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Abstract

We present heterogeneous networks as a way to
unify lexical networks with relational data. We
build a unified ACL Anthology network, tying
together the citation, author collaboration, and
term-cooccurence networks with affiliation and
venue relations. This representation proves to
be convenient and allows problems such as name
disambiguation, topic modeling, and the mea-
surement of scientific impact to be easily solved
using only this network and off-the-shelf graph
algorithms.

1 Introduction

Graph-based methods have been used to great ef-
fect in NLP, on problems such as word sense disam-
biguation (Mihalcea, 2005), summarization (Erkan
and Radev, 2004), and dependency parsing (McDon-
ald et al., 2005). Most previous studies of networks
consider networks with only a single type of node,
and in some cases using a network with a single type
of node can be an oversimplified view if it ignores
other types of relationships.

In this paper we will demonstrate heterogeneous
networks, networks with multiple different types of
nodes and edges, along with several applications of
them. The applications in this paper are not pre-
sented so much as robust attempts to out-perform the
current state-of-the-art, but rather attempts at being
competitive against top methods with little effort be-
yond the construction of the heterogeneous network.

Throughout this paper, we will use the data from
the ACL Anthology Network (AAN) (Bird et al.,
2008; Radev et al., 2013), which contains additional
metadata relationships not found in the ACL Anthol-
ogy, as a typical heterogeneous network. The results

in this paper should be generally applicable to other
heterogeneous networks.

1.1 Heterogeneous AAN schema
We build a heterogeneous graph G(V,E) from
AAN, where V is the set of vertices and E is the
set of edges connecting vertices. A vertex can be
one of five semantic types: {paper, author, venue,
institution, term}. An edge can also be one of five
types, each connecting different types of vertices:

• author — [writes] — paper
• paper — [cites] — paper
• paper — [published in] — venue1

• author — [affiliated with] — institution2

• paper — [contains] — term

All of this data, except for the terms, is available
for all papers in the 2009 release of AAN. Terms are
extracted from titles by running TextRank (Mihal-
cea and Tarau, 2004) on NP-chunks from titles and
manually filtering out bad terms.

We show the usefulness of this representation
in several applications: the measurement of scien-
tific impact (Section 2), name disambiguation (Sec-
tion 3), and topic modeling (Section 4). The hetero-
geneous network representation provides a simple
framework for combining lexical networks (like the
term co-occurence network) with metadata relations
from a source like AAN and allows us to begin to
develop NLP-aware methods for problems like sci-
entometrics and name disambiguation, which are not
usually framed in an NLP perspective.

1For a joint meeting of venues A and B publishing a paper
x, two edges (x,A) and (x,B) are created.

2Author-affiliation edges are weighted according to the
number of papers an author has published from an institution.
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2 Scientific Impact Measurement

The study of scientometrics, which attempts to
quantify the scientific impact of papers, authors, etc.
has received much attention recently, even within
the NLP community. In the past few years, there
have been many proposed measures of scientific im-
pact based on relationships between entities. Intu-
itively, a model that can take into account many dif-
ferent types of relationships between entities should
be able to measure scientific impact more accu-
rately than simpler measures like citation counts or
h-index.

We propose using Pagerank on the heterogeneous
AAN (Page et al., 1999) to measure scientific impact.
Since changes in the network schema can affect the
relative rankings between different types of entities,
this method is probably not appropriate for compar-
ing entities of two different types against each other.
But between nodes of the same type, this measure is
an appropriate (and as we will show, accurate) way
to compare impacts.

We see this method as a first logical step in the
direction of heterogeneous network-based sciento-
metrics. This method could easily be extended to
use a directed schema (Kurland and Lee, 2005) or a
schema that is aware of the lexical content of citation
sentences, such as sentiment-based signed networks
(Hassan et al., 2012).

Determining the intrinsic quality of scientific im-
pact measures can be difficult since there is no
way to collect gold standard measurements for real-
world entities. Previous studies have attempted to
show that their measures give high scores to a few
known high-impact entities, e.g. Nobel prize win-
ners (Hirsch, 2005), or have performed a statistical
component analysis to find the most important mea-
sures in a group of related statistics (Bollen et al.,
2009). Our approach, instead, is to generate real-
istic data from synthetic entities whose impacts are
known.

We had considered alternative formulations that
did not rely on synthetic data, but each of them
presented problems. When we attempted manual
prominence annotation for AAN data, the inter-
judge agreement (measured by Spearman correla-
tion) in our experiments ranged from decent (0.9
in the case of institutions) to poor (0.3 for authors)

to nearly random (0.03 for terms), far too low to
use in most cases. We also considered evaluating
prominence measures by their ability to predict fu-
ture citations to an entity. Citations are often used
as a proxy for impact, but our measurements have
found that correlation between past citations and fu-
ture citations is too high for citation prediction to be
a meaningful evaluation3.

2.1 Creating a synthetic AAN

In network theory, a common technique for testing
network algorithms when judgments of real-world
data are expensive or impossible to obtain is to test
the algorithm on a synthetic network. To create such
a synthetic network, the authors define a simple, but
realistic generative process by which the real-world
networks of interest may arise. The properties of
the network are measured to ensure that it replicates
certain observable behaviors of the real-world net-
work. They can then test network algorithms to see
how well they are able to recover the hidden param-
eters that generated the synthetic network. (Pastor-
Satorras and Vespignani, 2001; Clauset et al., 2009;
Karrer and Newman, 2011)

We take a two-step approach to generating this
synthetic data, first generating entities with known
impacts, and second, linking these entities together
according to their latent impacts. Our heuristic is
that high impact entities should be linked to other
high impact entities and vice-versa. As in the net-
work theory literature, we must show that this data
reflects important properties observed in the true
AAN.

One such property is that the number of citations
per paper follows a power law distribution (Redner,
1998). We observe this behavior in AAN along with
several other small-world behaviors, such as a small
diameter, a small average shortest path length, and a
high clustering coefficient in the coauthorship graph.
We strive to replicate these properties in our syn-
thetic data.

3Most existing impact measurements require access to at
least one year’s worth of citation information. The Spearman
correlation between the number of citations received after one
year and after five years is 0.79 with correlation between suc-
cessive years as high as 0.99. Practically this means that the
measures that best correlate with citations after five years are
exactly those that best correlate with citations after one year.
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Since scientific impact measures attempt to quan-
tify the true impact of entities, we can use these mea-
sures to help understand how the true impact mea-
sures are distributed across different entities. In fact,
citation counts, being a good estimate of impact, can
be used to generate these latent impact variables for
each entity. For each type of entity (papers, authors,
institutions, venues, and terms), we create a latent
impact by sampling from the appropriate citation
count distribution. After sampling, all the impacts
are normalized to fall in the [0, 1] interval, with the
highest-impact entity of each type having a latent
impact of 1. Additive smoothing is used to avoid
having an impact of 0.

Once we have created the entities, our method
for placing edges is most similar to the Erdős-
Réyni method for creating random graphs (Erdős
and Rényi, 1960), in which edges are distributed
uniformly at random between pairs of vertices. In-
stead of distributing links uniformly, links between
entities are sampled proportionally to I(a)I(b)(1 −
(I(a) − I(b))2), where I(x) is the latent impact of
entity x.

We tried several other formulae that failed to
replicate the properties of the real AAN. The
I(a)I(b) part of the formula above reflects a pref-
erence for nodes of any type to connect with high-
impact entities (e.g., major conferences receive
many submissions even though most submissions
will be rejected), but the 1 − (I(a) − I(b))2 part
also reflects the reality that entities of similar promi-
nence are most likely to attach to each other (e.g.,
well-known authors publish in major conferences,
while less well-known authors may publish mostly
in lesser-known workshops).

Using this distribution, we randomly sample links
between papers and authors; authors and institu-
tions; papers and venues; and papers and terms. The
only exception to this was paper-to-paper citation
links, for which we did not expect this same be-
havior to apply, as low-impact papers regularly cite
high-impact papers, but not vice-versa. To model ci-
tations, we selected citing papers uniformly at ran-
dom and cited papers in proportion to their impacts.
(Albert and Barabási, 2002)

Finally, we generated a network equal in size to
AAN, that is, with the exact same numbers of pa-
pers, authors, etc. and the exact same number of

Relationship True value Synth. value
Paper-citations power
law coeff.

1.82 2.12

Diameter 9 8
Avg. shortest path 4.27 4.05
Collaboration network
clustering coeff.

0.34 0.26

Table 1: Network properties of the synthetic AAN
compared with the true AAN.

paper-author links, paper-venue links, etc. Table 1
compares the observed properties of the true AAN
with the observed properties of this synthetic version
of AAN. None of the statistics are exact matches, but
when building random graphs, it is not uncommon
for measures to differ by many orders of magnitude,
so a model that has measures that are on the same
order of magnitude as the observed data is generally
considered to be a decent model (Newman and Park,
2003).

2.2 Measuring impact on the synthetic AAN

This random network is, of course, still imperfect
in some regards. First of all, it has no time aspect,
so it is not possible for impact to change over time,
which means we cannot test against some impact
measures that have a time component like CiteR-
ank (Maslov and Redner, 2008). Second, there are
some constraints present in the real world that are
not enforced here. Because the edges are randomly
selected, some papers have no venues, while others
have multiple venues. There is also nothing to en-
force certain consistencies, such as authors publish-
ing many papers from relatively few institutions, or
repeatedly collaborating with the same authors.

We had also considered using existing random
graph models such as the Barabási-Albert model
(Barabási and Albert, 1999), which are known to
produce graphs that exhibit power law behavior.
These models, however, do not provide a way to re-
spect the latent impacts of the entities, as they add
links in proportion only to the number of existing
links a node has.

We measure the quality of impact measures by
comparing ranked lists: the ordering of the entities
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Paper measure Agreement
Heterogeneous network Pagerank 0.773
Citation network Pagerank 0.558
Citation count 0.642

Author measure Agreement
Heterogeneous network Pagerank 0.461
Coauthorship network Pagerank 0.244
h-index (Hirsch, 2005) 0.292
Aggregated citation count 0.236
i10-index 0.235

Institution measure Agreement
Heterogeneous network Pagerank 0.373
h-index (Mitra, 2006) 0.334
Aggregated citation count 0.327

Venue measure Agreement
Heterogeneous network Pagerank 0.449
h-index (Braun et al., 2006) 0.425
Aggregated citation count 0.370
Impact factor 0.092
Venue citation network Pagerank (Bollen
et al., 2006)

0.366

Table 2: Agreement of various impact measures
with the true latent impact.

by their true (but hidden) impact against their order-
ing according to the impact measure. The agree-
ment between these lists is measured by Kendall’s
Tau. Table 2 compares several well-known impact
measures with our impact measure, Pagerank cen-
trality on the heterogeneous AAN network. We find
that some popular methods, such as h-index (Hirsch,
2005) are too coarse to accurately capture much
of the underlying variation. There is a version of
Kendall’s Tau that accounts for ties, and while this
metric slightly helps the coarser measures, Pagerank
on the heterogeneous network is still the clear win-
ner.

When comparing different ordering methods, it
is natural to wonder which of entities the orderings
disagree on. In general, non-heterogeneous mea-
sures like h-index or collaboration network Pager-
ank, which only focus on one type of relationship
can suffer when the entity in question has an impor-
tant relationship of another type. For example, if an
author is highly cited, but mostly works alone, his
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Figure 1: Evolution of conference impacts. The y-
axis measures relative Pagerank, the entity’s Pager-
ank relative to the average Pagerank in that year.

contribution would be undervalued in the collabo-
ration network, but would be more accurate in the
heterogeneous network.

The majority of the differences between the im-
pact measures, though, tend to be in how they han-
dle entities of low prominence. It seems that, for the
most part, there is relatively little disagreement in
the orderings of high-impact entities between differ-
ent impact measures. That is, most highly prominent
entities tend to be highly rated by most measures.
But when an author or a paper, for example, only has
one or two citations, it can be advantageous to look
at more types of relationships than just citations.
The paper may be written by an otherwise prominent
author, or published at a well-known venue, and hav-
ing many types of relations at its disposal can help a
method like heterogeneous network Pagerank better
distinguish between two low-prominence entities.

2.3 Top-ranked entities according to
heterogeneous network PageRank

Table 3 shows the papers, authors, institutions,
venues, and terms that received the highest Pager-
ank in the heterogeneous AAN. It is obvious that the
top-ranked entities in this network are not simply the
most highly cited entities.

This ranking also does not have any time bias
toward the entities that are currently prominent, as
some of the top authors were more prolific in previ-
ous decades than at the current time. We also see
this effect with COLING, which for many of the
early years, is the only venue in the ACL Anthology.
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Top Papers Top Authors Top Institutions Top Venues Top
Terms

− Building A Large Annotated Corpus Of
English: The Penn Treebank

4 15 Jun’ichi Tsujii 4 8 Carnegie Mellon
University

4 1 COLING − translation

− The Mathematics Of Statistical Machine
Translation: Parameter Estimation

4 7 Aravind K.
Joshi

4 1 University of
Edinburgh

5 1 ACL 4 3 speech

− Attention, Intentions, And The Structure Of
Discourse

4 18 Ralph
Grishman

5 2 University of
Pennsylvania

4 2 HLT 5 1 parsing

− A Maximum Entropy Approach To Natural
Language Processing

4 75 Hitoshi Isahara 5 2
Massachusetts
Institute of
Technology

4 4 EACL 5 1 machine
translation

− BLEU: a Method for Automatic Evaluation
of Machine Translation

4 20 Yuji
Matsumoto

4 12 Saarland
University

4 7 LREC 4 3 generation

− A Maximum-Entropy-Inspired Parser 4 7 Kathleen R.
McKeown

5 2 IBM T.J. Watson
Research Center

− NAACL 4 3 evaluation

4 2 A Stochastic Parts Program And Noun
Phrase Parser For Unrestricted Text

4 13 Eduard Hovy 4 39 CNRS 5 3 EMNLP 4 6 grammar

5 1 A Systematic Comparison of Various
Statistical Alignment Models

4 10 Christopher D.
Manning

4 26 University of
Tokyo

5 5 Computational
Linguistics

4 16 dialogue

4 4
Transformation-Based Error-Driven
Learning and Natural Language Processing:
a Case Study in Part-of-Speech Tagging

4 93 Yorick Wilks 5 4 Stanford
University

4 4 IJCNLP 4 10 knowl-
edge

4 1 A Maximum Entropy Model for
Part-of-Speech Tagging

5 9 Hermann Ney 4 3 BBN Technologies 4 1

Workshop on
Speech and
Natural
Language

4 1 discourse

Table 3: The entities of each type receiving the highest scores from the heterogeneous network Pagerank
impact measure along with their respective changes in ranking when compared to a simple citation count
measure.

One possible way to address this is to use a narrower
time window when creating the graph, such as only
including edges from the previous five years. We
apply this technique in the following section.

2.4 Entity impact evolution

The heterogeneous graph formalism also provides a
natural way to study the evolution of impact over
time, as in (Hall et al., 2008), but at a much finer
granularity. Hall et al. measured the year-by-year
prominence of statistical topics, but we can measure
year-by-year prominence for any entity in the graph.

To measure the evolution of impacts over the
years, we iteratively create year-by-year versions of
the heterogeneous AAN. Each of these graphs con-
tains all entities along with all edges occurring in a
five year window. Due to space, we cannot com-
prehensively exhibit this technique and the data it
produces, but as a brief example, in Figure 1, we
show how the impacts of some major NLP confer-
ences changes over time.

The graph shows that NAACL and EMNLP have
been steadily gaining prominence since their intro-

ductions, but also shows that ACL has had to make
up a lot of ground since 1990 to surpass COLING.
We also notice that all the major conferences have
grown in impact since 2005, and believe that as the
field continues to grow, the major conferences will
continue to become more and more important.

3 Name Disambiguation

We frame network name disambiguation in a link
prediction setting (Taskar et al., 2003; Liben-Nowell
and Kleinberg, 2007). The problems of name dis-
ambiguation and link prediction share many char-
acteristics, and we have found that if two ambigu-
ous name nodes are close enough to be selected by a
link-prediction method, then they likely correspond
to the same real-world author.

We intend to show that the heterogeneous biblio-
graphic network can be used to better disambiguate
author names than the author collaboration network.
The heterogeneous network for this problem con-
tains papers, authors, terms, venues, and institutions.
We compare several well-known network similarity
measures from link prediction by transforming the
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Network Distance Measure Precision Recall F1-score Rand index Purity NMI
Heterogeneous Truncated Commute Time 0.59 0.78 0.63 0.63 0.71 0.43
Heterogeneous Shortest Path 0.90 0.79 0.83 0.87 0.94 0.76
Heterogeneous PropFlow 0.89 0.83 0.84 0.87 0.93 0.77
Coauthorship Truncated Commute Time 0.47 0.80 0.54 0.47 0.60 0.18
Coauthorship Shortest Path 0.54 0.73 0.60 0.61 0.67 0.31
Coauthorship PropFlow 0.57 0.76 0.64 0.66 0.71 0.43
Coauthorship GHOST 0.89 0.60 0.69 0.81 0.94 0.63

Table 4: Performance of different networks and distance measures on the author name disambiguation task.
The performance measures are averaged over the sets of two, three, and four authors. Rand index is from
(Rand, 1971) and NMI is an abbreviation for normalized mutual information (Strehl and Ghosh, 2003)

similarities to distances and inducing clusters of au-
thors based on these distances.

We compare three distance measures: shortest
path, truncated commute time (Sarkar et al., 2008),
and PropFlow (Lichtenwalter et al., 2010). Short-
est path distance can be a useful metric for author
disambiguation because it is small when two am-
biguous nodes are neighbors in the graph or share
a neighbor. Its downside is that it only considers one
path between nodes, the shortest, and cannot take
advantage of the fact that there may be many short
paths between two nodes.

Truncated commute time is a variant of commute
time where all paths longer than some threshold are
truncated. The truncation threshold l should be set
such that no semantically meaningful path is trun-
cated. We use a value of ten for l in the heteroge-
neous graph and three in the coauthorship graph4.
The advantage of truncated commute time over or-
dinary commute time is simpler calculation, as no
paths longer than l need be considered. The down-
side of this method is that large branching factors
tend to lead to less agreement between commute
time and truncated commute time.

PropFlow is a quantity that measures the proba-
bility that a non-intersecting random walk starting at
node a reaches node b in l steps or fewer, where l is
again a threshold. As before, l should be a bound on
the length of semantically meaningful paths, so we
use the same values for l as with truncated commute
time. Of course, PropFlow is not a metric, which is

4This is a standard coauthorship graph with the edge weights
equal to the number of publications shared between authors.
The heterogeneous network does not have author-to-author
links, as authors are linked by paper nodes.

required for some clustering methods. We use the
following equation to transform PropFlow to a met-
ric: d(a, b) = 1

PropF low(a,b) − 1.
With each of the distance measures, we apply

the same clustering method: partitioning around
medoids, with the number of clusters automatically
determined using the gap statistic method (Tibshi-
rani et al., 2001). We create the null distribution
needed for the gap statistic method by many itera-
tions of randomly sampling distances from the com-
plete distance matrix between all nodes in the graph.
The gap statistic method automatically selects the
number of clusters from two, three, or four author
clusters.

We compare our methods against GHOST (Fan et
al., 2011), a high-performance author disambigua-
tion method based on the coauthorship graph.

3.1 Data

To generate name disambiguation data, we use the
pseudoword method of (Gale et al., 1992). Specif-
ically, we choose two or more completely random
authors and conflate them by giving all instances
of both authors the same name. We let each paper
written by this pseudoauthor be an instance to be
clustered. The clusters produced by any author dis-
ambiguation method can then be compared against
the papers actually written by each of the two au-
thors. This method, of course, relies on having all of
the underlying authors completely disambiguated,
which AAN provides.

This method is used to create 100 distambiguation
sets with two authors, 100 for three authors, and 100
for four authors.
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3.2 Results

Table 4 shows the performance of author name dis-
ambiguation with different networks and distance
metrics. F1-score is the measure that is most of-
ten used to compare author disambiguation methods.
Both PropFlow and shortest path similarity on the
heterogeneous network perform quite well accord-
ing this measure, as well as the other reported mea-
sures. While comparable recall can be achieved us-
ing only the coauthorship graph, the heterogeneous
graph allows for much higher precision.

4 Random walk topic model

Here we present a topic model based entirely on
graph random walks. This method is not truly a
statistical model as there are no statistical parame-
ters being learned, but rather a topic-discovery and
-assignment method, attempting to solve the same
problem as statistical topic models such as proba-
bilistic latent semantic analysis (pLSA) (Hofmann,
1999) or latent Dirichlet allocation (LDA) (Blei et
al., 2003). In the absence of better terminology, we
use the name random walk topic model.

While this method does not have the robust math-
ematical foundation that statistical topic models pos-
sess, in its favor it has modularity, simplicity, and
interpretability. This language model is modular as
it completely separates the discovery of topics from
the association of topics with entities. It is sim-
ple because it requires only a clustering algorithm
and random walk algorithms, instead of complex in-
ference algorithms. The method also does not re-
quire any modification if the topology of the net-
work changes, whereas statistical models may need
an entirely different inference procedure if, e.g., au-
thor topics are desired in addition to paper topics.
Thirdly this method is easily interpretable with top-
ics provided by clustering in the word-relatedness
graph and topic association based on random walks
from entities to topics.

4.1 Topics from word graph clustering

From the set of ACL anthology titles, we create
two graphs: (1) a word relatedness graph by cre-
ating a weighted link between each pair of words
corresponding to the PropFlow (Lichtenwalter et al.,
2010) measure between them on the full heteroge-

neous graph and (2) a word co-occurence graph by
creating a weighted link between each pair of words
corresponding to the number of titles in which both
words occur.

Both of these graphs are then clustered using
Graph Factorization Clustering (GFC). GFC is a soft
clustering algorithm for graphs that models graph
edges as a mixture of latent node-cluster association
variables. (Yu et al., 2006)

Given a word graph G with vertices V and ad-
jacency matrix [w]ij , GFC attempts to fit a bipar-
tite graph K(V,U) with adjacency matrix [b]ij onto
this data, with the m nodes of U representing the
clusters. Whereas in G, similarity between two
words i and j can be measured with wij , we can
similarly measure their similarity in K with w′ij =
∑m

p=1
bipbjp
λp

where λp =
∑n

i=1 bip is the degree of
vertex p ∈ U .

Essentially the bipartite graph attempts to approx-
imate the transition probability between i and j inG
with the sum of transition probabilities from i to j
through any of the m nodes in U . Yu, et al. (2006)
present an algorithm for minimizing the divergence
distance `(X,Y) =

∑
ij(xijlog

xij
yij − xij + yij) be-

tween [w]ij and [w′]ij .
We run GFC with this distance metric and m =

100 clusters on the word graph until convergence
(change in log-likelihood < 0.1%). After conver-
gence, the nodes in U become the clusters and the
weights bip (constrained to sum to 1 for each clus-
ter) become the topic-word association scores.

Examples of some topics found by this method
are shown in Table 5. From manual inspection of
these topics, we found them to be very much like
topics created by statistical topic models. We find
instances of all the types of topics listed in (Mimno
et al., 2011): chained, intruded, random, and unbal-
anced. For an evaluation of these topics see Sec-
tion 4.3.1.

4.2 Entity-topic association

To associate entities with topics, we first create
the heterogeneous network as in previous sections,
adding links between papers and their title words,
along with links between words and the topics that
were discovered in the previous section. Word-topic
links are also weighted according to the weights
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Word sense induction sense disambiguation word induction unsupervised clustering senses based similarity chinese
CRFs + their applications entity named recognition random conditional fields chinese entities biomedical segmentation
Dependency parsing parsing dependency projective probabilistic incremental deterministic algorithm data syntactic trees
Tagging models tagging model latent markov conditional random parsing unsupervised segmentation
Multi-doc summarization summarization multi document text topic based query extractive focused summaries
Chinese word segmentation word segmentation chinese based alignment character tagging bakeoff model crf
Lexical semantics lexical semantic distributional similarity wordnet resources lexicon acquistion semantics representation
Cross-lingual IR cross lingual retrieval document language linguistic multi person multilingual coreference
Generation for summar. sentence based compression text summarization ordering approach ranking generation
Spoken language speech recognition automatic prosodic tagging spontaneous news broadcast understanding conversational
French function words de la du des le automatique analyse une en pour
Question answering question answering system answer domain retrieval web based open systems
Unsupervised learning unsupervised discovery learning induction knowledge graph acquisition concept clustering pattern
SVMs for NLP support vector machines errors space classification correcting word parsing detecting
MaxEnt models entropy maximum approach based attachment model models phrase prepositional disambiguation
Dialogue systems dialogue spoken systems human conversational multi interaction dialogues utterances multimodal
Semantic role-labeling semantic role labeling parsing syntactic features ill dependency formed framenet
SMT based translation machine statistical phrase english approach learning reordering model
Coreference resolution resolution coreference anaphora reference pronoun ellipsis ambiguity resolving approach pronominal
Semi- and weak-supervision learning supervised semi classification active data clustering approach graph weakly
Information retrieval based retrieval similarity models semantic space model distance measures document
Discourse discourse relations structure rhetorical coherence temporal representation text connectives theory
CFG parsing context free grammars parsing linear probabilistic rewriting grammar systems optimal
Min. risk train. and decod. minimum efficient training error rate translation risk bayes decoding statistical
Phonology phoneme conversion letter phonological grapheme rules applying transliteration syllable sound
Sentiment sentiment opinion reviews classification mining polarity analysis predicting product features
Neural net speech recog. speech robust recognition real network time neural networks language environments
Finite state methods state finite transducers automata weighted translation parsing incremental minimal construction
Mechanical Turk mechanical turk automatic evaluation amazon techniques data articles image scientific

Table 5: Top 10 words for several topics created by the co-occurence random walk topic model. The left
column is a manual label.

Topic 59 Topic 82
translation 0.1953 parsing 0.1715
machine 0.1802 dependency 0.1192
statistical 0.0784 projective 0.0138

Machine Translation 0.0018 K-best Spanning Tree Parsing 0.0025
Better Hypothesis Testing for Statistical
Machine Translation: Controlling for
Optimizer Instability

0.0016 Pseudo-Projective Dependency Parsing 0.0024

Filtering Antonymous, Trend- Contrasting, and
Polarity-Dissimilar Distributional Paraphrases
for Improving Statistical Machine Translation

0.0015 Shift-Reduce Dependency DAG Parsing 0.0017

Knight, Kevin 0.0083 Nivre, Joakim 0.0120
Koehn, Philipp 0.0074 Johnson, Mark 0.0085
Ney, Hermann 0.0072 Nederhof, Mark-Jan 0.0064

RWTH Aachen University 0.0212 Vaxjo University 0.0113
Carnegie Mellon University 0.0183 Brown University 0.0107
University of Southern California 0.0177 University of Amsterdam 0.0094

Workshop on Statistical Machine Translation 0.0590 ACL 0.0512
EMNLP 0.0270 EMNLP 0.0259
COLING 0.0173 CoNLL 0.0223

Table 6: Examples of entities associated with selected topics.
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determined by GCF. We then simply take random
walks from topics to entities and measure the pro-
portion at which the random walk arrives at each en-
tity of interest. These proportions become the entity-
topic association scores.

For example, if we wanted to find the authors
most associated with topic 12, we would take a num-
ber of random walks (say 50,000) starting at topic
12 and terminating as soon as the random walk first
reaches an author node. Measuring the proportion
at which random walks arrive at each allows us to
compute an association score between topic 12 and
each author.

A common problem in random walks on large
graphs is that the walk can easily get “lost” between
two nodes that should be very near by taking a just
a few steps in the wrong direction. To keep the ran-
dom walks from taking these wrong steps, we adjust
the topology of the network using directed links to
keep the random walks moving in the “right” direc-
tion. We design the graph such that if we desire a
random walk from nodes of type s to nodes of type t,
the random walk will never be able to follow an out-
going link that does not decrease its distance from
the nodes of t.

As shown in section 2.3, there are certain nodes at
which a random walk (like Pagerank) arrives at more
often than others simply because of their positions in
the graph. This suggests that there may be stationary
random walk distributions over entities, which we
would need to adjust for in order to find the most
significant entities for a topic.

Indeed this is what we do find. As an example, if
we sample topics uniformly and take random walks
to author nodes, by chance we end up at Jun’ichi
Tsujii on 0.3% of random walks, Eduard Hovy on
0.2% of walks, etc. These values are about 1000
times greater than would be expected at random.

To adjust for this effect, when we take a random
walk from a topic x to an entity type t, we subtract
out this stationary distribution for t, which corre-
sponds to the proportion of random walks that end
at any particular entity of type t by chance, and not
by virtue of the fact that the walk started at topic x.
The resulting distribution yields the entities of t that
are most significantly associated with topic x. Ta-
ble 6 gives examples of the most significant entities
for a couple of topics.

−200 −150 −100 −50

RW-cooc

RW-sim

RTM

LDA

Coherence

Figure 2: Distribution of topic coherences for the
four topic models.

4.3 Topic Model Evaluation
We provide two separate evaluations in this section,
one of the topics alone, and one extrinstic evaluation
of the entire paper-topic model. The variants of ran-
dom walk topic models are compared against LDA
and the relational topic model (RTM), each with 100
topics (Chang and Blei, 2010). As RTM allows only
a single type of relationship between documents, we
use citations as the inter-document relationships.

4.3.1 Topic Coherence
The coherence of a topic is evaluated using the co-

herence metric introduced in (Mimno et al., 2011).
Given the top M words V (t) = (v

(t)
1 , ..., v

(t)
M ) for a

topic t, the coherence of that topic can be calculated
with the following formula:

C(t;V (t)) =

M∑

m=2

m−1∑

l=1

log

(
D(v

(t)
m , v

(t)
l ) + 1

D(v
(t)
l )

)
,

where D(v) is the number of documents contain-
ing v and D(v, v′) is the number of documents con-
taining both v and v′.

This measure of coherence is highly correlated
with manual annotations of topic quality, with a
higher coherence score corresponding to a more co-
herent, higher quality topic. After calculating the co-
herence for each of the 100 topics for RTM and the
random-walk topic model, the average coherence for
RTM topics was -135.2 and the average coherence
for word-similarity random walk topics was -122.2,
with statistical significance at p < 0.01. Figure 2
demonstrates this, showing that the word similarity-
based random walk method generates several highly
coherent topics. The average coherence for the LDA
and the co-occurence random walk model were sig-
nificantly lower.
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4.3.2 Extrinsic Evaluation
One difficulty in evaluating this random-walk

topic model intrinsically against a statistical topic
model like RTM is that existing evaluation measures
assume certain statistical properties of the topic, for
example, that the topics are generated according to a
Dirichlet prior. Because of this, we choose instead to
evaluate this topic model extrinsically with a down-
stream application. We choose an information re-
trieval application, returning a ranked list of similar
documents, given a reference document.

We evaluate five different methods: citation-
RTM, LDA, the two versions of the random-walk
topic model, and a simple word vector similarity
baseline. Similarity between documents with the
topic models are determined by cosine similarity be-
tween the topic vectors of the two documents. Word
vector similarity determines the similarity between
documents by taking the cosine similarity of their
word vectors. From these similarity scores, a ranked
list is produced.

The document set for this task is the set of all pa-
pers appearing at ACL between 2000 and 2011. The
top 10 results returned by each method are pooled
and manually evaluated with a relevance score be-
tween 1 and 10. Thirty such result sets were manu-
ally annotated. We then evaluate each method ac-
cording to its discounted cumulative gain (DCG)
(Järvelin and Kekäläinen, 2000).

Performance of these methods is summarized in
Table 7. The co-occurence-based random walk topic
model performed comparably with the best per-
former at this task, LDA, and there was no signifi-
cant difference between the two at p < 0.05.

Going forward, an important problem is to rec-
oncile the co-occurence- and word-similarity-based
formulations of this topic model, as the two formu-
lations perform very differently in our two evalua-
tions. Heuristically, the co-occurence model seems
to create good human-readable topics, while the
word-similarity model creates topics that are more
mathematically-coherent, but less human-readable.

5 Related Work

Heterogeneous networks have been studied in a
number of different fields, such as biology (Sio-
son, 2005), transportation networks (Lozano and

Method DCG
Word vector 1.345 ± 0.007
LDA 3.302 ± 0.008
RTM 3.058 ± 0.011
Random-walk (cooc) 3.295 ± 0.006
Random-walk (sim) 2.761 ± 0.007

Table 7: DCG Performance of the various topic
models and baselines on the related document find-
ing task. A 95% confidence interval is provided.

Storchi, 2002), social networks (Lambiotte and Aus-
loos, 2006), and bibliographic networks (Sun et al.,
2011). These networks are also sometimes known
by the name complex networks or multimodal net-
works, but both these terms have other connotations.
We prefer “heterogeneous networks” as used by Sun
et al. (2009).

There has also been some study of these networks
in general, in community detection (Murata, 2010),
clustering (Long et al., 2008; Sun et al., 2012), and
data mining (Muthukrishnan et al., 2010), but there
has not yet been any comprehensive study. Recently,
NLP has seen several uses of heterogeneous net-
works (though not by that name) for use with label
propagation algorithms (Das and Petrov, 2011; Spe-
riosu et al., 2011) and random walks (Toutanova et
al., 2004; Kok and Brockett, 2010).

Several authors have proposed the idea of using
network centrality measures to rank the impacts of
journals, authors, papers, etc. (Bollen et al., 2006;
Bergstrom et al., 2008; Chen et al., 2007; Liu et al.,
2005), and it has even been proposed that central-
ity can be applicable in bipartite networks (Zhou et
al., 2007). We propose that Pagerank on any gen-
eral heterogeneous network is appropriate for creat-
ing ranked lists for each type of entity. Most previ-
ous papers also lack a robust evaluation, demonstrat-
ing agreement with previous methods or with some
external awards or recognitions. We use a random
graph that replicates the properties of the real-world
network to show that Pagerank on the heterogeneous
network outperforms other methods.

Name disambiguation has been studied in a num-
ber of different settings, including graph-based set-
tings. It is common to use the coauthorship graph
(Kang et al., 2009; Fan et al., 2011), but authors

10



have also used lexical similarity graphs (On and Lee,
2007), citation graphs (McRae-Spencer and Shad-
bolt, 2006), or social networks (Malin, 2005). Al-
most all graph methods are unsupervised.

There have been some topic models developed
specifically for relational data (Wang et al., 2006;
Airoldi et al., 2008), but both of these models have
limitations in the types of relational data they are
able to model. The group topic model described in
(Wang et al., 2006) is able to create stronger topics
by considering associations between words, events,
and entities, but is very coarse in the way it han-
dles the behavior of entities, and does not generalize
to multiple different types of entities. The stochas-
tic blockmodel of (Airoldi et al., 2008) can create
blocks of similar entities in a graph and is general
in the types of graphs it can handle, but produces
less meaningful results on graphs that have specific
schemas.

6 Conclusion and Future Directions

In this paper, we present a heterogeneous net-
work treatment of the ACL Anthology Network and
demonstrate several applications of it. Using only
off-the-shelf graph algorithms with a single data rep-
resentation, the heterogeneous AAN, we are able to
very easily build a scientific impact measure that is
more accurate than existing measures, an author dis-
ambiguation system better than existing graph-based
author disambiguation systems, and a random-walk-
based topic model that is competitive with statistical
topic models.

While there are many other tasks, such as citation-
based summarization, that could likely be ap-
proached using this framework with the appropri-
ate addition of new types of nodes into the hetero-
geneous AAN network, there are even some poten-
tial synergies between the tasks described in this pa-
per that have yet to be explored. For example, we
may consider that the methods of the author disam-
biguation or topic modeling tasks could be to find
the highest-impact papers associated with a term (for
survey generation, perhaps) or high-impact authors
associated with a workshop’s topic (to select good
reviewers for it). We believe that heterogeneous
graphs are a flexible framework that will allow re-

searchers to find simple, flexible solutions for a va-
riety of problems.
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