic Systems,
I-SEMANTICS ’11, pages 1–8. ACM.

George A. Miller. 1995. WordNet: A Lexical Database
for English. Communications of the ACM, 38(11):39–
41.

David Milne and Ian H. Witten. 2008. Learning to Link
with Wikipedia. In CIKM ’08, pages 509–518. ACM.

David Milne and Ian H. Witten. 2013. An Open-source
Toolkit for Mining Wikipedia. Artificial Intelligence,
194:222–239.

Ndapandula Nakashole, Tomasz Tylenda, and Gerhard
Weikum. 2013. Fine-grained Semantic Typing of
Emerging Entities. In ACL ’13, pages 1488–1497.
ACL.

Dat Ba Nguyen, Johannes Hoffart, Martin Theobald,
and Gerhard Weikum. 2014. AIDA-light: High-
Throughput Named-Entity Disambiguation. In Pro-
ceedings of the Workshop on Linked Data on the Web,
LDOW ’14. CEUR-WS.org.

Alexandre Passos, Vineet Kumar, and Andrew McCal-
lum. 2014. Lexicon Infused Phrase Embeddings for
Named Entity Resolution. In CONLL ’14, pages 78–
86. ACL.

Altaf Rahman and Vincent Ng. 2010. Inducing Fine-
grained Semantic Classes via Hierarchical and Collec-
tive Classification. In COLING ’10, pages 931–939.
ACL.

Lev Ratinov and Dan Roth. 2009. Design Challenges
and Misconceptions in Named Entity Recognition. In
CONLL ’09, pages 147–155. ACL.

Lev Ratinov, Dan Roth, Doug Downey, and Mike An-
derson. 2011. Local and Global Algorithms for Dis-
ambiguation to Wikipedia. In HLT ’11, pages 1375–
1384. ACL.

Avirup Sil and Alexander Yates. 2013. Re-ranking
for Joint Named-Entity Recognition and Linking. In
CIKM ’13, pages 2369–2374. ACM.

Valentin I. Spitkovsky and Angel X. Chang. 2012. A
Cross-Lingual Dictionary for English Wikipedia Con-
cepts. In Proceedings of the International Conference
on Language Resources and Evaluation, LREC ’12.
ELRA.

Charles A. Sutton and Andrew McCallum. 2012. An
Introduction to Conditional Random Fields. Founda-
tions and Trends in Machine Learning, 4(4):267–373.

Ricardo Usbeck, Michael Röder, Axel-Cyrille Ngonga
Ngomo, Ciro Baron, Andreas Both, Martin Brümmer,
Diego Ceccarelli, Marco Cornolti, Didier Cherix,
Bernd Eickmann, Paolo Ferragina, Christiane Lemke,
Andrea Moro, Roberto Navigli, Francesco Piccinno,
Giuseppe Rizzo, Harald Sack, René Speck, Raphaël
Troncy, Jörg Waitelonis, and Lars Wesemann. 2015.
GERBIL – General Entity Annotation Benchmark
Framework. In WWW ’15. ACM.

Mohamed Amir Yosef, Sandro Bauer, Johannes Hoffart,
Marc Spaniol, and Gerhard Weikum. 2012. HYENA:
Hierarchical Type Classification for Entity Names. In
COLING ’12, pages 1361–1370. ACL.

229

230

