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Abstract 

In current research, most tree-based translation 
models are built directly from parse trees. In 
this study, we go in another direction and build 
a translation model with an unsupervised tree 
structure derived from a novel non-parametric 
Bayesian model. In the model, we utilize 
synchronous tree substitution grammars (STSG) 
to capture the bilingual mapping between 
language pairs. To train the model efficiently, 
we develop a Gibbs sampler with three novel 
Gibbs operators. The sampler is capable of 
exploring the infinite space of tree structures by 
performing local changes on the tree nodes. 
Experimental results show that the string-to-
tree translation system using our Bayesian tree 
structures significantly outperforms the strong 
baseline string-to-tree system using parse trees. 

1 Introduction 

In recent years, tree-based translation models1 are 
drawing more and more attention in the 
community of statistical machine translation 
(SMT). Due to their remarkable ability to 
incorporate context structure information and long 
distance reordering into the translation process, 
tree-based translation models have shown 
promising progress in improving translation 
quality (Liu et al., 2006, 2009; Quirk et al., 2005; 
Galley et al., 2004, 2006; Marcu et al., 2006; Shen 
et al., 2008; Zhang et al., 2011b). 

However, tree-based translation models always 
suffer from two major challenges: 1) They are 
usually built directly from parse trees, which are 
generated by supervised linguistic parsers. 

                                                           
1 A tree-based translation model is defined as a model 
using tree structures on one side or both sides. 

However, for many language pairs, it is difficult to 
acquire such corresponding linguistic parsers due 
to the lack of Tree-bank resources for training. 2) 
Parse trees are actually only used to model and 
explain the monolingual structure, rather than the 
bilingual mapping between language pairs. This 
indicates that parse trees are usually not the 
optimal choice for training tree-based translation 
models (Wang et al., 2010). 

Based on the above analysis, we can conclude 
that the tree structure that is independent from 
Tree-bank resources and simultaneously considers 
the bilingual mapping inside the bilingual sentence 
pairs would be a good choice for building tree-
based translation models. 

Therefore, complying with the above conditions, 
we propose an unsupervised tree structure for tree-
based translation models in this study. In the 
structures, tree nodes are labeled by combining the 
word classes of their boundary words rather than 
by syntactic labels, such as NP, VP. Furthermore, 
using these node labels, we design a generative 
Bayesian model to infer the final tree structure 
based on synchronous tree substitution grammars 
(STSG) 2 . STSG is derived from the word 
alignments and thus can grasp the bilingual 
mapping effectively. 

Training the Bayesian model is difficult due to 
the exponential space of possible tree structures for 
each training instance. We therefore develop an 
efficient Gibbs sampler with three novel Gibbs 
operators for training. The sampler is capable of 
exploring the infinite space of tree structures by 
performing local changes on the tree nodes. 

                                                           
2 We believe it is possible to design a model to infer the 
node label and tree structure jointly. We plan this as 
future work, and here, we focus only on inferring the 
tree structure in terms of the node labels derived from 
word classes. 
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The tree structure formed in this way is 
independent from the Tree-bank resources and 
simultaneously exploits the bilingual mapping 
effectively. Experiments show that the proposed 
unsupervised tree (U-tree) is more effective and 
reasonable for tree-based translation than the parse 
tree. 

The main contributions of this study are as 
follows: 

1) Instead of the parse tree, we propose a 
Bayesian model to induce a U-tree for tree-
based translation. The U-tree exploits the 
bilingual mapping effectively and does not 
rely on any Tree-bank resources. 

2) We design a Gibbs sampler with three novel 
Gibbs operators to train the Bayesian model 
efficiently. 

The remainder of the paper is organized as 
follows. Section 2 introduces the related work. 
Section 3 describes the STSG generation process, 
and Section 4 depicts the adopted Bayesian model. 
Section 5 describes the Gibbs sampling algorithm 
and Gibbs operators. In Section 6, we analyze the 
achieved U-trees and evaluate their effectiveness. 
Finally, we conclude the paper in Section 7. 

2 Related Work 

In this study, we move in a new direction to build a 
tree-based translation model with effective 
unsupervised U-tree structures. 

For unsupervised tree structure induction, 
DeNero and Uszkoreit (2011) adopted a parallel 
parsing model to induce unlabeled trees of source 
sentences for syntactic pre-reordering. Our 
previous work (Zhai et al., 2012) designed an EM-
based method to construct unsupervised trees for 
tree-based translation models. This work differs 
from the above work in that we design a novel 
Bayesian model to induce unsupervised U-trees, 
and prior knowledge can be encoded into the 
model more freely and effectively. 

Blunsom et al. (2008, 2009, 2010) utilized 
Bayesian methods to learn synchronous context 
free grammars (SCFG) from a parallel corpus. The 
obtained SCFG is further used in a phrase-based 
and hierarchical phrase-based system (Chiang, 
2007). Levenberg et al. (2012) employed a 
Bayesian method to learn discontinuous SCFG 
rules. This study differs from their work because 

we concentrate on constructing tree structures for 
tree-based translation models. Our U-trees are 
learned based on STSG, which is more appropriate 
for tree-based translation models than SCFG. 

Burkett and Klein (2008) and Burkett et al. 
(2010) focused on joint parsing and alignment. 
They utilized the bilingual Tree-bank to train a 
joint model for both parsing and word alignment. 
Cohn and Blunsom (2009) adopted a Bayesian 
method to infer an STSG by exploring the space of 
alignments based on parse trees. Liu et al. (2012) 
re-trained the linguistic parsers bilingually based 
on word alignment. Burkett and Klein (2012) 
utilized a transformation-based method to learn a 
sequence of monolingual tree transformations for 
translation. Compared to their work, we do not rely 
on any Tree-bank resources and focus on 
generating effective unsupervised tree structures 
for tree-based translation models. 

Zollmann and Venugopal (2006) substituted the 
non-terminal X in hierarchical phrase-based model 
by extended syntactic categories. Zollmann and 
Vogel (2011) further labeled the SCFG rules with 
POS tags and unsupervised word classes. Our work 
differs from theirs in that we present a Bayesian 
model to learn effective STSG translation rules and 
U-tree structures for tree-based translation models, 
rather than designing a labeling strategy for 
translation rules. 

3 The STSG Generation Process 

In this work, we induce effective U-trees for the 
string-to-tree translation model, which is based on 
a synchronous tree substitution grammar (STSG) 
between source strings and target tree fragments. 
We take STSG as the generation grammar to match 
the translation model. Typically, such an STSG3 is 
a 5-tuple as follows: 

( , , , , )s t t tG N S P ¦ ¦  
where: 

i s¦  and t¦  represent the set of source and 
target words, respectively, 

i tN  is the set of target non-terminals, 
i t tS N�  is the start root non-terminal, and 
i P  is the production rule set. 

                                                           
3 Generally, an STSG involves tree fragments on both 
sides. Here we only consider the special case where the 
source side is actually a string. 
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Apart from the start non-terminal tS , we define 
all the other non-terminals in tN  by word classes. 
Inspired by (Zollmann and Vogel, 2011), we 
divide these non-terminals into three categories: 
one-word, two-word and multi-word non-terminals. 
The one-word non-terminal is a word class, such as 
C, meaning that it dominates a word whose word 
class is C. Two-word non-terminals are used to 
stand for two word strings. They are labeled in the 
form of C1+C2, where C1 and C2 are the word 
classes of the two words separately. Accordingly, 
multi-word non-terminals represent the strings 
containing more than two words. They are labeled 
as C1…Cn, demanding that the word classes of the 
leftmost word and the rightmost word are C1 and 
Cn, respectively. 

We use POS tag to play the role of word class4. 
For example, the head node of the rule in Figure 1 
is a multi-word non-terminal PRP…RB. It requires 
that the POS tags of the leftmost and rightmost 
word must be PRP and RB, respectively. Xiong et 
al. (2006) showed that the boundary word is an 
effective indicator for phrase reordering. Thus, we 
believe that combining the word class of boundary 
words can denote the whole phrase well. 

PRP...RB

we

PRP

VBP:x0 RB:x1

VBP+RB
ᡁԜ   x1   x0

wo-men

 
Figure 1. An example of an STSG production rule. 

Each production rule in P  consists of a source 
string and a target tree fragment. In the target tree 
fragment, each internal node is labeled with a non-
terminal in tN , and each leaf node is labeled with 
either a target word in t¦  or a non-terminal in tN . 
The source string in a production rule comprises 
source words and variables. Each variable 
corresponds to a leaf non-terminal in the target tree 
fragment. In the STSG, the production rule is used 
to rewrite the root node into a string and a tree 
fragment. For example, in Figure 1, the rule 
rewrites the head node PRP…RB into the 
corresponding string and fragment. 

An STSG derivation refers to the process of 
generating a specific source string and target tree 
                                                           
4 The demand of a POS tagger impairs the independence 
from manual resources to some extent. In future, we 
plan to design a method to learn effective unsupervised 
labels for the non-terminals. 

structure by production rules. This process begins 
with the start non-terminal tS  and an empty source 
string. We repeatedly choose production rules to 
rewrite the leaf non-terminals and expand the 
string until no leaf non-terminal is left. Finally, we 
acquire a source string and a target tree structure 
defined by the derivation. The probability of a 
derivation is given as follows: 

  
1

( ) ( | )
n

i i
i

p d p r N
 

 �  (1) 

where the derivation comprises a sequence of rules 
d=(r1,…,rn), and Ni represents the root node of rule 
ri. Hence, for a specific bilingual sentence pair, we 
can generate the best target-side tree structure 
based on the STSG, independent from the Tree-
bank resources. The STSG used in the above 
process is learned by the Bayesian model that is 
detailed in the next section. 

Actually, SCFG can also be used to build the U-
trees. We do not use SCFG because most of the 
tree-based models are based on STSG. In our 
Bayesian model, the U-trees are optimized through 
selecting a set of STSG rules. These STSG rules 
are consistent with the translation rules used in the 
tree-based models. 

Another reason is that STSG has a stronger 
expressive power on tree construction than SCFG. 
In a STSG-based U-tree or a STSG rule, although 
not linguistically informed, the nodes labeled by 
POS tags are also effective on distinguishing 
different ones. However, with SCFG, we have to 
discard all the internal nodes (i.e., flattening the U-
trees or rules) to express the same sequence, 
leading to a poor ability of distinguishing different 
U-trees and production rules. Thus, using STSG, 
we can build more specific U-trees for translation.  

In addition, we find that the Bayesian SCFG 
grammar cannot even significantly outperform the 
heuristic SCFG grammar (Blunsom et al. 2009)5. 
This would indicate that the SCFG-based 
derivation tree as by-product is also not such good 
for tree-based translation models. Considering the 
above reasons, we believe that the STSG-based 
learning procedure would result in a better 
translation grammar for tree-based models. 
                                                           
5 In (Blunsom et al., 2009), for Chinese-to-English 
translation, the Bayesian SCFG grammar only 
outperform the heuristic SCFG grammar by 0.1 BLEU 
points on NIST MT 2004 and 0.6 BLEU points on NIST 
MT 2005 in the NEWS domain. 
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4 Bayesian Model 

In this section, we present a Bayesian model to 
learn STSG defined in section 3. In the model, we 
use șN to denote the probability distribution 

( | )p r N  in Equation (1). șN follows a multinomial 
distribution and we impose a Dirichlet prior (DP) 
on it: 

  
0 0

| ~ ( )
| , ~ ( , ( | ) )

N

N N N

r N Multi
P DP P N

T
T D D <

 (2) 

where 0 ( | )P N<  (base distribution) is used to assign 
prior probabilities to the STSG production rules. ĮN 
controls the model’s tendency to either reuse 
existing rules or create new ones using the base 
distribution 0 ( | )P N< . 

Instead of denoting the multinomial distribution 
explicitly with a specific șN, we integrate over all 
possible values of șN to achieve the probabilities of 
rules. This integration results in the following 
conditional probability for rule ri given the 
previously observed rules r-i = r1 ,…, ri-1: 

 0
0

( | )
( | , , , ) i

i
r N ii

i N i
N N

n P r N
p r r N P

n
D

D
D

�
�

�

�
 

�
 (3) 

Where n-i 
ri  denotes the number of ri in ir� , and n-i 

N  
represents the total count of rules rewriting non-
terminal N in ir� . Thanks to the exchangeability of 
the model, all permutations of the rules are actually 
equiprobable. This means that we can compute the 
probability of each rule based on the previous and 
subsequent rules (i.e. consider each rule as the last 
one). This characteristic allows us to design an 
efficient Gibbs sampling algorithm to train the 
Bayesian model. 

4.1  Base Distribution 

The base distribution 0 ( | )P r N  is designed to 
assign prior probabilities to the STSG production 
rules. Because each rule r consists of a target tree 
fragment frag and a source string str in the model, 
we follow Cohn and Blunsom (2009) and 
decompose the prior probability 0 ( | )P r N  into two 
factors as follows: 

  0 ( | ) ( | ) ( | )P r N P frag N P str frag �  (4) 

where ( | )P frag N  is the probability of 
producing the target tree fragment frag. To 
generate frag, Cohn and Blunsom (2009) used a 

geometric prior to decide how many child nodes to 
assign each node. Differently, we require that each 
multi-word non-terminal node must have two child 
nodes. This is because the binary structure has 
been verified to be very effective for tree-based 
translation (Wang et al., 2007; Zhang et al., 2011a).  

The generation process starts at root node N. At 
first, root node N is expanded into two child nodes. 
Then, each newly generated node will be checked 
to expand into two new child nodes with 
probability pexpand. This process repeats until all the 
new non-terminal nodes are checked. Obviously, 
pexpand controls the scale of tree fragments, where a 
large pexpand corresponds to large fragments6. The 
new terminal nodes (words) are drawn uniformly 
from the target-side vocabulary, and the non-
terminal nodes are created by asking two questions 
as follows: 

1) What type is the node, one-word, two-
word or multi-word non-terminal? 

2) What tag is used to label the node? 
The answer to question 1) is chosen from a 
uniform distribution, i.e., the probability is 1/3 for 
each type of non-terminal. The entire generation 
process is in a top-down manner, i.e., generating a 
parent node first and then its children. 

With respect to question 2), because the father 
node has determined the POS tags of boundary 
words, we only need one POS tag to generate the 
label of the current node. For example, in Figure 1, 
as the father node PRP…RB demands that the POS 
tag of the rightmost word is RB, the right child of 
PRP…RB must also satisfy this condition. 
Therefore, we choose a POS tag VBP and obtain 
the label VBP+RB. The POS tag is drawn 
uniformly from the POS tag set. If the current node 
is a one-word non-terminal, question 2) is 
unnecessary. Similarly, with respect to the two-
word non-terminal node, questions 1) and 2) are 
both unnecessary for its two child nodes because 
they have already been defined by their father node. 

As an example of the generative process, the 
tree fragment in Figure 1 is created as follows: 

a. Determine that the left child of PRP…RB is 
a one-word non-terminal (labeled with PRP); 

b. Expand PRP and generate the word “we” for 
PRP; 

                                                           
6 In our experiment, we set pexpand to 1/3 to encourage 
small tree fragments.  
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c. Determine that the right child of PRP…RB is 
a two-word non-terminal; 

d. Utilize the predetermined RB and a POS tag 
VBP to form the tag of the two-word non-
terminal: VBP+RB; 

e. Expand VBP+RB (to VBP and RB); 
f. Do not expand VBP and RB. 

( | )P str frag  in Equation (4) is the probability of 
generating the source string, which contains 
several source words and variables. Inspired by 
(Blunsom et al., 2009) and (Cohn and Blunsom, 
2009), we define ( | )P str frag  as follows: 

 
var

1

1 1( | ) ( ;1)
| |

poisson sw sw
sw

c

c
s i

P str frag P c
c i 

 u u
¦ ��  (5) 

where csw is the number of words in the source 
string. �s means the source vocabulary set. Further, 
cvar denotes the number of variables, which is 
determined by the tree fragment frag. 

As shown in Equation(5), we first determine 
how many source words to generate using a 
Poisson distribution Ppoisson(csw;1), which imposes a 
stable preference for short source strings. Then, we 
draw each source word from a uniform distribution 
over �s. Afterwards, we insert the variables into 
the string. The variables are inserted one at a time 
using a uniform distribution over the possible 
positions. This factor discourages more variables.  

For the example rule in Figure 1, the generative 
process of the source string is: 

a. Decide to generate one source word;  
b. Generate the source word “ᡁԜ (wo-men) ”;  
c. Insert the first variable after the word;  
d. Insert the second variable between the word 

and the first variable. 
Intuitively, a good translation grammar should 

carry both small translation rules with enough 
generality and large rules with enough context 
information. DeNero and Klein (2007) proposed 
this statement, and Cohn and Blunsom (2009) has 
verified it in their experiments with parse trees. 

Our base distribution is also designed based on 
this intuition. Considering the two factors in our 
base distribution, we penalize both large target tree 
fragments with many nodes and long source strings 
with many words and variables. The Bayesian 
model tends to select both small and frequent 
STSG production rules to construct the U-trees. 
With these types of trees, we can extract small 
rules with good generality and simultaneously 

obtain large rules with enough context information 
by composition. We will show the effectiveness of 
our U-trees in the verification experiment. 

5 Model Training by Gibbs Sampling 
In this section, we introduce a collapsed Gibbs 
sampler, which enables us to train the Bayesian 
model efficiently. 

5.1 Initialization State 
At first, we use random binary trees to initialize the 
sampler. To get the initial U-trees, we recursively 
and randomly segment a sentence into two parts 
and simultaneously create a tree node to dominate 
each part. The created tree nodes are labeled by the 
non-terminals described in section 3. 

Using the initial target U-trees, source sentences 
and word alignment, we extract minimal GHKM 
translation rules7 in terms of frontier nodes (Galley 
et al., 2004). Frontier nodes are the tree nodes that 
can map onto contiguous substrings on the source 
side via word alignment. For example, the bold 
italic nodes with shadows in Figure 2 are frontier 
nodes. In addition, it should be noted that the word 
alignment is fixed8, and we only explore the entire 
space of tree structures in our sampler. Differently, 
Cohn and Blunsom (2009) designed a sampler to 
infer an STSG by fixing the tree structure and 
exploring the space of alignment. We believe that 
it is possible to investigate the space of both tree 
structure and alignment simultaneously. This 
subject will be one of our future work topics. 

For each training instance (a pair of source 
sentence and target U-tree structure), the extracted 
GHKM minimal translation rules compose a 
unique STSG derivation9. Moreover, all the rules 
developed from the training data constitute an 
initial STSG for the Gibbs sampler. 
                                                           
7 We attach the unaligned word to the lowest frontier 
node that can cover it in terms of word alignment. 
8 The sampler might reinforce the frequent alignment 
errors (AE), which would harm the translation model 
(TM). Actually, the frequent AEs also greatly impair the 
conventional TM. Besides, our sampler encourages the 
correct alignments and simultaneously discourages the 
infrequent AEs. Thus, compared with the conventional 
TMs, we believe that our final TM would not be worse 
due to AEs. Our final experiments verify this point and 
we will conduct a much detailed analysis in future. 
9 We only use the minimal GHKM rules (Galley et al., 
2004) here to reduce the complexity of the sampler. 

247



jin-tian jian-mianwo-men zai-ci

PRP+VBP

today

NN

we

PRP

meet

VBP

again

RB

Ӻཙ ᡁԜ ⅑޽ 㿱䶒

PRP...RB

NN...RB

 
Figure 2. Illustration of an initial U-tree structure. The 
bold italic nodes with shadows are frontier nodes. 

Under this initial STSG, the sampler modifies 
the initial U-trees (initial sample) to create a series 
of new ones (new samples) by the Gibbs operators. 
Consequently, new STSGs are created based on the 
new U-trees simultaneously and used for the next 
sampling operation. Repeatedly and after a number 
of iterations, we can obtain the final U-trees for 
building translation models. 

5.2 The Gibbs Operators 

In this section, we develop three novel Gibbs 
operators for the sampler. They explore the entire 
space of the U-tree structures by performing local 
changes on the tree nodes. 

For a U-tree of a given sentence, we define s-
node as the non-root node covering at least two 
words. Thus, the set of s-node contains all the tree 
nodes except the root node, the pre-terminal nodes 
and leaf nodes, which we call non-s-node. For 
example, in Figure 2, PRB…RB and PRP+VBP are 
s-nodes, while NN and NN…RB are non-s-nodes. 
Since the POS tag sequence of the sentence is 
fixed, all non-s-nodes would stay unchanged in all 
possible U-trees of the sentence. Based on this fact, 
our Gibbs operators work only on s-nodes. 

Further, we assign 3 descendant candidates (DC) 
for each s-node: its left child, right child and its 
sibling. For example, in Figure 3, the 3 DCs for the 
s-node are node PRP, VBP and RB respectively. 
According to the different DCs it governs, every s-
node might be in one of the two different states: 

1) Left state: as Figure 3(a) shows, the s-node 
governs the left two DCs, PRP and VBP, 
and is labeled PRP+VBP. 

2) Right state: as Figure 3(b) shows, the s-node 
governs the right two DCs, VBP and RB, and 
is labeled VBP+RB. 

For a specific U-tree, the states of s-nodes are fixed. 
Thus, by changing an s-node’s state, we can easily 
transform this U-tree to another one, i.e., from the 
current sample to a new one. 

To formulate the U-tree transformation process, 
we associate a binary variable Ȍ䌜{0,1} with each 
s-node, indicating whether the s-node is in the left 
�Ȍ �� or right state �Ȍ ��� Then we can change 
the U-tree by changing value of the Ȍ parameters. 

Our first Gibbs operator, Rotate, just works by 
sampling value of the Ȍ�parameters, one at a time, 
and changing the U-tree accordingly. For example, 
in Figure 3(a), the s-node is currently in the left 
VWDWH��Ȍ ����:H�VDPSOH�WKH�Ȍ�RI�WKLV�QRGH��DQG�LI�
WKH�VDPSOHG�YDOXH�RI�Ȍ�LV����ZH�NHHS�WKH�VWUXFWXUH�
unchanged, i.e., in the left state. Otherwise, we 
change its state to the right state �Ȍ ��, and 
transform the U-tree to Figure 3(b) accordingly. 

jian-mianwo-men zai-ci

s-node

we

PRP

meet

VBP

again

RB

ᡁԜ ⅑޽ 㿱䶒

PRP...RB

PRP+VBP

jian-mianwo-men zai-ci

s-node

we

PRP

meet

VBP

again

RB

ᡁԜ ⅑޽ 㿱䶒

PRP...RB

VBP+RB

(b) Ȍ=1(a) Ȍ=0

Rotate

 
Figure 3. Illustration of the Rotate operator. In the 
figure, (a) and (b) denote the s-node’s left state and right 
state respectively. The bold italic nodes with shadows in 
the figure are frontier nodes. 

Obviously, towards an s-node for sampling, the 
two values of Ȍ would define two different U-trees. 
Using the GHKM algorithm (Galley et al. 2004), 
we can get two different STSG derivations from 
the two U-trees based on the fixed word alignment. 
Each derivation carries a set of STSG rules (i.e., 
minimal GHKM translation rules) of its own. In 
the two derivations, the STSG rules defined by the 
two states include the one rooted at the s-node’s 
lowest ancestor frontier node, and the one rooted at 
the s-node if it is a frontier node. For instance, in 
Figure 3(a), as the s-node is not a frontier node, the 
left state (Ȍ �) defines only one rule: 

 
0 2 1

0 1 2

:
... ( ( : : ) : )

leftr x x x
PRP RB PRP VBP x PRP x VBP x RB

o
�

 

Differently, in Figure 3(b), the s-node is a 
frontier node and thus the right state (Ȍ 1) defines 
two rules: 

248



 0 0 1 0 1

1 1 0 0 1

: ... ( : : )
: ( : : )

right

right

r x x PRP RB x PRP x VBP RB
r x x VBP RB x VBP x RB

�

�

o �
o �

 

Using these STSG rules, the two derivations are 
evaluated as follows (We use the value of Ȍ to 
denote the corresponding STSG derivation): 

0 1

0 1 0

( 0) ( | )

( 1) ( , | )

( | ) ( | , )

left

right right

right right right

p p r r

p p r r r

p r r p r r r

�

�
� �

� �
� � �

<  v

<  v

 

 

Where r�  refers to the conditional context, i.e., the 
set of all other rules in the training data. All the 
probabilities in the above formulas are computed 
by Equation(3). We then normalize the two scores 
and sample a value of Ȍ based on them. With the 
Bayesian model described in section 4, the sampler 
ZLOO�SUHIHU�WKH�Ȍ�WKDW�SURGXFHV�VPDOO�DQG�IUHTXHQW�
STSG rules. This tendency results in more frontier 
nodes in the U-tree (i.e., the s-node tends to be in 
the state that is a frontier node), which will factor 
the training instance into more small STSG rules. 
In this way, the overall likelihood of the bilingual 
data is improved by the sampler. 

Theoretically, the Rotate operator is capable of 
arriving at any possible U-tree from the initial U-
tree. This is because we can first convert the initial 
U-tree to a left branch tree by the Rotate operator, 
and then transform it to any other U-tree. However, 
it may take a long time to do so. Thus, to speed up 
the structure transformation process, we employ a 
Two-level-Rotate operator, which takes a pair of s-
nodes in a parent-child relationship as a unit for 
sampling. Similar to the Rotate operator, we also 
assign a binary variable ȟ䌜{0,1} to each unit and 
update the U-tree by sampling the value of ȟ. The 
method of sampling ȟ is similar to the one used for 
Ȍ. Figure 4 shows an example of the operator. As 
shown in Figure 4(a), the unit NN…VBP and 
PRP+VBP is in the left state (ȟ=0), and governs 
the left three descendants: NN, PRP, and VBP. By 
the Two-level-Rotate operator, we can convert the 
unit to Figure 4(b), i.e., the ULJKW�VWDWH��ȟ=1). Just as 
Figure 4(b) shows, the governed descendants of the 
unit are turned to PRP, VBP, and RB. 

It may be confusing when choosing the parent-
child s-node pair for sampling because the parent 
node always faces two choices: combining the left 
child or right child for sampling. To avoid 

confusion, we split the Two-level-Rotate operator 
into two operators: Two-level-left-Rotate operator, 
which works with the parent node and its left child, 
and Two-level-right-Rotate operator, which only 
considers the parent node and its right child 10 . 
Therefore, the operator used in Figure 4 is a Two-
level-right-Rotate operator. 

jin-tian jian-mianwo-men zai-ci

PRP+VBP

Today

NN

we

PRP

meet

VBP

again

RB

Ӻཙ ᡁԜ ⅑޽ 㿱䶒

NN...VBP

NN...RB

jin-tian jian-mianwo-men zai-ci

VBP+RB

Today

NN

we

PRP

meet

VBP

again

RB

Ӻཙ ᡁԜ ⅑޽ 㿱䶒

PRP...RB

NN...RB

(a) ȟ=0 (b) ȟ=1

Two-level-right-Rotate

 
Figure 4. Illustration of the Two-level-Rotate operator. 
The bold italic nodes with shadows in the Figure are 
frontier nodes. 

During sampling, for each training instance, the 
sampler first applies the Two-level-left-Rotate 
operator to all candidate pairs of s-nodes (parent s-
node and its left child s-node) in the U-tree. After 
that, the Two-level-right-Rotate operator is applied 
to all the candidate pairs of s-nodes (parent s-node 
and its right child s-node). Then, we use the Rotate 
operator on every s-node in the U-tree. By utilizing 
the operators separately, we can guarantee that our 
sampler satisfies detailed balance. We visit all the 
training instances in a random order (one iteration). 
After a number of iterations, we can obtain the 
final U-tree structures and build the tree-based 
translation model accordingly. 

6 Experiments 

6.1 Experimental Setup 

The experiments are conducted on Chinese-to-
English translation. The training data are the FBIS 
corpus with approximately 7.1 million Chinese 
words and 9.2 million English words. We obtain 
the bidirectional word alignment with GIZA++, 
and then adopt the grow-diag-final-and strategy to 
obtain the final symmetric alignment. We train a 5-
gram language model on the Xinhua portion of the 
English Gigaword corpus and the English part of 

                                                           
10 We can also take more nodes as a unit for sampling, 
but this would make the algorithm much more complex. 
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the training data. For tuning and testing, we use the 
NIST MT 2003 evaluation data as the development 
set, and use the NIST MT04 and MT05 data as the 
test set. We use MERT (Och, 2004) to tune 
parameters. Since MERT is prone to search errors, 
we run MERT 5 times and select the best tuning 
parameters in the tuning set. The translation quality 
is evaluated by case-insensitive BLEU-4 with the 
shortest length penalty. The statistical significance 
test is performed by the re-sampling approach 
(Koehn, 2004). 

To create the baseline system, we use the open-
source Joshua 4.0 system (Ganitkevitch et al., 2012) 
to build a hierarchical phrase-based (HPB) system, 
and a syntax-augmented MT (SAMT) 11  system 
(Zollmann and Venugopal, 2006) respectively. 

The translation system used for testing the 
effectiveness of our U-trees is our in-house string-
to-tree system (abbreviated as s2t). The system is 
implemented based on (Galley et al., 2006) and 
(Marcu et al. 2006). In the system, we extract both 
the minimal GHKM rules (Galley et al., 2004), and 
the rules of SPMT Model 1 (Galley et al., 2006) 
with phrases up to length L=5 on the source side. 
We then obtain the composed rules by composing 
two or three adjacent minimal rules. 

To build the above s2t system, we first use the 
parse tree, which is generated by parsing the 
English side of the bilingual data with the Berkeley 
parser (Petrov et al., 2006). Then, we binarize the 
English parse trees using the head binarization 
approach (Wang et al., 2007) and use the resulting 
binary parse trees to build another s2t system. 

For the U-trees, we run the Gibbs sampler for 
1000 iterations on the whole corpus. The sampler 
uses 1,087s per iteration, on average, using a single 
core, 2.3 GHz Intel Xeon machine. For the 
hyperparameters, we set Į to 0.1 and pexpand = 1/3 
to give a preference to the rules with small 
fragments. We built an s2t translation system with 
the achieved U-trees after the 1000th iteration. We 
only use one sample to extract the translation 
grammar because multiple samples would result in 
a grammar that would be too large. 

                                                           
11 From (Zollmann and Vogel, 2011), we find that the 
performance of SAMT system is similar with the 
method of labeling SCFG rules with POS tags. Thus, to 
be convenient, we only conduct experiments with the 
SAMT system. 

6.2 Analysis of The Gibbs Sampler 

To evaluate the effectiveness of the Gibbs sampler, 
we explore the change of the training data’s 
likelihood with increasing sampling iterations. 
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Figure 5. Histograms of the training data’s likelihood vs. 
the number of sampling iterations. In the figure, random 
1 to 3 refers to three independent runs of the sampler 
with different initial U-trees as initialization states. 

Figure 5 depicts the negative-log likelihood of 
the training data after several sampling iterations. 
The results show that the overall likelihood of the 
training data is improved by the sampler. Moreover, 
comparing the three independent runs, we see that 
although the sampler begins with different initial 
U-trees, the training data’s likelihood is always 
similar during sampling. This demonstrates that 
our sampler is not sensitive to the random initial 
U-trees and can always arrive at a good final state 
beginning from different initialization states. Thus, 
we only utilize the U-trees from random 1 for 
further analysis hereafter. 
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Figure 6. The total number of frontier nodes for the 
three independent runs. 

6.3 Analysis of the U-tree Structure 

Acquiring better U-trees for translation is our final 
purpose. However, are the U-trees achieved by the 
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Gibbs sampler appropriate for the tree-based 
translation model? 

To answer this question, we first analyze the 
effect of the sampler on the U-trees. Figure 6 
shows the total number of frontier nodes in the 
training data during sampling. The results show 
that the number of frontier nodes increases with 
increased sampling. This tendency indicates that 
our sampler prefers the tree structure with more 
frontier nodes. Consequently, the final U-tree 
structures can always be factored into many small 
minimal translation rules. Just as we have argued 
in section 4.1, this is beneficial for a good 
translation grammar. 

To demonstrate the above analysis, Figure 7 
shows a visual comparison between our U-tree 
(from random 1) and the binary parse tree (found 
by head binarization). Because the traditional parse 
tree is not binarized, we do not consider it for this 
analysis. Figure 7 shows that whether it is the 
target tree fragment or the source string of the rule, 
our U-trees always tend to obtain the smaller 
ones12. This comparison verifies that our Bayesian 
tree induction model is effective in shifting the tree 
structures away from complex minimal rules, 
which tend to negatively affect translation. 
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Figure 7. Histograms over minimal translation rule 
statistics comparing our U-trees and binary parse trees. 

                                                           
12 Binary parse trees get more tree fragments with two 
nodes than U-trees. This is because there are many 
unary edges in the binary parse trees, while no unary 
edge exists in our U-trees. 

Specifically, we show an example of a binary 
parse tree and our U-tree in Figure 8. The example 
U-tree is more conducive to extracting effective 
translation rules. For example, to translate the 
Chinese phrase “ӵ Ѫ”, we can extract a rule (R2 
in Figure 9) directly from the U-tree because the 
phrase “ӵ Ѫ” is governed by a frontier node, i.e., 
node “VBD+RB”. However, because no node 
governs “ӵ Ѫ” in the binary parse tree, we can 
only obtain a rule (R1 in Figure 9) with many extra 
nodes and edges, such as node CD in R1. Due to 
these extra things, R1 is too large to show good 
generality. 

was

QP

dollarsUS1500only

VBD NNSNNPCDRB

NP

NP

ӵ 㖾ݳаॳӄⲮѪ

NP-COMP

(a) binary parse tree

(b) U-tree

was dollarsUS1500only

VBD NNSNNPCDRB

ӵ 㖾ݳаॳӄⲮѪ

VBD+RB NNP+NNS

CD...NNS

VBD...NNS

 
Figure 8. Example of different tree structures. The node 
NP-COMP is achieved by head binarization. The bold 
italic nodes with shadows denote frontier nodes. 

was QP

only
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CD:x0RB

NP

NP

NP-COMP:x1

was only

VBD RB

ӵ ѪVBD+RB

ӵ x1x0Ѫ

R1:

R2:

 
Figure 9. Example rules to translate the Chinese phrase 
“ӵ  Ѫ .” R1 is extracted from Figure 8(a), i.e., the 
binary parse tree. R2 is from Figure 8(b), i.e., the U-tree. 
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Based on the above analysis, we can conclude 
that our proposed U-tree structures are conducive 
to extracting small, minimal translation rules. This 
indicates that the U-trees are more consistent with 
the word alignment and are good at capturing 
bilingual mapping information. Therefore, because 
parse trees are always constrained by cross-lingual 
structure divergence, we believe that the proposed 
U-trees would result in a better translation 
grammar. We demonstrate this conclusion in the 
next sub-section. 

6.4 Final Translation Results 

The final translation results are shown in Table 1. 
In the table, lines 3-6 refer to the string-to-tree 
systems built with different types of tree structures. 

Table 1 shows that all our s2t systems 
outperform the Joshua (HPB) and Joshua (SAMT) 
system significantly. This comparison verifies the 
superiority of our in-house s2t system. Moreover, 
the results shown in Table 1 also demonstrate the 
effectiveness of head binarization, which helps to 
improve the s2t system using parse trees in all 
translation tasks. 

To test the effectiveness of our U-trees, we give 
the s2t translation system using the U-trees (from 
random 1). The results show that the system using 
U-trees achieves the best translation result from all 
of the systems. It surpasses the s2t system using 
parse trees by 1.47 BLEU points on MT04 and 
1.44 BLEU points on MT05. Moreover, even using 
the binary parse trees, the achieved s2t system is 
still lower than our U-tree-based s2t system by 
0.97 BLEU points on the combined test set. From 
the translation results, we can validate our former 
analysis that the U-trees generated by our Bayesian 
tree induction model are more appropriate for 
string-to-tree translation than parse trees. 

System MT04 MT05 All 
Joshua (HPB) 31.73 28.82 30.64 

Joshua (SAMT) 32.48 29.77 31.56 
s2t (parse-tree) 33.73* 30.25* 32.75* 

s2t (binary-parse-tree) 34.09* 30.99*# 32.92* 
s2t (U-tree) 35.20*# 31.69*# 33.89*# 

Table 1. Results (in case-insensitive BLEU-4 scores) of 
s2t systems using different types of trees. The “*” and 
“#” denote that the results are significantly better than 
the Joshua (SAMT) system and the s2t system using 
parse trees (p<0.01). 

6.5 Large Data 

We also conduct an experiment on a larger 
bilingual training data from the LDC corpus13. The 
training corpus contains 2.1M sentence pairs with 
approximately 27.7M Chinese words and 31.9M 
English words. Similarly, we train a 5-gram 
language model using the Xinhua portion of the 
English Gigaword corpus and the English part of 
the training corpus. With the same settings as 
before, we run the Gibbs sampler for 1000 
iterations and utilize the final U-tree structure to 
build a string-to-tree translation system. 

The final BLEU score results are shown in Table 
2. In the scenario with a large data, the string-to-
tree system using our U-trees still significantly 
outperforms the system using parse trees. 

System MT04 MT05 All 
Joshua (HPB) 34.55 33.11 34.01 

Joshua (SAMT) 34.76 33.72 34.37 
s2t (parse-tree) 36.40* 34.53* 35.70* 

s2t (binary-parse-tree) 37.38*# 35.14*# 36.54*# 
s2t (U-tree) 38.02*# 36.12*# 37.34*# 

Table 2. Results (in case-insensitive BLEU-4 scores) for 
the large training data. The meaning of “*” and “#” are 
similar to Table 1. 

7 Conclusion and Future Work 

In this paper, we explored a new direction to build 
a tree-based model based on unsupervised 
Bayesian trees rather than supervised parse trees. 
To achieve this purpose, we have made two major 
efforts in this paper: 

(1) We have proposed a novel generative 
Bayesian model to induce effective U-trees for 
tree-based translation. We utilized STSG in the 
model to grasp bilingual mapping information. We 
further imposed a reasonable hierarchical prior on 
the tree structures, encouraging small and frequent 
minimal rules for translation. 

(2) To train the Bayesian tree induction 
model efficiently, we developed a Gibbs sampler 
with three novel Gibbs operators. The operators are 
designed specifically to explore the infinite space 
of tree structures by performing local changes on 
the tree structure. 

                                                           
13 LDC category number : LDC2000T50, LDC2002E18, 
LDC2003E07, LDC2004T07, LDC2005T06, 
LDC2002L27, LDC2005T10 and LDC2005T34. 
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Experiments on the string-to-tree translation 
model demonstrated that our U-trees are better 
than the parse trees. The translation results verify 
that the well-designed unsupervised trees are 
actually more appropriate for tree-based translation 
than parse trees. Therefore, we believe that the 
unsupervised tree structure would be a promising 
research direction for tree-based translation. 

In future, we plan to testify our sampler with 
various initial trees, such as the tree structure 
formed by (Zhang et al., 2008). We also plan to 
perform a detailed empirical comparison between 
STST and SCFG under our settings. Moreover, we 
will further conduct experiments to compare our 
methods with other relevant works, such as (Cohn 
and Blunsom, 2009) and (Burkett and Klein, 2012). 
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