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Abstract

We present a novel representation, evaluation
measure, and supervised models for the task of
identifying the multiword expressions (MWEs)
in a sentence, resulting in a lexical seman-
tic segmentation. Our approach generalizes
a standard chunking representation to encode
MWEs containing gaps, thereby enabling effi-
cient sequence tagging algorithms for feature-
rich discriminative models. Experiments on a
new dataset of English web text offer the first
linguistically-driven evaluation of MWE iden-
tification with truly heterogeneous expression
types. Our statistical sequence model greatly
outperforms a lookup-based segmentation pro-
cedure, achieving nearly 60% F1 for MWE
identification.

1 Introduction

Language has a knack for defying expectations when
put under the microscope. For example, there is the
notion—sometimes referred to as compositionality—
that words will behave in predictable ways, with indi-
vidual meanings that combine to form complex mean-
ings according to general grammatical principles. Yet
language is awash with examples to the contrary:
in particular, idiomatic expressions such as awash
with NP, have a knack for VP-ing, to the contrary, and
defy expectations. Thanks to processes like metaphor
and grammaticalization, these are (to various degrees)
semantically opaque, structurally fossilized, and/or
statistically idiosyncratic. In other words, idiomatic
expressions may be exceptional in form, function,
or distribution. They are so diverse, so unruly, so

1. MW named entities: Prime Minister Tony Blair
2. MW compounds: hot air balloon, skinny dip
3. conventionally SW compounds: somewhere
4. verb-particle: pick up, dry out, take over, cut short
5. verb-preposition: refer to, depend on, look for
6. verb-noun(-preposition): pay attention (to)
7. support verb: make decisions, take pictures
8. other phrasal verb: put up with, get rid of
9. PP modifier: above board, at all, from time to time

10. coordinated phrase: cut and dry, more or less
11. connective: as well as, let alone, in spite of
12. semi-fixed VP: pick up where <one> left off
13. fixed phrase: scared to death, leave of absence
14. phatic: You’re welcome. Me neither!
15. proverb: Beggars can’t be choosers.

Figure 1: Some of the classes of idioms in English.
The examples included here contain multiple lexicalized
words—with the exception of those in (3), if the conven-
tional single-word (SW) spelling is used.

difficult to circumscribe, that entire theories of syn-
tax are predicated on the notion that constructions
with idiosyncratic form-meaning mappings (Fillmore
et al., 1988; Goldberg, 1995) or statistical properties
(Goldberg, 2006) offer crucial evidence about the
grammatical organization of language.

Here we focus on multiword expressions
(MWEs): lexicalized combinations of two or more
words that are exceptional enough to be considered
as single units in the lexicon. As figure 1 illus-
trates, MWEs occupy diverse syntactic and semantic
functions. Within MWEs, we distinguish (a) proper
names and (b) lexical idioms. The latter have proved
themselves a “pain in the neck for NLP” (Sag et al.,
2002). Automatic and efficient detection of MWEs,
though far from solved, would have diverse appli-

193

Transactions of the Association for Computational Linguistics, 2 (2014) 193–206. Action Editor: Joakim Nivre.
Submitted 12/2013; Revised 1/2014; Published 4/2014. c©2014 Association for Computational Linguistics.



cations including machine translation (Carpuat and
Diab, 2010), information retrieval (Newman et al.,
2012), opinion mining (Berend, 2011), and second
language learning (Ellis et al., 2008).

It is difficult to establish any comprehensive tax-
onomy of multiword idioms, let alone develop lin-
guistic criteria and corpus resources that cut across
these types. Consequently, the voluminous litera-
ture on MWEs in computational linguistics—see §7,
Baldwin and Kim (2010), and Ramisch (2012) for
surveys—has been fragmented, looking (for exam-
ple) at subclasses of phrasal verbs or nominal com-
pounds in isolation. To the extent that MWEs have
been annotated in existing corpora, it has usually
been as a secondary aspect of some other scheme.
Traditionally, such resources have prioritized certain
kinds of MWEs to the exclusion of others, so they
are not appropriate for evaluating general-purpose
identification systems.

In this article, we briefly review a shallow form
of analysis for MWEs that is neutral to expression
type, and that facilitates free text annotation with-
out requiring a prespecified MWE lexicon (§2). The
scheme applies to gappy (discontinuous) as well as
contiguous expressions, and allows for a qualitative
distinction of association strengths. In Schneider
et al. (2014) we have applied this scheme to fully an-
notate a 55,000-word corpus of English web reviews
(Bies et al., 2012a), a conversational genre in which
colloquial idioms are highly salient. This article’s
main contribution is to show that the representation—
constrained according to linguistically motivated as-
sumptions (§3)—can be transformed into a sequence
tagging scheme that resembles standard approaches
in named entity recognition and other text chunking
tasks (§4). Along these lines, we develop a discrim-
inative, structured model of MWEs in context (§5)
and train, evaluate, and examine it on the annotated
corpus (§6). Finally, in §7 and §8 we comment on
related work and future directions.

2 Annotated Corpus

To build and evaluate a multiword expression ana-
lyzer, we use the MWE-annotated corpus of Schnei-
der et al. (2014). It consists of informal English web
text that has been specifically and completely anno-
tated for MWEs, without reference to any particular

lexicon. To the best of our knowledge, this corpus
is the first to be freely annotated for many kinds of
MWEs (without reference to a lexicon), and is also
the first dataset of social media text with MWE an-
notations beyond named entities. This section gives
a synopsis of the annotation conventions used to de-
velop that resource, as they are important to under-
standing our models and evaluation.

Rationale. The multiword expressions community
has lacked a canonical corpus resource comparable
to benchmark datasets used for problems such as
NER and parsing. Consequently, the MWE litera-
ture has been driven by lexicography: typically, the
goal is to acquire an MWE lexicon with little or no
supervision, or to apply such a lexicon to corpus
data. Studies of MWEs in context have focused on
various subclasses of constructions in isolation, ne-
cessitating special-purpose datasets and evaluation
schemes. By contrast, Schneider et al.’s (2014) cor-
pus creates an opportunity to tackle general-purpose
MWE identification, such as would be desirable for
use by high-coverage downstream NLP systems. It is
used to train and evaluate our models below. The cor-
pus is publicly available as a benchmark for further
research.1

Data. The documents in the corpus are online user
reviews of restaurants, medical providers, retailers,
automotive services, pet care services, etc. Marked
by conversational and opinionated language, this
genre is fertile ground for colloquial idioms (Nunberg
et al., 1994; Moon, 1998). The 723 reviews (55,000
words, 3,800 sentences) in the English Web Tree-
bank (WTB; Bies et al., 2012b) were collected by
Google, tokenized, and annotated with phrase struc-
ture trees in the style of the Penn Treebank (Marcus
et al., 1993). MWE annotators used the sentence and
word tokenizations supplied by the treebank.2

Annotation scheme. The annotation scheme itself
was designed to be as simple as possible. It consists
of grouping together the tokens in each sentence that
belong to the same MWE instance. While annotation
guidelines provide examples of MWE groupings in
a wide range of constructions, the annotator is not

1http://www.ark.cs.cmu.edu/LexSem/
2Because we use treebank data, syntactic parses are available

to assist in post hoc analysis. Syntactic information was not
shown to annotators.
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# of constituent tokens
2 3 ≥4 total

strong 2257 595 172 3024
weak 269 121 69 459

2526 716 241 3483

# of gaps
0 1 2

2626 394 4
322 135 2

2948 529 6

Table 1: Counts in the MWE corpus.

tied to any particular taxonomy or syntactic structure.
This simplifies the number of decisions that have to
be made for each sentence, even if some are difficult.

Further instructions to annotators included:
• Groups should include only the lexically fixed parts

of an expression (modulo inflectional morphology);
this generally excludes determiners and pronouns:
made the mistake, pride themselves on.

• Multiword proper names count as MWEs.
• Misspelled or unconventionally spelled tokens are

interpreted according to the intended word if clear.
• Overtokenized words (spelled as two tokens, but

conventionally one word) are joined as multiwords.
Clitics separated by the tokenization in the corpus—
negative n’t, possessive ’s, etc.—are joined if func-
tioning as a fixed part of a multiword (e.g., T ’s
Cafe), but not if used productively.
Gaps. There are, broadly speaking, three reasons

to group together tokens that are not fully contigu-
ous. Most commonly, gaps contain internal modifiers,
such as good in make good decisions. Syntactic con-
structions such as the passive can result in gaps that
might not otherwise be present: in good decisions
were made, there is instead a gap filled by the pas-
sive auxiliary. Finally, some MWEs may take internal
arguments: they gave me a break. Figure 1 has addi-
tional examples. Multiple gaps can occur even within
the same expression, though it is rare: they agreed to
give Bob a well-deserved break.

Strength. The annotation scheme has two
“strength” levels for MWEs. Clearly idiomatic ex-
pressions are marked as strong MWEs, while mostly
compositional but especially frequent collocations/
phrases (e.g., abundantly clear and patently obvious)
are marked as weak MWEs. Weak multiword groups
are allowed to include strong MWEs as constituents
(but not vice versa). Strong groups are required to
cohere when used inside weak groups: that is, a weak
group cannot include only part of a strong group.
For purposes of annotation, there were no constraints

hinging on the ordering of tokens in the sentence.

Process. MWE annotation proceeded one sentence
at a time. The 6 annotators referred to and improved
the guidelines document on an ongoing basis. Every
sentence was seen independently by at least 2 an-
notators, and differences of opinion were discussed
and resolved (often by marking a weak MWE as a
compromise). See Schneider et al. (2014) for details.

Statistics. The annotated corpus consists of 723
documents (3,812 sentences). MWEs are frequent
in this domain: 57% of sentences (72% of sentences
over 10 words long) and 88% of documents contain
at least one MWE. 8,060/55,579=15% of tokens
belong to an MWE; in total, there are 3,483 MWE
instances. 544 (16%) are strong MWEs containing a
gold-tagged proper noun—most are proper names. A
breakdown appears in table 1.

3 Representation and Task Definition

We define a lexical segmentation of a sentence as a
partitioning of its tokens into segments such that each
segment represents a single unit of lexical meaning.
A multiword lexical expression may contain gaps,
i.e. interruptions by other segments. We impose two
restrictions on gaps that appear to be well-motivated
linguistically:
• Projectivity: Every expression filling a gap must

be completely contained within that gap; gappy
expressions may not interleave.

• No nested gaps: A gap in an expression may be
filled by other single- or multiword expressions, so
long as those do not themselves contain gaps.

Formal grammar. Our scheme corresponds to the
following extended CFG (Thatcher, 1967), where S
is the full sentence and terminals w are word tokens:

S → X+
X → w+ (Y+ w+)∗
Y → w+

Each expression X or Y is lexicalized by the words in
one or more underlined variables on the right-hand
side. An X constituent may optionally contain one or
more gaps filled by Y constituents, which must not
contain gaps themselves.3

3MWEs with multiple gaps are rare but attested in data: e.g.,
putting me at my ease. We encountered one violation of the gap
nesting constraint in the reviews data: I have2

1 nothing2
1 but21

fantastic things2 to2
1 say2

1 . Additionally, the interrupted phrase
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Denoting multiword groupings with subscripts, My
wife had taken1 her ’072 Ford2 Fusion2 in1 for a
routine oil3 change3 contains 3 multiword groups—{taken, in}, {’07, Ford, Fusion}, {oil, change}—and
7 single-word groups. The first MWE is gappy (ac-
centuated by the box); a single word and a contiguous
multiword group fall within the gap. The projectivity
constraint forbids an analysis like taken1 her ’072
Ford1 Fusion2, while the gap nesting constraint for-

bids taken1 her2 ’07 Ford2 Fusion2 in1.

3.1 Two-level Scheme: Strong vs. Weak MWEs

Our annotated data distinguish two strengths of
MWEs as discussed in §2. Augmenting the gram-
mar of the previous section, we therefore designate
nonterminals as strong (X , Y ) or weak (X̃ , Ỹ ):

S → X̃+
X̃ → X

+ (Ỹ+ X
+)∗

X → w+ (Ỹ+ w+)∗
Ỹ → Y

+
Y → w+

A weak MWE may be lexicalized by single words
and/or strong multiwords. Strong multiwords cannot
contain weak multiwords except in gaps. Further, the
contents of a gap cannot be part of any multiword
that extends outside the gap.4

For example, consider the segmentation: he was
willing to budge1 a2 little2 on1 the price which
means4 a4

3 lot43 to4 me4. Subscripts denote strong
MW groups and superscripts weak MW groups; un-
marked tokens serve as single-word expressions. The
MW groups are thus {budge, on}, {a, little}, {a, lot},
and {means, {a, lot}, to, me}. As should be evident
from the grammar, the projectivity and gap-nesting
constraints apply here just as in the 1-level scheme.

3.2 Evaluation

Matching criteria. Given that most tokens do not
belong to an MWE, to evaluate MWE identification
we adopt a precision/recall-based measure from the
coreference resolution literature. The MUC criterion
(Vilain et al., 1995) measures precision and recall

great gateways never1 before1 , so2
3 far2

3 as2
3 Hudson knew2 ,

seen1 by Europeans was annotated in another corpus.
4This was violated 6 times in our annotated data: modifiers

within gaps are sometimes collocated with the gappy expression,
as in on1

2 a1
2 tight1 budget12 and have1

2 little1 doubt12.

of links in terms of groups (units) implied by the
transitive closure over those links.5 It can be defined
as follows:

Let a Ð b denote a link between two elements
in the gold standard, and aÐ̂b denote a link in the
system prediction. Let the ∗ operator denote the tran-
sitive closure over all links, such that ⟦aÐ∗b⟧ is 1 if
a and b belong to the same (gold) set, and 0 other-
wise. Assuming there are no redundant6 links within
any annotation (which in our case is guaranteed by
linking consecutive words in each MWE), we can
write the MUC precision and recall measures as:

P = ∑a,b∶aÐ̂b ⟦aÐ∗b⟧
∑a,b∶aÐ̂b 1

R = ∑a,b∶aÐb ⟦aÐ̂∗b⟧
∑a,b∶aÐb 1

This awards partial credit when predicted and gold
expressions overlap in part. Requiring full MWEs to
match exactly would arguably be too stringent, over-
penalizing larger MWEs for minor disagreements.
We combine precision and recall using the standard
F1 measure of their harmonic mean. This is the link-
based evaluation used for most of our experiments.
For comparison, we also report some results with
a more stringent exact match evaluation where the
span of the predicted MWE must be identical to the
span of the gold MWE for it to count as correct.
Strength averaging. Recall that the 2-level
scheme (§3.1) distinguishes strong vs. weak links/
groups, where the latter category applies to reason-
ably compositional collocations as well as ambigu-
ous or difficult cases. If where one annotation uses
a weak link the other has a strong link or no link at
all, we want to penalize the disagreement less than
if one had a strong link and the other had no link.
To accommodate the 2-level scheme, we therefore
average F↑1 , in which all weak links have been con-
verted to strong links, and F↓1 , in which they have
been removed: F1 = 1

2(F↑1 +F↓1 ).7 If neither annota-
tion contains any weak links, this equals the MUC

5As a criterion for coreference resolution, the MUC measure
has perceived shortcomings which have prompted several other
measures (see Recasens and Hovy, 2011 for a review). It is not
clear, however, whether any of these criticisms are relevant to
MWE identification.

6A link between a and b is redundant if the other links already
imply that a and b belong to the same set. A set of N elements is
expressed non-redundantly with exactly N −1 links.

7Overall precision and recall are likewise computed by aver-
aging “strengthened” and “weakened” measurements.
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O

(O∣B(o∣b[ı̄ı̃]+∣[ĪĨ])∗[ĪĨ]+)+
Figure 2: Examples and regular expressions for the 4 tagging schemes. Strong links are depicted with solid arcs, and
weak links with dotted arcs. The bottom analysis was provided by an annotator; the ones above are simplifications.

score because F1 = F↑1 = F↓1 . This method applies
to both the link-based and exact match evaluation
criteria.

4 Tagging Schemes

Following (Ramshaw and Marcus, 1995), shallow an-
alysis is often modeled as a sequence-chunking task,
with tags containing chunk-positional information.
The BIO scheme and variants (e.g., BILOU; Ratinov
and Roth, 2009) are standard for tasks like named
entity recognition, supersense tagging, and shallow
parsing.

The language of derivations licensed by the gram-
mars in §3 allows for a tag-based encoding of MWE
analyses with only bigram constraints. We describe
4 tagging schemes for MWE identification, starting
with BIO and working up to more expressive variants.
They are depicted in figure 2.
No gaps, 1-level (3 tags). This is the standard con-
tiguous chunking representation from Ramshaw and
Marcus (1995) using the tags {O B I}. O is for to-
kens outside any chunk; B marks tokens beginning
a chunk; and I marks other tokens inside a chunk.
Multiword chunks will thus start with B and then I.
B must always be followed by I; I is not allowed at
the beginning of the sentence or following O.
No gaps, 2-level (4 tags). We can distinguish
strength levels by splitting I into two tags: Ī for
strong expressions and Ĩ for weak expressions. To
express strong and weak contiguous chunks requires
4 tags: {O B Ī Ĩ}. (Marking B with a strength as well
would be redundant because MWEs are never length-
one chunks.) The constraints on Ī and Ĩ are the same
as the constraints on I in previous schemes. If Ī and

Ĩ occur next to each other, the strong attachment will
receive higher precedence, resulting in analysis of
strong MWEs as nested within weak MWEs.

Gappy, 1-level (6 tags). Because gaps cannot
themselves contain gappy expressions (we do not
support full recursivity), a finite number of additional
tags are sufficient to encode gappy chunks. We there-
fore add lowercase tag variants representing tokens
within a gap: {O o B b I i}. In addition to the con-
straints stated above, no within-gap tag may occur at
the beginning or end of the sentence or immediately
following or preceding O. Within a gap, b, i, and o
behave like their out-of-gap counterparts.

Gappy, 2-level (8 tags). 8 tags are required to en-
code the 2-level scheme with gaps: {O o B b Ī ı̄ Ĩ ı̃}.
Variants of the inside tag are marked for strength of
the incoming link—this applies gap-externally (capi-
talized tags) and gap-internally (lowercase tags). If Ī
or Ĩ immediately follows a gap, its diacritic reflects
the strength of the gappy expression, not the gap’s
contents.

5 Model

With the above representations we model MWE iden-
tification as sequence tagging, one of the paradigms
that has been used previously for identifying con-
tiguous MWEs (Constant and Sigogne, 2011, see
§7).8 Constraints on legal tag bigrams are sufficient
to ensure the full tagging is well-formed subject to
the regular expressions in figure 2; we enforce these

8Hierarchical modeling based on our representations is left
to future work.
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constraints in our experiments.9

In NLP, conditional random fields (Lafferty et al.,
2001) and the structured perceptron (Collins, 2002)
are popular techniques for discriminative sequence
modeling with a convex loss function. We choose
the second approach for its speed: learning and in-
ference depend mainly on the runtime of the Viterbi
algorithm, whose asymptotic complexity is linear in
the length of the input and (with a first-order Markov
assumption) quadratic in the number of tags. Below,
we review the structured perceptron and discuss our
cost function, features, and experimental setup.

5.1 Cost-Augmented Structured Perceptron
The structured perceptron’s (Collins, 2002) learn-
ing procedure, algorithm 1, generalizes the classic
perceptron algorithm (Freund and Schapire, 1999) to
incorporate a structured decoding step (for sequences,
the Viterbi algorithm) in the inner loop. Thus, train-
ing requires only max inference, which is fast with a
first-order Markov assumption. In training, features
are adjusted where a tagging error is made; the pro-
cedure can be viewed as optimizing the structured
hinge loss. The output of learning is a weight vector
that parametrizes a feature-rich scoring function over
candidate labelings of a sequence.

To better align the learning algorithm with our
F-score–based MWE evaluation (§3.2), we use a
cost-augmented version of the structured perceptron
that is sensitive to different kinds of errors during
training. When recall is the bigger obstacle, we can
adopt the following cost function: given a sentence
x, its gold labeling y∗, and a candidate labeling y′,

cost(y∗,y′,x) = ∣y∗∣∑
j=1

c(y∗j ,y′j) where

c(y∗,y′) = ⟦y∗ ≠ y′⟧+ρ⟦y∗ ∈ {B,b}∧y′ ∈ {O,o}⟧
A single nonnegative hyperparameter, ρ , controls
the tradeoff between recall and accuracy; higher ρ
biases the model in favor of recall (possibly hurt-
ing accuracy and precision). This is a slight variant
of the recall-oriented cost function of Mohit et al.
(2012). The difference is that we only penalize
beginning-of-expression recall errors. Preliminary

9The 8-tag scheme licenses 42 tag bigrams: sequences such
as B O and o ı̄ are prohibited. There are also constraints on the
allowed tags at the beginning and end of the sequence.

Input: data ⟨⟨x(n),y(n)⟩⟩N

n=1; number of iterations M
w← 0
w← 0
t ← 1
for m = 1 to M do

for n = 1 to N do⟨x,y⟩← ⟨x(n),y(n)⟩
ŷ← argmaxy′ (w⊺g(x,y′)+cost(y,y′,x))
if ŷ ≠ y then

w←w+g(x,y)−g(x, ŷ)
w←w+ tg(x,y)− tg(x, ŷ)

end
t ← t +1

end
end
Output: w−(w/t)

Algorithm 1: Training with the averaged perceptron.
(Adapted from Daumé, 2006, p. 19.)

experiments showed that a cost function penalizing
all recall errors—i.e., with ρ⟦y∗ ≠ O∧y′ = O⟧ as the
second term, as in Mohit et al.—tended to append
additional tokens to high-confidence MWEs (such
as proper names) rather than encourage new MWEs,
which would require positing at least two new non-
outside tags.

5.2 Features
Basic features. These are largely based on those
of Constant et al. (2012): they look at word unigrams
and bigrams, character prefixes and suffixes, and POS
tags, as well as lexicon entries that match lemmas10

of multiple words in the sentence. Appendix A lists
the basic features in detail.

Some of the basic features make use of lexicons.
We use or construct 10 lists of English MWEs: all
multiword entries in WordNet (Fellbaum, 1998); all
multiword chunks in SemCor (Miller et al., 1993);
all multiword entries in English Wiktionary;11 the
WikiMwe dataset mined from English Wikipedia
(Hartmann et al., 2012); the SAID database of
phrasal lexical idioms (Kuiper et al., 2003); the
named entities and other MWEs in the WSJ corpus
on the English side of the CEDT (Hajič et al., 2012);

10The WordNet API in NLTK (Bird et al., 2009) was used for
lemmatization.

11http://en.wiktionary.org; data obtained from
https://toolserver.org/~enwikt/definitions/
enwikt-defs-20130814-en.tsv.gz
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LOOKUP SUPERVISED MODEL

preexising lexicons entries max gap
length

P R F1 σ P R F1 σ
none 0 74.39 44.43 55.57 2.19
WordNet + SemCor 71k 0 46.15 28.41 35.10 2.44 74.51 45.79 56.64 1.90
6 lexicons 420k 0 35.05 46.76 40.00 2.88 76.08 52.39 61.95 1.67
10 lexicons 437k 0 33.98 47.29 39.48 2.88 75.95 51.39 61.17 2.30

best configuration with
in-domain lexicon

1 46.66 47.90 47.18 2.31 76.64 51.91 61.84 1.65
2 lexicons + MWtypes(train)≥1 6 lexicons + MWtypes(train)≥2

Table 2: Use of lexicons for lookup-based vs. statistical segmentation. Supervised learning used only basic features
and the structured perceptron, with the 8-tag scheme. Results are with the link-based matching criterion for evaluation.
Top: Comparison of preexisting lexicons. “6 lexicons” refers to WordNet and SemCor plus SAID, WikiMwe, Phrases.net,
and English Wiktionary; “10 lexicons” adds MWEs from CEDT, VNC, LVC, and Oyz. (In these lookup-based
configurations, allowing gappy MWEs never helps performance.)
Bottom: Combining preexisting lexicons with a lexicon derived from MWEs annotated in the training portion of each
cross-validation fold at least once (lookup) or twice (model).
All precision, recall, and F1 percentages are averaged across 8 folds of cross-validation on train; standard deviations
are shown for the F1 score. In each column, the highest value using only preexisting lexicons is underlined, and the
highest overall value is bolded. The boxed row indicates the configuration used as the basis for subsequent experiments.

the verb-particle constructions (VPCs) dataset of
(Baldwin, 2008); a list of light verb constructions
(LVCs) provided by Claire Bonial; and two idioms
websites.12 After preprocessing, each lexical entry
consists of an ordered sequence of word lemmas,
some of which may be variables like <something>.

Given a sentence and one or more of the lexicons,
lookup proceeds as follows: we enumerate entries
whose lemma sequences match a sequence of lemma-
tized tokens, and build a lattice of possible analyses
over the sentence. We find the shortest path (i.e.,
using as few expressions as possible) with dynamic
programming, allowing gaps of up to length 2.13

Unsupervised word clusters. Distributional clus-
tering on large (unlabeled) corpora can produce lexi-
cal generalizations that are useful for syntactic and
semantic analysis tasks (e.g.: Miller et al., 2004; Koo
et al., 2008; Turian et al., 2010; Owoputi et al., 2013;
Grave et al., 2013). We were interested to see whether
a similar pattern would hold for MWE identification,
given that MWEs are concerned with what is lexi-
cally idiosyncratic—i.e., backing off from specific
lexemes to word classes may lose the MWE-relevant
information. Brown clustering14 (Brown et al., 1992)

12http://www.phrases.net/ and http://home.
postech.ac.kr/~oyz/doc/idiom.html

13Each top-level lexical expression (single- or multiword)
incurs a cost of 1; each expression within a gap has cost 1.25.

14With Liang’s (2005) implementation: https://github.
com/percyliang/brown-cluster. We obtain 1,000 clusters

on the 21-million-word Yelp Academic Dataset15

(which is similar in genre to the annotated web re-
views data) gives us a hard clustering of word types.
To our tagger, we add features mapping the previ-
ous, current, and next token to Brown cluster IDs.
The feature for the current token conjoins the word
lemma with the cluster ID.

Part-of-speech tags. We compared three PTB-
style POS taggers on the full REVIEWS subcor-
pus (train+test). The Stanford CoreNLP tagger16

(Toutanova et al., 2003) yields an accuracy of 90.4%.
The ARK TweetNLP tagger v. 0.3.2 (Owoputi et al.,
2013) achieves 90.1% with the model17 trained on the
Twitter corpus of Ritter et al. (2011), and 94.9% when
trained on the ANSWERS, EMAIL, NEWSGROUP, and
WEBLOG subcorpora of WTB. We use this third con-
figuration to produce automatic POS tags for training
and testing our MWE tagger. (A comparison condi-
tion in §6.3 uses oracle POS tags.)

5.3 Experimental Setup

The corpus of web reviews described in §2 is used
for training and evaluation. 101 arbitrarily chosen
documents (500 sentences, 7,171 words) were held

from words appearing at least 25 times.
15https://www.yelp.com/academic_dataset
16v. 3.2.0, with english-bidirectional-distsim
17http://www.ark.cs.cmu.edu/TweetNLP/model.

ritter_ptb_alldata_fixed.20130723
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LINK-BASED EXACT MATCH

configuration M ρ ∣w∣ P R F1 P R F1

base model 5 — 1,765k 69.27 50.49 58.35 60.99 48.27 53.85+ recall cost 4 150 1,765k 61.09 57.94 59.41 53.09 55.38 54.17+ clusters 3 100 2,146k 63.98 55.51 59.39 56.34 53.24 54.70+ oracle POS 4 100 2,145k 66.19 59.35 62.53 58.51 57.00 57.71

Table 3: Comparison of supervised models on test (using the 8-tag scheme). The base model corresponds to the boxed
result in table table 2, but here evaluated on test. For each configuration, the number of training iterations M and (except
for the base model) the recall-oriented hyperparameter ρ were tuned by cross-validation on train.

out as a final test set. This left 3,312 sentences/
48,408 words for training/development (train). Fea-
ture engineering and hyperparameter tuning were
conducted with 8-fold cross-validation on train. The
8-tag scheme is used except where otherwise noted.

In learning with the structured perceptron (algo-
rithm 1), we employ two well-known techniques that
can both be viewed as regularization. First, we use
the average of parameters over all timesteps of learn-
ing. Second, within each cross-validation fold, we de-
termine the number of training iterations (epochs) M
by early stopping—that is, after each iteration, we use
the model to decode the held-out data, and when that
accuracy ceases to improve, use the previous model.
The two hyperparameters are the number of iterations
and the value of the recall cost hyperparameter (ρ).
Both are tuned via cross-validation on train; we use
the multiple of 50 that maximizes average link-based
F1. The chosen values are shown in table 3. Experi-
ments were managed with the ducttape tool.18

6 Results

We experimentally address the following questions
to probe and justify our modeling approach.

6.1 Is supervised learning necessary?

Previous MWE identification studies have found
benefit to statistical learning over heuristic lexicon
lookup (Constant and Sigogne, 2011; Green et al.,
2012). Our first experiment tests whether this holds
for comprehensive MWE identification: it compares
our supervised tagging approach with baselines of
heuristic lookup on preexisting lexicons. The base-
lines construct a lattice for each sentence using the
same method as lexicon-based model features (§5.2).
If multiple lexicons are used, the union of their en-

18https://github.com/jhclark/ducttape/

tries is used to construct the lattice. The resulting
segmentation—which does not encode a strength
distinction—is evaluated against the gold standard.

Table 2 shows the results. Even with just the la-
beled training set as input, the supervised approach
beats the strongest heuristic baseline (that incorpo-
rates in-domain lexicon entries extracted from the
training data) by 30 precision points, while achieving
comparable recall. For example, the baseline (but not
the statistical model) incorrectly predicts an MWE in
places to eat in Baltimore (because eat in, meaning
‘eat at home,’ is listed in WordNet). The supervised
approach has learned not to trust WordNet too much
due to this sort of ambiguity. Downstream applica-
tions that currently use lexicon matching for MWE
identification (e.g., Ghoneim and Diab, 2013) likely
stand to benefit from our statistical approach.

6.2 How best to exploit MWE lexicons
(type-level information)?

For statistical tagging (right portion of table 2), using
more preexisting (out-of-domain) lexicons generally
improves recall; precision also improves a bit.

A lexicon of MWEs occurring in the non-held-out
training data at least twice19 (table 2, bottom right) is
marginally worse (better precision/worse recall) than
the best result using only preexisting lexicons.

6.3 Variations on the base model

We experiment with some of the modeling alterna-
tives discussed in §5. Results appear in table 3 under
both the link-based and exact match evaluation cri-
teria. We note that the exact match scores are (as
expected) several points lower.

19If we train with access to the full lexicon of training
set MWEs, the learner credulously overfits to relying on that
lexicon—after all, it has perfect coverage of the training data!—
which proves fatal for the model at test time.
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Recall-oriented cost. The recall-oriented cost
adds about 1 link-based F1 point, sacrificing precision
in favor of recall.
Unsupervised word clusters. When combined
with the recall-oriented cost, these produce a slight
improvement to precision/degradation to recall, im-
proving exact match F1 but not affecting link-based
F1. Only a few clusters receive high positive weight;
one of these consists of matter, joke, biggie, pun,
avail, clue, corkage, frills, worries, etc. These words
are diverse semantically, but all occur in collocations
with no, which is what makes the cluster coherent
and useful to the MWE model.
Oracle part-of-speech tags. Using human-
annotated rather than automatic POS tags improves
MWE identification by about 3 F1 points on test
(similar differences were observed in development).

6.4 What are the highest-weighted features?
An advantage of the linear modeling framework is
that we can examine learned feature weights to gain
some insight into the model’s behavior.

In general, the highest-weighted features are the
lexicon matching features and features indicative of
proper names (POS tag of proper noun, capitalized
word not at the beginning of the sentence, etc.).

Despite the occasional cluster capturing colloca-
tional or idiomatic groupings, as described in the
previous section, the clusters appear to be mostly
useful for identifying words that tend to belong (or
not) to proper names. For example, the cluster with
street, road, freeway, highway, airport, etc., as well
as words outside of the cluster vocabulary, weigh
in favor of an MWE. A cluster with everyday desti-
nations (neighborhood, doctor, hotel, bank, dentist)
prefers non-MWEs, presumably because these words
are not typically part of proper names in this corpus.
This was from the best model using non-oracle POS
tags, so the clusters are perhaps useful in correct-
ing for proper nouns that were mistakenly tagged
as common nouns. One caveat, though, is that it is
hard to discern the impact of these specific features
where others may be capturing essentially the same
information.

6.5 How heterogeneous are learned MWEs?
On test, the final model (with automatic POS tags)
predicts 365 MWE instances (31 are gappy; 23 are

POS pattern # examples (lowercased lemmas)

NOUN NOUN 53 customer service, oil change
VERB PREP 36 work with, deal with, yell at
PROPN PROPN 29 eagle transmission, comfort zone
ADJ NOUN 21 major award, top notch, mental health
VERB PART 20 move out, end up, pick up, pass up
VERB ADV 17 come back, come in, come by, stay away
PREP NOUN 12 on time, in fact, in cash, for instance
VERB NOUN 10 take care, make money, give crap
VERB PRON 10 thank you, get it
PREP PREP 8 out of, due to, out ta, in between
ADV ADV 6 no matter, up front, at all, early on
DET NOUN 6 a lot, a little, a bit, a deal
VERB DET NOUN 6 answer the phone, take a chance
NOUN PREP 5 kind of, care for, tip on, answer to

Table 4: Top predicted POS patterns and frequencies.

weak). There are 298 unique MWE types.
Organizing the predicted MWEs by their coarse

POS sequence reveals that the model is not too preju-
diced in the kinds of expressions it recognizes: the
298 types fall under 89 unique POS+strength patterns.
Table 4 shows the 14 POS sequences predicted 5 or
more times as strong MWEs. Some of the examples
(major award, a deal, tip on) are false positives, but
most are correct. Singleton patterns include PROPN
VERB (god forbid), PREP DET (at that), ADJ PRON

(worth it), and PREP VERB PREP (to die for).
True positive MWEs mostly consist of (a) named

entities, and (b) lexical idioms seen in training and/or
listed in one of the lexicons. Occasionally the sys-
tem correctly guesses an unseen and OOV idiom
based on features such as hyphenation (walk - in) and
capitalization/OOV words (Chili Relleno, BIG MIS-
TAKE). On test, 244 gold MWE types were unseen
in training; the system found 93 true positives (where
the type was predicted at least once), 109 false posi-
tives, and 151 false negatives—an unseen type recall
rate of 38%. Removing types that occurred in lexi-
cons leaves 35 true positives, 61 false positives, and
111 false negatives—a unseen and OOV type recall
rate of 24%.

6.6 What kinds of mismatches occur?

Inspection of the output turns up false positives due
to ambiguity (e.g., Spongy and sweet bread); false
negatives (top to bottom); and overlap (get high qual-
ity service, gold get high quality service; live up to,
gold live up to). A number of the mismatches turn
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scheme ∣Y ∣ ρ M ∣w∣ P R F1

no gaps, 1-level 3 100 2.1 733k 73.33 55.72 63.20
no gaps, 2-level 4 150 3.3 977k 72.60 59.11 65.09
gappy, 1-level 6 200 1.6 1,466k 66.48 61.26 63.65
gappy, 2-level 8 100 3.5 1,954k 73.27 60.44 66.15

Table 5: Training with different tagging schemes. Results
are cross-validation averages on train. All schemes are
evaluated against the full gold standard (8 tags).

out to be problems with the gold standard, like hav-
ing our water shut off (gold having our water shut
off ). This suggests that even noisy automatic taggers
might help identify annotation inconsistencies and
errors for manual correction.

6.7 Are gappiness and the strength distinction
learned in practice?

Three quarters of MWEs are strong and contain no
gaps. To see whether our model is actually sensi-
tive to the phenomena of gappiness and strength,
we train on data simplified to remove one or both
distinctions—as in the first 3 labelings in figure 2—
and evaluate against the full 8-tag scheme. For the
model with the recall cost, clusters, and oracle POS
tags, we evaluate each of these simplifications of
the training data in table 5. The gold standard for
evaluation remains the same across all conditions.

If the model was unable to recover gappy expres-
sions or the strong/weak distinction, we would expect
it to do no better when trained with the full tagset than
with the simplified tagset. However, there is some
loss in performance as the tagset for learning is sim-
plified, which suggests that gappiness and strength
are being learned to an extent.

7 Related Work

Our annotated corpus (Schneider et al., 2014) joins
several resources that indicate certain varieties of
MWEs: lexicons such as WordNet (Fellbaum, 1998),
SAID (Kuiper et al., 2003), and WikiMwe (Hartmann
et al., 2012); targeted lists (Baldwin, 2005, 2008;
Cook et al., 2008; Tu and Roth, 2011, 2012); web-
sites like Wiktionary and Phrases.net; and large-scale
corpora such as SemCor (Miller et al., 1993), the
French Treebank (Abeillé et al., 2003), the Szeged-
ParalellFX corpus (Vincze, 2012), and the Prague
Czech-English Dependency Treebank (Čmejrek et al.,

2005). The difference is that Schneider et al. (2014)
pursued a comprehensive annotation approach rather
than targeting specific varieties of MWEs or relying
on a preexisting lexical resource. The annotations
are shallow, not relying explicitly on syntax (though
in principle they could be mapped onto the parses in
the Web Treebank).

In terms of modeling, the use of machine learn-
ing classification (Hashimoto and Kawahara, 2008;
Shigeto et al., 2013) and specifically BIO sequence
tagging (Diab and Bhutada, 2009; Constant and Si-
gogne, 2011; Constant et al., 2012; Vincze et al.,
2013) for contextual recognition of MWEs is not
new. Lexical semantic classification tasks like named
entity recognition (e.g., Ratinov and Roth, 2009), su-
persense tagging (Ciaramita and Altun, 2006; Paaß
and Reichartz, 2009), and index term identification
(Newman et al., 2012) also involve chunking of cer-
tain MWEs. But our discriminative models, facili-
tated by the new corpus, broaden the scope of the
MWE identification task to include many varieties of
MWEs at once, including explicit marking of gaps
and a strength distinction. By contrast, the afore-
mentioned identification systems, as well as some
MWE-enhanced syntactic parsers (e.g., Green et al.,
2012), have been restricted to contiguous MWEs.
However, Green et al. (2011) allow gaps to be de-
scribed as constituents in a syntax tree. Gimpel and
Smith’s (2011) shallow, gappy language model al-
lows arbitrary token groupings within a sentence,
whereas our model imposes projectivity and nest-
ing constraints (§3). Blunsom and Baldwin (2006)
present a sequence model for HPSG supertagging,
and evaluate performance on discontinuous MWEs,
though the sequence model treats the non-adjacent
component supertags like other labels—it cannot en-
force that they mutually require one another, as we
do via the gappy tagging scheme (§3.1). The lexicon
lookup procedures of Bejček et al. (2013) can match
gappy MWEs, but are nonstatistical and extremely
error-prone when tuned for high oracle recall.

Another major thread of research has pursued un-
supervised discovery of multiword types from raw
corpora, such as with statistical association measures
(Church et al., 1991; Pecina, 2010; Ramisch et al.,
2012, inter alia), parallel corpora (Melamed, 1997;
Moirón and Tiedemann, 2006; Tsvetkov and Wint-
ner, 2010), or a combination thereof (Tsvetkov and
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Wintner, 2011); this may be followed by a lookup-
and-classify approach to contextual identification
(Ramisch et al., 2010). Though preliminary experi-
ments with our models did not show benefit to incor-
porating such automatically constructed lexicons, we
hope these two perspectives can be brought together
in future work.

8 Conclusion

This article has presented the first supervised model
for identifying heterogeneous multiword expressions
in English text. Our feature-rich discriminative se-
quence tagger performs shallow chunking with a
novel scheme that allows for MWEs containing gaps,
and includes a strength distinction to separate highly
idiomatic expressions from collocations. It is trained
and evaluated on a corpus of English web reviews
that are comprehensively annotated for multiword
expressions. Beyond the training data, its features in-
corporate evidence from external resources—several
lexicons as well as unsupervised word clusters; we
show experimentally that this statistical approach is
far superior to identifying MWEs by heuristic lexicon
lookup alone. Future extensions might integrate addi-
tional features (e.g., exploiting statistical association
measures computed over large corpora), enhance the
lexical representation (e.g., by adding semantic tags),
improve the expressiveness of the model (e.g., with
higher-order features and inference), or integrate the
model with other tasks (such as parsing and transla-
tion).

Our data and open source software are released at
http://www.ark.cs.cmu.edu/LexSem/.
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A Basic Features

All are conjoined with the current label, yi.

Label Features
1. previous label (the only first-order feature)

Token Features
Original token

2. i = {1,2}
3. i = ∣w∣−{0,1}
4. capitalized ∧ ⟦i = 0⟧
5. word shape

Lowercased token
6. prefix: [wi]k

1 ∣4k=1

7. suffix: [wi]∣w∣j ∣∣w∣j=∣w∣−3
8. has digit
9. has non-alphanumeric c

10. context word: w j ∣i+2
j=i−2

11. context word bigram: w j+1
j ∣i+1

j=i−2

Lemma Features
12. lemma + context lemma if one of them is a verb and the other
is a noun, verb, adjective, adverb, preposition, or particle: λi ∧
λ j ∣i+2

j=i−2

Part-of-speech Features
13. context POS: pos j ∣i+2

j=i−2

14. context POS bigram: pos j+1
j ∣i+1

j=i−2
15. word + context POS: wi∧posi±1
16. context word + POS: wi±1∧posi

Lexicon Features (unlexicalized)
WordNet only

17. OOV: λi is not in WordNet as a unigram lemma ∧ posi
18. compound: non-punctuation lemma λi and the {previous,
next} lemma in the sentence (if it is non-punctuation; an inter-
vening hyphen is allowed) form an entry in WordNet, possibly
separated by a hyphen or space

19. compound-hyphen: posi = HYPH ∧ previous and next tokens
form an entry in WordNet, possibly separated by a hyphen or
space

20. ambiguity class: if content word unigram λi is in WordNet,
the set of POS categories it can belong to; else posi if not a
content POS ∧ the POS of the longest MW match to which λi
belongs (if any) ∧ the position in that match (B or I)

For each multiword lexicon
21. lexicon name ∧ status of token i in the shortest path segmen-
tation (O, B, or I) ∧ subcategory of lexical entry whose match
includes token i, if matched ∧ whether the match is gappy

22. the above ∧ POS tags of the first and last matched tokens in
the expression

Over all multiword lexicons
23. at least k lexicons contain a match that includes this token (if
n ≥ 1 matches, n active features)

24. at least k lexicons contain a match that includes this token,
starts with a given POS, and ends with a given POS
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