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Abstract

Little work from the Natural Language
Processing community has targeted the
role of quantities in Natural Language
Understanding. This paper takes some key
steps towards facilitating reasoning about
quantities expressed in natural language.
We investigate two different tasks of
numerical reasoning. First, we consider
Quantity Entailment, a new task formulated
to understand the role of quantities in
general textual inference tasks. Second,
we consider the problem of automatically
understanding and solving elementary school
math word problems. In order to address
these quantitative reasoning problems we first
develop a computational approach which we
show to successfully recognize and normalize
textual expressions of quantities. We then
use these capabilities to further develop
algorithms to assist reasoning in the context
of the aforementioned tasks.

1 Introduction

Every day, newspaper articles report statistics to
present an objective assessment of the situations
they describe. From election results, number of
casualties in accidents, to changes in stock prices,
textual representations of quantities are extremely
important in communicating accurate information.
However, relatively little work in Natural Language
Processing has analyzed the use of quantities in
text. Even in areas where we have relatively mature
solutions, like search, we fail to deal with quantities;
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for example, one cannot search the financial media
for “transactions in the 1-2 million pounds range.”
Language understanding often requires the ability
to reason with respect to quantities. Consider, for
example, the following textual inference, which we
present as Textual Entailment query. Recognizing
Textual Entailment (RTE) (Dagan et al.,, 2013)
has become a common way to formulate textual
inference and we follow this trend. RTE is the task
of determining whether the meaning of a given text
passage T entails that of a hypothesis H.
Example 1
T:A bomb in a Hebrew University cafeteria killed five
Americans and four Israelis.
H:A bombing at Hebrew University in Jerusalem
killed nine people, including five Americans.

Here, we need to identify the quantities “five
Americans” and “four Israelis”, as well as use the
fact that “Americans” and “Israelis” are “people”.

A different flavour of numeric reasoning is
required in math word problems. For example, in

Example 2

Ryan has 72 marbles and 17 blocks. If he shares the
marbles among 9 friends, how many marbles does
each friend get?

one has to determine the relevant quantities in
the question. Here, the number of blocks in Ryan’s
possession has no bearing on the answer. The second
challenge is to determine the relevant mathematical
operation from the context.

In this paper, we describe some key steps
necessary to facilitate reasoning about quantities in
natural language text. We first describe a system
developed to recognize quantities in free form text,
infer units associated with them and convert them to

Transactions of the Association for Computational Linguistics, vol. 3, pp. 1-13, 2015. Action Editors: Johan Bos, Lillian Lee.
Submission batch: 6/2014; Revision batch 9/2014; Published 1/2015. (©2015 Association for Computational Linguistics.



a standardized form. For example, in

Example 3

About six and a half hours later , Mr. Armstrong

opened the landing craft’s hatch.
we would like to extract the number 6.5, the
corresponding unit, “hour”, and also determine that
the quantity describes an approximate figure, not
an exact one. One of the difficulties is that any
noun or noun phrase can be a unit, and inferring
them requires analyzing contextual cues and local
sentence structure. As we show, in some cases
deeper NLP techniques are required to support that.

We then develop a reasoning framework for
quantities that we believe can play an important
role in general purpose textual inference. Isolating
the quantity reasoning component of the RTE task,
we define Quantity Entailment (QE) - the task
of determining whether a given quantity can be
inferred from a given text snippet, and then describe
our approach towards solving it. This allows us to
support the inference presented in Example 1.

As an additional evaluation, we also show the
effectiveness of our system on an application of QE,
a search for ranges of currency values. Given a query
range, say from 1 million USD to 3 million USD, we
want to find all mentions of money with values in
this range. Using standard search engine technology
to query all values in the range, in the various forms
they could be expressed, is not feasible. Instead,
we use our proposed approach to extract monetary
mentions from text and normalize them, and then we
use QE to verify them against the query.

We next develop a reasoning framework for
elementary school math word problems. Our
reasoner makes use of several classifiers to detect
different properties of a word problem, and finally
combines the decisions of individual classifiers to
obtain the correct answer.

We develop and annotate datasets' for evaluation,
and show that our approach can handle the
aforementioned reasoning tasks quite well.

The next section presents some related work
on quantities and reasoning. We then formally
define a quantity and describe our knowledge

'The datasets are available for download at
http://cogcomp.cs.illinois.edu/page/resource_view/95.
The related software is available at
http://cogcomp.cs.illinois.edu/page/software_view/Quantifier.

representation. The following sections describe
quantities extraction and standardization. We next
present the formulation of Quantity Entailment,
and describe our reasoning framework for it. We
then describe our approach towards understanding
elementary school math problems, and conclude
with experimental evaluation.

2 Related Work

The importance of reasoning about quantities
has been recognized and studied from multiple
perspectives. Quantities have been recognized as an
important part of a textual entailment system (de
Marneffe et al., 2008; Maccartney and Manning,
2008; Garoufi, 2007; Sammons et al., 2010), and
(de Marneffe et al., 2008) claims that discrepancies
in numbers are a common source of contradictions
in natural language text. The authors describe a
corpus of real-life contradictory pairs from multiple
sources such as Wikipedia and Google News in
which they found that 29% of the contradictions
were due to numeric discrepancies. In addition, they
analyzed several Textual Entailment datasets (Dagan
et al., 2006) and found that numeric contradictions
constitute 8.8% of contradictory entailment pairs.
Quantitative reasoning has also been addressed
from the perspective of formal semantics. Montague
(Montague, 1973) investigates identity ambiguities
in sentences, e.g., whether “The temperature is
ninety but it is rising.” implies “ninety is rising”.
His solution suggests that “temperature” should be
treated as a concept, and “femperature is ninety”
asserts an attribute of temperature at a particular
instance of time, and not an attribute of the
concept “temperature”. Reasoning about quantities
often depends on reasoning about monotonicity.
The role of monotonicity in NL reasoning has
been described in (Barwise and Cooper, 1981).
The authors categorize noun phrases as upward or
downward monotonic, and also detect constructs
where monotonicity depends on context. The
large role of monotonicity in reasoning motivated
attempts to reason directly at the surface level
(Purdy, 1991), rather than converting first to logical
forms. Our approach advocates this direction too.
(Kuehne, 2004a) investigates the various cases
in which physical quantities are represented



in descriptions of physical processes. Later, in
(Kuehne, 2004b), a system to extract Qualitative
Process Theory (Forbus, 1984) representations
is implemented for a controlled subset of the
English language. Other works that are relevant to
quantities, such as work on the plural semantics of
noun phrases (Schwertel, 2003), were also done on
controlled English. While these approaches do not
scale to unrestricted English, they have influenced
the quantity representation that we use.

The importance of quantities has also been
recognized in some application areas. For example,
(Banerjee et al., 2009) investigates ranking of
search results involving quantities. In order to detect
quantities in text, they use a rule based system,
comprising 150 rules. However, the rules were
specific to the queries used, and do not extend well
to unrestricted English. In contrast, our system is
designed to detect any quantity mentioned in natural
language text, as well as infer the unit associated
with it. There has also been some work on quantities
in specific domains, such as the temporal domain,
the most significant being the TimeML project
(Pustejovsky et al., 2003; Saur et al., 2005; Pratt-
Hartmann, 2005; Do et al., 2012). The problem
of automatically solving math word problems has
also been investigated. Approaches range from using
rule-based methods (Bobrow, 1964; Lev et al., 2004;
Mukherjee and Garain, 2008) to recent template
matching techniques (Kushman et al., 2014) .

3 Representing Quantities

In general, quantity refers to anything which
is measurable. Our quantities representation is
influenced by the one proposed in (Forbus, 1984)
but we propose a simpler version of their Qualitative
Process theory:

Definition (Quantity-Value Representation) In
Quantity-Value Representation (QVR), a quantity is
represented as a triple (v, u, c), where constituents
in the triple correspond, respectively, to:

1. Value: a numeric value, range, or set of values
which measure the aspect, e.g. more than 500,
one or two, thousands, March 18, 1986. The
value can also be described via symbolic value
(e.g., “below the freezing point”). We do not
store surface forms explicitly, but convert them

to a set or range. For example, “more than 500”
is stored as the range (500, +00). Details of
these conversions are given in Section 4.2.

2. Units: a noun phrase that describes what the
value is associated with. e.g., inches, minutes,
bananas. The phrase “US soldiers” in the
phrase “Five US soldiers” is a unit.

3. Change: specifies how the parameter is
changing, e.g., increasing. This constituent
often serves as an indication of whether or not
the value is relative to another. For example,
“She will receive an [additional 50 cents per
hour]”, “The stock [increased 10 percent]”,
“Jim has [5 balls more] than Tim”.

4 Extraction of Quantities

In this section we describe the first component of our
approach, that of identifying quantities and units in
text and standardizing their representation. We use a
a two step approach to extract quantities from free
form text.

1. Segmentation This step takes raw text and
finds segments of contiguous text which
describe quantities.

2. Standardization Using the phrases extracted
in the previous step, we derive the QVR.

An overview of our method is given in Algorithm 1.

Algorithm 1 QuantityExtraction( T )
Input: Text T
Output: Set of Quantity-value triples extracted
from T
: Q — 0
: S < Segmentation( T )
: for all segment s € S do
q < Standardization( s )
if unit of ¢ not inferred then
q < InferUnitFromSemantics( ¢, s, T )
end if
Q+ QU {q}
end for
return ()
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We model the segmentation step as a sequence
segmentation task because quantities often appear



as segments of contiguous text. We adapt and
compare two approaches that were found successful
in previous sequential segmentation work in NLP:

1. A Semi-CRF model (Sarawagi and Cohen,
2004), trained using a structured Perceptron
algorithm (Collins, 2002), with Parameter
Averaging (Freund and Schapire, 1998).

2. A bank of classifiers approach (Punyakanok
and Roth, 2001) that we retrain with a new set
of features.

The same feature set was used for both
approaches. Despite the additional expressive power
of CRFs, we found that the bank of classifiers
(which is followed by a simple and tractable
inference step) performs better for our task, and also
requires significantly less computation time.

4.1 Features

For each token z; in the input sequence we extract
the following features:

1. Word class features: x; appears in a list
of known scientific units (e.g., meters,
Fahrenheit), written numbers (e.g., two,
fifteen), names of a months, day of the week,
miscellaneous temporal words (e.g. today,
tomorrow), currency units, etc.

2. Character-based: x; contains a digit, is all
digits, has a suffix (st,nd,rd,th).

3. Part of speech tags: we use the Illinois POS
Tagger (Roth and Zelenko, 1998).

4. Most of the features were generated from a
window of [—3,3] around the current word.
Additional features were generated from these
by conjoining them with offset values from the
current word.

4.2 Mapping Text Segments into QVR

We develop a rule-based standardization step, that
is informed, as needed, by deeper NL processing,
including semantic role labeling (SRL, (Palmer et
al., 2010)) and Co-reference resolution. Some key
steps of this procedure are as follows:

1. Convert written numbers to floating point: e.g.,
three thousand five hundred twenty — 3520.0

2. Convert dates to an internal date type: e.g.,
March 18th — Date(03/18/XXXX)

3. Replace known names for ranges: e.g., teenage
— [13, 19] years-old.

4. Convert all scientific units to a standard base
unit: e.g., 1 mile — 1609.344 meters.

5. Replace non-scientific units with WordNet
synsets

6. Rewrite known units to a standard unit: e.g.,
USD, USS, dollars — US$.

7. Standardize = changing  quantity:
“additional 10 books” — +10 [book].

e.g.,

8. Extract bounds: we use a list of phrases, such as
“more than”, “less than”, “roughly”, “nearly”.
By default, if a bound keyword is not present

we assume the bound is “=".

9. Modify value using bounds : We convert values
which have a bound to a range of values.

Scalar implicature is taken into consideration
here. Consider the sentence “John bought 10
books.”, although it can be interpreted that
buying 5 books is a corollary of buying 10,
in this case, we make the assumption that 5
books were not purchased. See section 5.2 for
a discussion on the subject.

We use the following rules, where v is the value
extracted before using bound information.

o < v — (—o0,v], similarly for >, <, >.
e =v— {v}
o ~ v — [v—cw,v+ co], weuse c = 0.2.

4.3 Extraction of Units

In most cases, the units related to the numeric
values appear adjacent to them. For example, in
the sentence “There are two books on the table”,
the unit “book” follows “two”. The sequence
segmentation groups these words together, from
which it is easy to extract the unit. However, in some
cases, a better understanding of the text is needed to
infer the units. Consider the following example:



Example 4
A report from UNAIDS, the Joint United Nations
Program on HIV/AIDS, released on Tuesday, shows
the number of adults and children with HIV/AIDS
reached 39.4 million in 2004.
Here, we need to know that “39.4 million”
refers to “the number of adults and children with
HIV/AIDS”. Also, in:
Example 5
The number of member nations was 80 in 2000, and
then it increased to 95.
we need to know that the pronoun “it” refers to “the
number of member nations”.

We employ a sequential process in our
standardization. In case the first step described
above fails to extract units, we make use of deeper
processing of the sentence to accomplish that (see
an evaluation of the contribution of this in the
experimental section). These steps are denoted
by the function InferUnitFromSemantics() in
Algorithm 1. We apply coreference resolution
to identify pronoun referents and then apply a
Semantic Role Labeler, to recognize which terms
are associated with the quantity, and can be potential
units. In the case of example 4, the SRL tells us that
for the verb “reached”, the associated subject is
“the number of adults and children with HIV/AIDS”
and the object is the mention “39.4 million”. Hence,
we conclude that the subject can be a candidate
for the unit of “39.4 million”. For the purpose of
entailment, we keep the entire set of possible word
chunks, which are linked by the SRL to our quantity
mention, as candidate units.

Since most units are found in positions adjacent
to the numeric mention, we optimize on runtime
by applying the SRL and coreference resolver
only when the segmented chunk does not have
adequate information to infer the unit. We use
the Illinois Coreference Resolver (Bengtson and
Roth, 2008; Chang et al., 2013) and the Illinois
SRL (Punyakanok et al., 2008), for coreference and
semantic role labelling, respectively.

5 Quantity Entailment

In this section we describe our approach to
quantitative reasoning from natural language text.
We first formulate the task of Quantity Entailment,
and then describe our reasoning framework.

Definition (Quantity Entailment) Given a text
passage T and a Quantity-Value triple h(cp, v, up ),
Quantity Entailment is a 3-way decision problem:

1. entails: there exists a quantity in T which
entails h.

2. contradicts: no quantity in T entails h, but
there is a quantity in T which contradicts h.

3. no relation: there exists no quantity in T,
which is comparable with h.

The need to identify sub-problems of textual
inference, in the context of the RTE task, has been
motivated by (Sammons et al., 2010). Quantity
Entailment can be considered as one such step.
Since we envision that our QE module will be
one module in an RTE system, we expect that
the RTE system will provide it with some control
information. For example, it is often important to
know whether the quantity is mentioned in an
upward or downward monotonic context. Since we
are evaluating our QE approach in isolation, we
will always assume upward monotonicity, which
is a lot more common. Monotonicity has been
modeled with some success in entailment systems
(Maccartney and Manning, 2008), thus providing
a clear and intuitive framework for incorporating
an inference resource like the Quantity Entailment
module into a full textual entailment system.

5.1 Reasoning Framework

Our Quantity Entailment process has two phases:
Extraction and Reasoning. In the Extraction Phase,
we take a text passage T and extract Quantity-
Value triples (value, units, change) from it. In the
Reasoning phase, we apply a lightweight logical
inference procedure to the triples extracted from T
to check if h can be derived.

There are two types of rules applied in the
Reasoning phase: Implicit Quantity Productions and
Quantity Comparisons. The combination of these
rules provides good coverage for the QE task.

5.1.1 Quantity Comparison

Quantity Comparison compares a quantity ¢
(vg, ug, ¢) extracted from T and the quantity h :
(vn, up, cp) and decides whether h can be derived
via some truth preserving transformation of ¢. There



are three possibilities: (¢ entails h), (¢ contradicts
h), or (t has no relation with h). The overview
is given in Alg. 2, which is designed under our
assumption that entailing quantities should respect
upward monotonicity. This requires monotonicity
verification of both units and values.

In order for a quantity to contradict or
entail another, their units must be comparable.
Determining the comparability of scientific units
is direct since they form a closed set. Comparing
non-scientific units is more involved. The inference
rule used here is as follows: if the syntactic heads
of the unit phrases match (i.e., there is an Is-A
or synonymy relation in either direction), then
the phrases are comparable. These comparisons
are encoded as a function comparableUnits(u;,
uyp,), which returns true if the units u; and uy, are
comparable, or else returns false.

If the units are comparable, the direction of
monotonicity (i.e., the direction of the Is-A
relation between the heads and the effects of
any relevant modifiers) is verified. The function
checkMonotonicityOfUnits(u;, uy) returns true, if
uy is more specific than uy, false otherwise.

To compute the Is-A and synonymy relations
we use WordNet (Miller et al., 1990), an ontology
of words which contains these relations. We also
augment WordNet with two lists from Wikipedia
(specifically, lists of Nationalities and Jobs).

Next, we check whether the values of the
quantities compared obey the monotonicity
assumption; we say that v; is more specific than
vy, if vy 1s a subset of vy. (Note that v; and vy,
are both represented as sets and hence, checking
subset relation is straightforward.) For example,
“more than 50” C “at least 10”. This rule also
applies to dates, e.g. “03/18/1986” C “March
1986”. Respecting scalar implicature, we assume
that “5” is subset of “less than 10”, but not “10”.
Similar to the case of units, we use the function
checkMonotonicityOfValues(v;, v;) which returns
true, if v; is more specific than vy, and false
otherwise.

A quantity which represents some form of change
of a quantity cannot be derived from a quantity
which does not represent change and vice versa.
We set ¢; = true if ¢ denotes change in a quantity,
otherwise we set ¢; = false.

Algorithm 2 QuantityComparison( ¢, h )
Input: Quantity-value t(vg, ug, ct)
h(vh, Up Ch)
Output: Returns whether t entails, contradicts or
has no relation with h
if ¢; # ¢y, then
return no relation
end if
if comparableUnits( u, u;, )= false then
return no relation
end if
if checkMonotonicityOfUnits( u;, up )= true
then
8: if checkMonotonicityOfValues( vy, v, )=

triples and
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true then
0: return entails
10:  end if
11: end if

12: return contradicts

5.1.2 Implicit Quantity Production Rules

There are many relationships among quantities
which can be the source of implicit information.
The following is an incomplete, but relatively broad
coverage list of common patterns:

1. Range may imply duration, e.g., “John lived in
Miami from 1980 to 2000” implies that John
lived in Miami for a duration of 20 years.

2. Compatible terms may be combined and
abstracted. The sentence “I bought 3 bananas,
2 oranges, and 1 apple” implies that 6 fruits
were purchased.

3. Ratios can imply percentages. The sentence “9
out of the 10 dentists interviewed recommend
brushing your teeth” implies that 90% of the
dentists interviewed recommend brushing.

4. Composition: Quantities and units may
sometimes be composed. Consider the
following examples, the phrase “six Korean
couples” means that there are 12 people; the
phrase “John gave six 30-minute speeches”
implies that John spoke for 180 minutes.

The rules used for producing implicit quantities
employed in our system are the following:



e (a ratio b) if a is a percentage, then multiply
its value with the value of b to obtain a new
quantity with the units of b.

e (a ratio b) if a is not percentage, divide its
value with the value of b to obtain a new
quantity with the units of b.

e (a range b) take the difference of the two
values to obtain a new quantity with the
appropriate change of units, e.g., time-stamp
minus time-stamp results in units of time.

Algorithm 3 QuantityEntailment( T, )
Input: Text T and a quantity-value
h(vh, Up, Ch)
Output: Returns whether T entails, contradicts or
has no relation with h
@ < QuantityExtraction( T")
Q' <+ GenerateImplicitQuantities( @ )
Q+QuUY
contradict < false
for all quantity-value triple ¢ € () do
if QuantityComparison( g, h )= entails then
return entails
end if
if QuantityComparison( ¢, h )= contradicts
then
10: contradict«— true
11:  end if
12: end for
13: if contradict= true then
14:  return contradicts
15: else
16:  return no relation
17: end if

triples
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5.1.3 Lightweight Logical Inference

The QE inference procedure simply applies each
of the implicit quantity production rules to the
Quantity-Value triples extracted from the passage
T, until no more quantities are produced. Then it
compares each quantity ¢ extracted from T with the
quantity h, according to the quantity comparison
rules described in Algorithm 2. If any quantity in
T entails h, then “entails” is reported; if there is
no quantity in T which can explain A, but there
exists one which contradicts A, then “contradiction”

is reported; otherwise “no relation” is reported. The
complete approach to Quantity Entailment is given
in Algorithm 3.

5.2 Scope of QE Inference

Our current QE procedure 1is limited in
several ways. In all cases, we attribute these
limitations to subtle and deeper language
understanding, which we delegate to the application
module that will use our QE procedure as a
subroutine. Consider the following examples:

T : Adam has exactly 100 dollars in the bank.
H; : Adam has 50 dollars in the bank.
Hs : Adam’s bank balance is 50 dollars.

Here, T implies H; but not Hy. However for both
H; and H,, QE will infer that “50 dollars” is a
contradiction to sentence T, since it cannot make
the subtle distinction required here.

T : Ten students passed the exam, but six students
failed it.
H : At least eight students failed the exam.

Here again, QE will only output that T implies
“At least eight students”, despite the second part of
T'. QE reasons about the quantities, and there needs
to be an application specific module that understands
which quantity is related to the predicate “failed”.

There also exists limitations regarding inferences
with respect to events that could occur over a period
of time. In “It was raining from 5 pm to 7 pm” one
needs to infer that “It was raining at 6 pm” although
“6 pm” is more specific than “5 pmto 7 pm”. There
is a need to understand the role of associated verbs
and entities, and the monotonicity of the passages to
infer the global entailment decision. Some aspects of
this problem is handled in the math word problems
in Section 6, but there is still a need to formalize
the role of associated predicates and its associations
with quantities in natural language.

6 Solving Math Word Problems

In this section, we describe our approach towards
automatically understanding and solving elementary
school math word problems. We considered word
problems having the following properties:

1. The question mentions two or three quantities.

2. The answer can be computed by choosing



two quantities from the question and applying
one of the four basic operations (addition,
subtraction, multiplication, division) on them.

We use a cascade of classifiers approach for this
problem. We develop the following three classifiers
to detect different properties of the word problem.

1. Quantity Pair Classifier This classifier is
relevant only for problems mentioning three
quantities in the question text. The input to
the classifier is the text of the question @
of the problem, and the quantities qi, g3, g3
extracted from the question (). The output
is the relevant pair of quantities, that is, the
pair of quantities required to get the answer,
denoted as (g;, gj). The inference problem can
be written as follows:

(41,05) - arg ma waybap(Q, p)

where P = {(q1,42), (92, 43), (43, 1) }» dgp (")
is a feature function, and wg, is a learned

weight vector.

2. Operation Classifier This classifier takes as
input the question () of the problem, and
the relevant quantity pair (¢;, ¢;) (decided by
Quantity Pair Classifier in case of questions
with three quantities), and outputs which of the
four operations is required for the problem. The
inference in this case is

op <— arg (I)Ip}gg U)Zpr¢opr<Q7 (QH qj)7 Op)

where O = {+, —, X, /}.

3. Order Classifier This classifier is relevant
only for problems which require subtraction
or division. It takes as input the question @)
of the problem, the relevant pair of quantities
(¢i, q;) and the operation op being performed,
and decides the most likely order of quantities
in the operation, that is, whether we should
perform (g; op g;) or (g; op ¢;). The inference
can be written as

(¢i,q}) + arg max W bor(Q, (¢, 45), 0p, D)

where P = {(gi,q;), (¢, 4)}

Algorithm 4 SolveWordProblem( () )
Input: Text of question )
Output: Returns answer to question ()
1: (q1,q2,q3) < QuantityExtraction( Q)
: (¢, q;) < QuantityPairClassifier(Q)
3: op < OperationClassifier(Q,(g:, g;))
: (¢}, qj) < OrderClassifier(Q,(gi, ¢;),0p)
: return (g; op q)

[\
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The inference procedure is given in Algorithm
4. For our classifiers, we use a sparse averaged
perceptron implemented with the SNOW framework
(Carlson et al., 1999). Each classifier is trained
on gold annotations for that particular task. The
features used are as follows:

1. Unigrams and bigrams from sentences

containing quantities.
2. POS tags from sentences with quantities.

3. Relevant pair of quantities, and whether their
units match and whether their units are present
in the last sentence of the question.

4. Relevant operation for the problem (for
Operation and Order classifiers)

5. Relevant order of quantities for the operation
(for Order classifier).

6. Various conjunctions of the above features.

7 Experimental Study

In this section, we seek to validate our proposed
modeling. We evaluate our system’s performance
on four tasks: Quantity Segmentation, Quantity
Entailment, Currency Range Search, and Answering
Math Word Problems. We do not directly evaluate
our system’s ability to map raw text segments
into our representation, but instead evaluate this
capability extrinsically, in the context of the
aforementioned tasks, since good Standardization is
necessary to perform quantitative inference.

7.1 Datasets

QE: Due to lack of related work, an adequately
annotated corpus does not exist. Thus, in order to
evaluate our system, we used two collections:



1. Sub-corpus of the RTE Datasets (Dagan
et al., 2006) We choose text-hypothesis
pairs from RTE2-RTE4 datasets, which have
quantity mentions in the hypothesis. Overall,
we selected 384 text-hypothesis pairs with
quantities in the hypothesis.

2. Newswire Text 600 sentences of newswire text
were selected, all containing quantity mentions.

Both these datasets were manually annotated
with the phrase boundaries of quantity mentions
and had an inter-annotator agreement of 0.91. We
restricted annotation to contiguous segments of text.
No instances of implicit quantities were annotated.
We also did not annotate these mentions with QVRs.

Limiting the annotations to contiguous spans
of text results in a few instances of quantities
which contain missing information, such as missing
or ambiguous units, and several range and ratio
relationships which were not annotated (e.g., we do
not annotate the range expressed in “‘from [5 million]
in [1995] to [6 million] in [1996]°, but do so in
“[from 5 million to 6 million]”).

In the RTE sub-corpus we also annotated
entailment pairs with information about which
quantities entail, in addition to the boundary
information. For each quantity in the hypothesis
we labeled it as either “entails”, “no relation”,
or “contradicts”, with an inter-annotator agreement
of 0.95. There were 309 entailing quantities, 71
contradicting quantities and 56 quantities which
were unrelated to the corresponding text. We
also maintained the information about general
entailment, that is, whether the hypothesis can be
explained by the text. An example of an annotated
RTE example is shown below.

Annotation Example for RTE sub-corpus

T:A bomb in a Hebrew University cafeteria killed
[five Americans] and [four Israelis].

H:A bombing at Hebrew University in Jerusalem
killed [nine people], including [five Americans].

“nine people” : entails

“five Americans” : entails

Global entailment decision : entails
Although we limit our scope to infer the

entailment decision for individual quantities
mentioned in hypothesis, we hope to see future
approaches use these individual decisions and

combine them appropriately to obtain the global
entailment decision.

Currency Search We developed a new dataset
for evaluating currency search. Queries of various
amounts of money like “1000$”, “USD 2 million”,
etc. were made on a search engine, and paragraphs
containing monetary mentions were taken from the
top search results. We collected 100 paragraphs
containing various mentions of monetary values, and
labeled them with the amount mentioned in them.
We restricted the denominations to US dollars. The
inter-annotator agreement was 0.98.

Math Word Problems We created a new dataset
with elementary math word problems. The problems
were collected from http://www.k5learning.com/
and http://www.dadsworksheets.com/. The list was
further pruned to keep problems with the properties
listed in section 6. We also manually removed
problems requiring background knowledge, for
example, “Roger reads 2 books each day. How
many books will he read in 3 weeks ?”, which
requires knowing that a week comprises 7 days.
Problems with rounding issues were also excluded.
For example, “Each basket can hold 9 apples. How
many baskets are required to hold 10 apples ?”.
Each problem was annotated with the operation
required to solve the problem, and the final answer.
Table 1 shows some statistics of our dataset.

#quantities Relevant Operation

i Add | Subtract [ Multiply| Divide
2 228 214 257 260
3 107 132 75 131

Table 1: Statistics of math word problems dataset

7.2 Quantity Segmentation

We evaluate the phrase boundary recognizer on
the annotated RTE and newswire datasets described
in the previous section, using the phrase-based
Fy score. We compare the accuracy and running
times of the Semi-CRF model (SC) (Sarawagi and
Cohen, 2004) and the bank of classifiers model
(C+D) (PR) (Punyakanok and Roth, 2001), using
10-fold cross-validation. Note that the standardizer
can often recover from mistakes made at the
segmentation level. Therefore, this performance
does not necessarily upper bound the performance



of the next step in our pipeline.

The segmentation we are aiming for does
not directly follow from syntactic structure of a
sentence. For example, in the sentence “ The
unemployment rate increased 10%”, we would like
to segment together “increased 10%”, since this
tells us that the quantity denotes a rise in value.
Also, in the sentence “Apple restores push email in
Germany, nearly two years after Motorola shut it
down” we would like to segment together “nearly
two years after” . We consider a quantity to be
correctly detected only when we have the exact
phrase that we want, otherwise we consider the
segment to be undetected.

Model P% | R% | Fg | Lrain| Test
Time | Time
Semi-CRF (SC) | 75.6 | 777 | 766 | 158 | 1.5
C+I (PR) 803 | 793 | 798 | 1.0 | 1.0

Table 2: 10-fold cross-validation results of segmentation
accuracy and time required for segmentation, the columns for
runtime have been normalized and expressed as ratios

Table 2 describes the segmentation accuracy, as
well as the ratio between the time taken by both
approaches. The bank of classifiers approach gives
slightly better accuracy than the semi-CRF model,
and is also significantly faster.

7.3 Quantity Entailment

We evaluate the complete Quantity Entailment
system, determining the overall loss due to the
segmentation, as well as the contribution of the
Coreference Resolver and SRL. We show the
performance of 4 systems.

1. GOLDSEG : Uses gold segmentation, and does
not use SRL and Coreference Resolver.

2. GOLDSEG+SEM : Uses gold segmentation,
and also uses SRL and Coreference Resolver
to infer units.

3. PREDSEG : Performs segmentation, and does
not use SRL and Coreference Resolver.

4. PREDSEG+SEM : Performs segmentation, and
uses SRL and Coreference Resolver.

The baseline is an exact string matching
algorithm. It answers “entails” if the quantity unit
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and value are present in the text, and answers
“contradicts” if only the unit matches and the
value does not. Otherwise, it returns “no relation”.
The results are shown in Table 3. Note that
exact match only supports 43.3% of the entailment
decisions. It is also evident that the deeper semantic
analysis using SRL and Coreference improves the
quantitative inference.

] Task | Sysem [ P% | R% | F% |
Baseline 100.0 | 43.3 | 60.5

GOLDSEG 98.5 88.0 | 92.9

Entailment +SEM 97.8 88.6 | 93.0

PREDSEG 94.9 762 | 84.5

+SEM 95.4 78.3 | 86.0

Baseline 16.6 48.5 | 24.8

GOLDSEG 61.6 929 | 74.2

Contradiction +SEM 64.3 91.5 | 755
PREDSEG 51.9 79.7 | 62.8

+SEM 52.8 81.1 | 64.0

Baseline 41.8 719 | 529

GOLDSEG 81.1 76.7 | 78.8

No Relation +SEM 80.0 78.5 | 79.3

PREDSEG 54.0 754 | 629

+SEM 56.3 72.7 | 63.5

Table 3: Results of QE; Adding Semantics(+SEM)

consistently improves performance; Only 43.3% of entailing
quantities can be recovered by simple string matching

7.4 Currency Range Search

Table 4 shows the performance of our system
in detecting currency phrases. We evaluate our
system on the proportion of monetary mentions it
recognized and standardized correctly from queried
ranges of currency values, and report micro-
averaged scores. Note that range search is a direct
application of QE, where the quantity is a range of
values, and the text is the corpus we want to search.
All instances of “entails” correspond to search
hits. The baseline here is also a string matching
algorithm, which searches for numbers in the text.

System P% | R% | F%
Baseline 72.0 | 69.2 | 70.5
PREDSEG+SEM | 96.0 | 93.5 | 94.8

Table 4: Micro-averaged accuracy in detecting monetary
mentions



7.5 Elementary Math Word Problems

Table 5 shows the performance of individual
classifiers as well as the ability of our system to
answer correctly math word problems, using the
output of the classifiers. The results are reported
with respect to 2-fold cross-validation. The accuracy
of each classifier is based only on the relevant
examples for that particular classifier. For example,
Quantity Pair classifier is evaluated on problems
with three quantities in its question text, and
Order classifier is evaluated on problems concerning
subtraction or division. Correct Answer denotes the
end to end system, which outputs the answer, after
receiving as input the question text of the problem.

Module Accuracy
Quantity Pair 94.3
Operation 91.8
Order 95.9
Correct Answer 86.9

Table 5: 2-fold cross-validation results of math word problem
understanding. Correct Answer indicates performance of end to
end system, others represent individual classifier performance

We find that the individual classifiers have high
accuracy, and hence our system performs well on the
end to end task. A potential future direction can be
to propagate the uncertainty in each classifier, which
might further improve performance of the system.

7.6 Qualitative Analysis

The segmentation module made mistakes in
detecting exact boundaries for uncommon phrases,
e.g., “hundreds of thousands of people”, and “mid-
1970’s”. Detection of missing units is problematic
in cases like “Three eggs are better than two”.
The SRL returns “Three eggs” as a candidate
unit, which needs to be pruned appropriately to
obtain the correct unit. The primary limitation of
the reasoning system in both tasks is the lack
of an extensive knowledge base. Wordnet based
synsets prove to be insufficient to infer whether units
are compatible. Also, there are certain reasoning
patterns and various implicit relations between
quantities which are not currently handled in the
system. For example, inferring from the sentence
“Militants in Rwanda killed an [average of 8,000
people per day] for [100 days]” that “around
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800,000 people were killed”. Also, implication of
ratios can be involved. For example, the sentence
“[One out of 100 participating students] will
get the award” implies that there were “100
participating students”, whereas “[9 out of 10
dentists ] recommend brushing” does not imply there
were 10 dentists. In case of word problems, our
system missed non-standard questioning patterns
with involved reasoning. For example, “Bryan has
50 skittles. Ben has 20 M&Ms. Who has more? How
many more does he have?”

8 Conclusion

We studied reasoning about quantities in natural
language text. We have identified and defined an
interesting and useful slice of the Textual Entailment
problem, the Quantity Entailment task, and studied
also quantitative reasoning problems that arise in
elementary math word problems.

Our ability to support quantitative reasoning
builds on a method we proposed for detecting and
normalizing quantities in unrestricted English text;
we developed a framework to remove variability
and ambiguity from unstructured text by mapping
it into a representation which makes reasoning
more tractable. Once quantities are mapped into
our representation we can support the reasoning
required by Quantity Entailment and elementary
school level math word problems. Our experiments
exhibit quite impressive performance on a range
of quantitative reasoning problems, including 87%
success on solving math word problems that are
targeted at elementary school kids.

Our future work will focus on alleviating some
of the limitations of the inference module described
in Section 5.2. We would also like to extend the
scope of reasoning to the case of partially-ordered
quantities, and focus on deeper semantic analysis to
handle more involved math word problems.
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