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TALP Research Center

Universitat Politècnica de Catalunya
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Abstract

In this paper we introduce a joint arc-factored
model for syntactic and semantic dependency
parsing. The semantic role labeler predicts
the full syntactic paths that connect predicates
with their arguments. This process is framed
as a linear assignment task, which allows
to control some well-formedness constraints.
For the syntactic part, we define a standard
arc-factored dependency model that predicts
the full syntactic tree. Finally, we employ dual
decomposition techniques to produce consis-
tent syntactic and predicate-argument struc-
tures while searching over a large space of
syntactic configurations. In experiments on
the CoNLL-2009 English benchmark we ob-
serve very competitive results.

1 Introduction

Semantic role labeling (SRL) is the task of identi-
fying the arguments of lexical predicates in a sen-
tence and labeling them with semantic roles (Gildea
and Jurafsky, 2002; Màrquez et al., 2008). SRL is
an important shallow semantic task in NLP since
predicate-argument relations directly represent se-
mantic properties of the type “who” did “what” to
“whom”, “how”, and “why” for events expressed by
predicates (typically verbs and nouns).

Predicate-argument relations are strongly related
to the syntactic structure of the sentence: the ma-
jority of predicate arguments correspond to some
syntactic constituent, and the syntactic structure that
connects an argument with the predicate is a strong
indicator of its semantic role. Actually, semantic

roles represent an abstraction of the syntactic form
of a predicative event. While syntactic functions of
arguments change with the form of the event (e.g.,
active vs. passive forms), the semantic roles of argu-
ments remain invariant to their syntactic realization.

Consequently, since the first works, SRL systems
have assumed access to the syntactic structure of the
sentence (Gildea and Jurafsky, 2002; Carreras and
Màrquez, 2005). A simple approach is to obtain
the parse trees as a pre-process to the SRL system,
which allows the use of unrestricted features of the
syntax. However, as in other pipeline approaches in
NLP, it has been shown that the errors of the syn-
tactic parser severely degrade the predictions of the
SRL model (Gildea and Palmer, 2002). A common
approach to alleviate this problem is to work with
multiple alternative syntactic trees and let the SRL
system optimize over any input tree or part of it
(Toutanova et al., 2008; Punyakanok et al., 2008).
As a step further, more recent work has proposed
parsing models that predict syntactic structure aug-
mented with semantic predicate-argument relations
(Surdeanu et al., 2008; Hajič et al., 2009; Johansson,
2009; Titov et al., 2009; Lluı́s et al., 2009), which is
the focus of this paper. These joint models should
favor the syntactic structure that is most consistent
with the semantic predicate-argument structures of
a sentence. In principle, these models can exploit
syntactic and semantic features simultaneously, and
could potentially improve the accuracy for both syn-
tactic and semantic relations.

One difficulty in the design of joint syntactic-
semantic parsing models is that there exist impor-
tant structural divergences between the two layers.
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3 A Syntactic-Semantic Dependency
Model

We will describe structures of syntactic and seman-
tic dependencies with vectors of binary variables.
We will denote by yh,m,l a syntactic dependency
from head token h to dependant token m labeled
with syntactic function l. Similarly we will denote
by zp,a,r a semantic dependency between predicate
token p and argument token a labeled with seman-
tic role r. We will use y and z to denote vectors of
binary variables indexed by syntactic and semantic
dependencies, respectively.

A joint model for syntactic and semantic depen-
dency parsing could be defined as:

argmax
y,z

s syn(x,y) + s srl(x, z,y) .

In the equation, s syn(x,y) gives a score for the
syntactic tree y. In the literature, it is standard to
use arc-factored models defined as

s syn(x,y) =
�

yh,m,l=1

s syn(x, h,m, l) ,

where we overload s syn to be a function that
computes scores for individual labeled syntactic
dependencies. In discriminative models one has
s syn(x, h,m, l) = wsyn · fsyn(x, h,m, l), where
fsyn is a feature vector for the syntactic dependency
and wsyn is a vector of parameters (McDonald et al.,
2005).

The other term, s srl(x, z,y), gives a score for
a semantic dependency structure using the syntactic
structure y as features. Previous work has empiri-
cally proved the importance of exploiting syntactic

features in the semantic component (Gildea and Ju-
rafsky, 2002; Xue and Palmer, 2004; Punyakanok et
al., 2008). However, without further assumptions,
this property makes the optimization problem com-
putationally hard. One simple approximation is to
use a pipeline model: first compute the optimal syn-
tactic tree, and then optimize for the best semantic
structure given the syntactic tree. In the rest of the
paper we describe a method that searches over syn-
tactic and semantic dependency structures jointly.

We first impose the assumption that syntactic fea-
tures of the semantic component are restricted to the
syntactic path between a predicate and an argument,
following previous work (Johansson, 2009). For-
mally, for a predicate p, argument a and role r we
will define a vector of dependency indicators πp,a,r

similar to the ones above: πp,a,r
h,m,l indicates if a de-

pendency �h,m, l� is part of the syntactic path that
links predicate p with token a. Figure 1 gives an ex-
ample of one such paths. Given full syntactic and
semantic structures y and z it is trivial to construct a
vector π that is a concatenation of vectors πp,a,r for
all �p, a, r� in z. We can now define a linear seman-
tic model as

s srl(x, z,π) =
�

zp,a,r=1

s srl(x, p, a, r,πp,a,r) ,

(1)
where s srl computes a score for a semantic de-
pendency �p, a, r� together with its syntactic path
πp,a,r. As in the syntactic component, this function
is typically defined as a linear function over a set of
features of the semantic dependency and its path.

With this joint model, the inference problem can
be formulated as:

argmax
y,z,π

s syn(x,y) + s srl(x, z,π) (2)

subject to

cTree : y is a valid dependency tree

cRole : ∀p, r :
�

a

zp,a,r ≤ 1

cArg : ∀p, a :
�

r

zp,a,r ≤ 1

cPath : ∀p, a, r : if zp,a,r = 1 then

πp,a,r is a path from p to a

otherwise πp,a,r = 0

cSubtree : ∀p, r, a : πp,r,a is a subtree of y

Figure 1: A sentence with syntactic dependencies (top)
and semantic dependencies for the predicates “loves” and
“play” (bottom). The thick arcs illustrate a structural di-
vergence where the argument “Mary” is linked to “play”
with a path involving three syntactic dependencies.

This is clearly seen in dependency-based representa-
tions of syntax and semantic roles (Surdeanu et al.,
2008), such as in the example in Figure 1: the con-
struct “loves to” causes the argument “Mary” to be
syntactically distant from the predicate “play”. Lin-
guistic phenomena such as auxiliary verbs, control
and raising, typically result in syntactic structures
where semantic arguments are not among the direct
dependants of their predicate —e.g., about 25% of
arguments are distant in the English development set
of the CoNLL-2009 shared task. Besides, standard
models for dependency parsing crucially depend on
arc factorizations of the dependency structure (Mc-
Donald et al., 2005; Nivre and Nilsson, 2005), other-
wise their computational properties break. Hence, it
is challenging to define efficient methods for syntac-
tic and semantic dependency parsing that can exploit
features of both layers simultaneously. In this paper
we propose a method for this joint task.

In our method we define predicate-centric seman-
tic models that, rather than predicting just the ar-
gument that realizes each semantic role, they pre-
dict the full syntactic path that connects the predi-
cate with the argument. We show how efficient pre-
dictions with these models can be made using as-
signment algorithms in bipartite graphs. Simulta-
neously, we use a standard arc-factored dependency
model that predicts the full syntactic tree of the sen-
tence. Finally, we employ dual decomposition tech-
niques (Koo et al., 2010; Rush et al., 2010; Sontag
et al., 2010) to find agreement between the full de-
pendency tree and the partial syntactic trees linking
each predicate with its arguments. In summary, the

main contributions of this paper are:

• We frame SRL as a weighted assignment prob-
lem in a bipartite graph. Under this framework
we can control assignment constraints between
roles and arguments. Key to our method, we
can efficiently search over a large space of syn-
tactic realizations of semantic arguments.

• We solve joint inference of syntactic and se-
mantic dependencies with a dual decomposi-
tion method, similar to that of Koo et al. (2010).
Our system produces consistent syntactic and
predicate-argument structures while searching
over a large space of syntactic configurations.

In the experimental section we compare joint
and pipeline models. The final results of our joint
syntactic-semantic system are competitive with the
state-of-the-art and improve over the best results
published by a joint method on the CoNLL-2009
English dataset.

2 A Syntactic-Semantic Dependency
Model

We first describe how we represent structures of syn-
tactic and semantic dependencies like the one in Fig-
ure 1. Throughout the paper, we will assume a fixed
input sentence x with n tokens where lexical predi-
cates are marked. We will also assume fixed sets of
syntactic functions Rsyn and semantic roles Rsem.
We will represent depencency structures using vec-
tors of binary variables. A variable yh,m,l will in-
dicate the presence of a syntactic dependency from
head token h to dependant tokenm labeled with syn-
tactic function l. Then, a syntactic tree will be de-
noted as a vector y of variables indexed by syntactic
dependencies. Similarly, a variable zp,a,r will indi-
cate the presence of a semantic dependency between
predicate token p and argument token a labeled with
semantic role r. We will represent a semantic role
structure as a vector z indexed by semantic depen-
dencies. Whenever we enumerate syntactic depen-
dencies 〈h,m, l〉 we will assume that they are in the
valid range for x, i.e. 0 ≤ h ≤ n, 1 ≤ m ≤ n,
h 6= m and l ∈ Rsyn, where h = 0 stands for a
special root token. Similarly, for semantic depen-
dencies 〈p, a, r〉 we will assume that p points to a
predicate of x, 1 ≤ a ≤ n and r ∈ Rsem.
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A joint model for syntactic and semantic depen-
dency parsing could be defined as:

argmax
y,z

s syn(x,y) + s srl(x, z,y) . (1)

In the equation, s syn(x,y) gives a score for the
syntactic tree y. In the literature, it is standard to
use arc-factored models defined as

s syn(x,y) =
∑

yh,m,l=1

s syn(x, h,m, l) , (2)

where we overload s syn to be a function that
computes scores for individual syntactic depen-
dencies. In linear discriminative models one has
s syn(x, h,m, l) = wsyn · fsyn(x, h,m, l), where
fsyn is a feature vector for a syntactic dependency
and wsyn is a vector of parameters (McDonald et
al., 2005). In Section 6 we describe how we trained
score functions with discriminative methods.

The other term in Eq. 1, s srl(x, z,y), gives a
score for a semantic dependency structure z using
features of the syntactic structure y. Previous work
has empirically proved the importance of exploit-
ing syntactic features in the semantic component
(Gildea and Jurafsky, 2002; Xue and Palmer, 2004;
Punyakanok et al., 2008). However, without further
assumptions, this property makes the optimization
problem computationally hard. One simple approx-
imation is to use a pipeline model: first compute the
optimal syntactic tree y, and then optimize for the
best semantic structure z given y. In the rest of the
paper we describe a method that searches over syn-
tactic and semantic dependency structures jointly.

We first note that for a fixed semantic dependency,
the semantic component will typically restrict the
syntactic features representing the dependency to a
specific subtree of y. For example, previous work
has restricted such features to the syntactic path that
links a predicate with an argument (Moschitti, 2004;
Johansson, 2009), and in this paper we employ this
restriction. Figure 1 gives an example of a sub-
tree, where we highlight the syntactic path that con-
nects the semantic dependency between “play” and
“Mary” with role ARG0.

Formally, for a predicate p, argument a and role
r we define a local syntactic subtree πp,a,r repre-
sented as a vector: πp,a,rh,m,l indicates if a dependency

〈h,m, l〉 is part of the syntactic path that links pred-
icate p with token a and role r.1 Given full syntactic
and semantic structures y and z it is trivial to con-
struct a vector π that concatenates vectors πp,a,r for
all 〈p, a, r〉 in z. The semantic model becomes

s srl(x, z,π) =
∑

zp,a,r=1

s srl(x, p, a, r,πp,a,r) ,

(3)
where s srl computes a score for a semantic de-
pendency 〈p, a, r〉 together with its syntactic path
πp,a,r. As in the syntactic component, this function
is typically defined as a linear function over a set of
features of the semantic dependency and its path.

The inference problem of our joint model is:

argmax
y,z,π

s syn(x,y) + s srl(x, z,π) (4)

subject to

cTree : y is a valid dependency tree

cRole : ∀p, r :
∑

a

zp,a,r ≤ 1

cArg : ∀p, a :
∑

r

zp,a,r ≤ 1

cPath : ∀p, a, r : if zp,a,r = 1 then

πp,a,r is a path from p to a,

otherwise πp,a,r = 0

cSubtree : ∀p, a, r : πp,a,r is a subtree of y

Constraint cTree dictates that y is a valid depen-
dency tree; see (Martins et al., 2009) for a detailed
specification. The next two sets of constraints con-
cern the semantic structure only. cRole imposes that
each semantic role is realized at most once.2 Con-
versely, cArg dictates that an argument can realize
at most one semantic role in a predicate. The final
two sets of constraints model the syntactic-semantic
interdependencies. cPath imposes that each πp,a,r

represents a syntactic path between p and a when-
ever there exists a semantic relation. Finally, cSub-
tree imposes that the paths in π are consistent with
the full syntactic structure, i.e. they are subtrees.

1In this paper we say that structures πp,a,r are paths from
predicates to arguments, but they could be more general sub-
trees. The condition to build a joint system is that these subtrees
must be parseable in the way we describe in Section 3.1.

2In general a semantic role can be realized with more than
one argument, though it is rare. It is not hard to modify our
framework to allow for a maximum number of occurrences of a
semantic role.
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In Section 3 we define a process that optimizes
the semantic structure ignoring constraint cSubtree.
Then in Section 4 we describe a dual decomposition
method that uses the first process repeatedly to solve
the joint problem.

3 SRL as Assignment

In this section we frame the problem of finding se-
mantic dependencies as a linear assignment task.
The problem we optimize is:

argmax
z,π

s srl(x, z,π) (5)

subject to cRole, cArg, cPath

In this case we dropped the full syntactic structure
y from the optimization in Eq. 4, as well as the
corresponding constraints cTree and cSubtree. As
a consequence, we note that the syntactic paths π
are not tied to any consistency constraint other than
each of the paths being a well-formed sequence of
dependencies linking the predicate to the argument.
In other words, the optimal solution in this case does
not guarantee that the set of paths from a predicate to
all of its arguments satisfies tree constraints. We first
describe how these paths can be optimized locally.
Then we show how to find a solution z satisfying
cRole and cArg using an assignment algorithm.

3.1 Local Optimization of Syntactic Paths
Let ẑ and π̂ be the optimal values of Eq. 5. For any
〈p, a, r〉, let

π̃p,a,r = argmax
πp,a,r

s srl(x, p, a, r,πp,a,r) . (6)

For any 〈p, a, r〉 such that ẑp,a,r = 1 it has to be that
π̂p,a,r = π̃p,a,r. If this was not true, replacing π̂p,a,r

with π̃p,a,r would improve the objective of Eq. 5
without violating the constraints, thus contradicting
the hypothesis about optimality of π̂. Therefore, for
each 〈p, a, r〉 we can optimize its best syntactic path
locally as defined in Eq. 6.

In this paper, we will assume access to a list of
likely syntactic paths for each predicate p and argu-
ment candidate a, such that the optimization in Eq. 6
can be solved explicitly by looping over each path in
the list. The main advantage of this method is that,
since paths are precomputed, our model can make
unrestricted use of syntactic path features.

(1)
Mary

(2)

plays
(3)

guitar
(4)

NULL
(5)

NULL
(6)

NULL

(1)

ARG0
(2)

ARG1
(3)

ARG2
(4)

NULL
(5)

NULL
(6)

NULL

W1,1

W4,2W2,3

W3,4

W5,5 W6,6W1,1

W4,2W2,3

W3,4

W5,5 W6,6W1,1

W4,2W2,3

W3,4

W5,5 W6,6W1,1

W4,2W2,3

W3,4

W5,5 W6,6W1,1

W4,2W2,3

W3,4

W5,5 W6,6W1,1

W4,2W2,3

W3,4

W5,5 W6,6

Figure 2: Illustration of the assignment graph for the sen-
tence “Mary plays guitar”, where the predicate “plays”
can have up to three roles: ARG0 (agent), ARG1 (theme)
and ARG2 (benefactor). Nodes labeled NULL represent
a null role or token. Highlighted edges are the correct
assignment.

It is simple to employ a probabilistic syntactic de-
pendency model to create the list of likely paths for
each predicate-argument pair. In the experiments we
explore this approach and show that with an average
of 44 paths per predicate we can recover 86.2% of
the correct paths.

We leave for future work the development of ef-
ficient methods to recover the most likely syntactic
structure linking an argument with its predicate.

3.2 The Assignment Algorithm

Coming back to solving Eq. 5, it is easy to see
that an optimal solution satisfying constraints cRole
and cArg can be found with a linear assignment
algorithm. The process we describe determines
the predicate-argument relations separately for each
predicate. Assume a bipartite graph of size N with
role nodes r1 . . . rN on one side and argument nodes
a1 . . . aN on the other side. Assume also a matrix of
non-negative scoresWi,j corresponding to assigning
argument aj to role ri. A linear assignment algo-
rithm finds a bijection f : i→ j from roles to argu-
ments that maximizes

∑N
i=1Wi,f(i). The Hungarian

algorithm finds the exact solution to this problem in
O(N3) time (Kuhn, 1955; Burkard et al., 2009).

All that is left is to construct a bipartite graph rep-
resenting predicate roles and sentence tokens, such
that some roles and tokens can be left unassigned,
which is a common setting for assignment tasks. Al-
gorithm 1 describes a procedure for constructing a
weighted bipartite graph for SRL, and Figure 2 il-
lustrates an example of a bipartite graph. We then
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Algorithm 1 Construction of an Assignment Graph
for Semantic Role Labeling

Let p be a predicate with k possible roles. Let n be the
number of argument candidates in the sentence. This al-
gorithm creates a bipartite graph withN = n+k vertices
on each side.

1. Create role vertices ri for i = 1 . . . N , where

• for 1 ≤ i ≤ k, ri is the i-th role,
• for 1 ≤ i ≤ n, rk+i is a special NULL role.

2. Create argument vertices aj for j = 1 . . . N , where

• for 1 ≤ j ≤ n, aj is the j-th argument candidate,
• for 1 ≤ j ≤ k, an+j is a special NULL argument.

3. Define a matrix of model scores S ∈ R(k+1)×n:

(a) Optimization of syntactic paths:
For 1 ≤ i ≤ k, 1 ≤ j ≤ n
Si,j = max

πp,aj,ri
s srl(x, p, aj , ri,π

p,aj ,ri)

(b) Scores of NULL assignments3:
For 1 ≤ j ≤ n
Sk+1,j = 0

4. Let S0 = mini,j Si,j , the minimum of any score
in S. Define a matrix of non-negative scores W ∈
RN×N as follows:

(a) for 1 ≤ i ≤ k, 1 ≤ j ≤ n
Wi,j = Si,j − S0

(b) for k < i ≤ N, 1 ≤ j ≤ n
Wi,j = Sk+1,j − S0

(c) for 1 < i ≤ N, n < j ≤ N
Wi,j = 0

run the Hungarian algorithm on the weighted graph
and obtain a bijection f : ri → aj , from which it
is trivial to recover the optimal solution of Eq. 5.
Finally, we note that it is simple to allow for multi-
ple instances of a semantic role by adding more role
nodes in step 1; it would be straightforward to add
penalties in step 3 for multiple instances of roles.

4 A Dual Decomposition Algorithm

We now present a dual decomposition method to op-
timize Eq. 4, that uses the assignment algorithm pre-
sented above as a subroutine. Our method is sim-
ilar to that of Koo et al. (2010), in the sense that

3In our model we fix the score of null assignments to 0. It is
straightforward to compute a discriminative score instead.

our joint optimization can be decomposed into two
sub-problems that need to agree on the syntactic
dependencies they predict. For a detailed descrip-
tion of dual decomposition methods applied to NLP
see (Sontag et al., 2010; Rush et al., 2010).

We note that in Eq. 4 the constraint cSubtree ties
the syntactic and semantic structures, imposing that
any path πp,a,r that links a predicate p with an argu-
ment a must be a subtree of the full syntactic struc-
ture y. Formally the set of constraints is:

yh,m,l ≥ πp,a,rh,m,l ∀ p, a, r, h,m, l .

These constraints can be compactly written as

c · yh,m,l ≥
∑

p,a,r

πp,a,rh,m,l ∀ h,m, l ,

where c is a constant equal to the number of dis-
tinct semantic dependencies 〈p, a, r〉. In addition,
we can introduce a vector non-negative slack vari-
ables ξ with a component for each syntactic depen-
dency ξh,m,l, turning the constraints into:

c · yh,m,l −
∑

p,a,r

πp,a,rh,m,l − ξh,m,l = 0 ∀ h,m, l

We can now rewrite Eq. 4 as:

argmax
y,z,π,ξ≥0

s syn(x,y) + s srl(x, z,π) (7)

subject to

cTree, cRole, cArg, cPath
∀h,m, l : c · yh,m,l −

∑

p,a,r

πp,a,rh,m,l − ξh,m,l = 0

As in Koo et al. (2010), we will relax subtree cons-
traints by introducing a vector of Lagrange multipli-
ers λ indexed by syntactic dependencies, i.e. each
coordinate λh,m,l is a Lagrange multiplier for the
constraint associated with 〈h,m, l〉. The Lagrangian
of the problem is:

L(y, z,π, ξ,λ)= s syn(x,y) + s srl(x, z,π)

+ λ ·
(
c · y −

∑

p,a,r

πp,a,r − ξ

)
(8)

We can now formulate Eq. 7 as:

max
y,z,π,ξ≥0

s.t. cTree,cRole,cArg,cPath
c·y−∑

p,a,r π
p,a,r−ξ=0

L(y, z,π, ξ,λ) (9)
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This optimization problem has the property that its
optimum value is the same as the optimum of Eq. 7
for any value of λ. This is because whenever the
constraints are satisfied, the terms in the Lagrangian
involving λ are zero. If we remove the subtree con-
straints from Eq. 9 we obtain the dual objective:

D(λ) = max
y,z,π,ξ≥0

s.t. cTree,cRole,cArg,cPath

L(y, z,π, ξ,λ) (10)

= max
y s.t. cTree

(
s syn(x,y) + c · y · λ

)

+ max
z,π

s.t. cRole,cArg,cPath

(
s srl(x, z,π)− λ ·

∑

p,a,r

πp,a,r
)

+ max
ξ≥0

(−λ · ξ) (11)

The dual objective is an upper bound to the opti-
mal value of primal objective of Eq. 7. Thus, we
are interested in finding the minimum of the dual in
order to tighten the upper-bound. We will solve

min
λ
D(λ) (12)

using a subgradient method. Algorithm 2 presents
pseudo-code. The algorithm takes advantage of the
decomposed form of the dual in Eq. 11, where
we have rewritten the Lagrangian such that syntac-
tic and semantic structures appear in separate terms.
This will allow to compute subgradients efficiently.
In particular, the subgradient of D at a point λ is:

∆(λ) = c · ŷ −
∑

p,a,r

π̂p,a,r − ξ̂ (13)

where

ŷ = argmax
y s.t. cTree

(
s syn(x,y) + c · y · λ

)
(14)

ẑ, π̂ = argmax
z,π s.t.

cRole,cArg,cPath

s srl(x, z,π)− λ·
∑

p,a,r

πp,a,r (15)

ξ̂ = argmax
ξ≥0

−λ · ξ (16)

Whenever π̂ is consistent with ŷ the subgradient
will be zero and the method will converge. When
paths π̂ contain a dependency 〈h,m, l〉 that is in-
consistent with ŷ, the associated dual λh,m,l will in-
crease, hence lowering the score of all paths that use
〈h,m, l〉 at the next iteration; at same time, the to-
tal score for that dependency will increase, favoring
syntactic dependency structures alternative to ŷ. As

Algorithm 2 A dual-decomposition algorithm for
syntactic-semantic dependency parsing
Input: x, a sentence; T , number of iterations;
Output: syntactic and semantic structures ŷ and ẑ
Notation: we use cSem= cRole ∧ cArg ∧ cPath

1: λ1 = 0 # initialize dual variables
2: c =number of distinct 〈h,m, l〉 in x
3: for t = 1 . . . T do
4: ŷ = argmaxy s.t. cTree

(
s syn(x,y) + c · λt · y

)

5: ẑ, π̂ = argmax z,π
s.t. cSem

(
s srl(x, z,π)

−λt ·∑p,a,r π
p,a,r

)

6: λt+1 = λt # dual variables for the next iteration
7: Set αt, the step size of the current iteration
8: for each 〈h,m, l〉 do
9: q =

∑
p,a,r π̂

p,a,r
h,m,l # num. paths using 〈h,m, l〉

10: if q > 0 and ŷh,m,l = 0 then
11: λt+1

h,m,l = λt+1
h,m,l + αtq

12: break if λt+1 = λt # convergence
13: return ŷ, ẑ

in previous work, in the algorithm a parameter αt
controls the size of subgradient steps at iteration t.

The key point of the method is that solutions to
Eq. 14 and 15 can be computed efficiently using sep-
arate processes. In particular, Eq. 14 corresponds
to a standard dependency parsing problem, where
for each dependency 〈h,m, l〉 we have an additional
score term c ·λh,m,l —in our experiments we use the
projected dependency parsing algorithm by (Eisner,
2000). To calculate Eq. 15 we use the assignment
method described in Section 3, where it is straight-
forward to introduce additional score terms −λh,m,l
to every factor πp,a,rh,m,l. It can be shown that whenever
the subgradient method converges, the solutions ŷ
and ẑ are the optimal solutions to our original prob-
lem in Eq. 4 (see (Koo et al., 2010) for a justifi-
cation). In practice we run the subgradient method
for a maximum number of iterations, and return the
solutions of the last iteration if it does not converge.

5 Related Work

Recently, there have been a number of approaches
to joint parsing of syntactic and semantic dependen-
cies, partly because of the availability of treebanks in
this format popularized by the CoNLL shared tasks
(Surdeanu et al., 2008; Hajič et al., 2009).

Like in our method, Johansson (2009) defined a
model that exploits features of a semantic depen-
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dency together with the syntactic path connecting
the predicate and the argument. That method uses an
approximate parsing algorithm that employs k-best
inference and beam search. Similarly, Lluı́s et al.
(2009) defined a joint model that forces the predi-
cate structure to be represented in the syntactic de-
pendency tree, by enriching arcs with semantic in-
formation. The semantic component uses features of
pre-computed syntactic structures that may diverge
from the joint structure. In contrast, our joint pars-
ing method is exact whenever the dual decomposi-
tion algorithm converges.

Titov et al. (2009) augmented a transition-based
dependency parser with operations that produce
synchronous derivations of syntactic and semantic
structures. Instead of explicitly representing seman-
tic dependencies together with a syntactic path, they
induce latent representations of the interactions be-
tween syntactic and semantic layers.

In all works mentioned the model has no con-
trol of assignment constraints that disallow label-
ing multiple arguments with the same semantic role.
Punyakanok et al. (2008) first introduced a system
that explicitly controls these constraints, as well as
other constraints that look at pairwise assignments
which we can not model. They solve SRL using
general-purpose Integer Linear Programming (ILP)
methods. In similar spirit, Riedel and McCallum
(2011) presented a model for extracting structured
events that controls interactions between predicate-
argument assignments. They take into account pair-
wise assignments and solve the optimization prob-
lem with dual decomposition. More recently, Das
et al. (2012) proposed a dual decomposition method
that deals with several assignment constraints for
predicate-argument relations. Their method is an
alternative to general ILP methods. To our knowl-
edge, our work is the first that frames SRL as a linear
assignment task, for which simple and exact algo-
rithms exist. We should note that these works model
predicate-argument relations with assignment con-
straints, but none of them predicts the underlying
syntactic structure.

Our dual decomposition method follows from that
of Koo et al. (2010). In both cases two separate pro-
cesses predict syntactic dependency structures, and
the dual decomposition algorithm seeks agreement
at the level of individual dependencies. One dif-

ference is that our semantic process predicts partial
syntax (restricted to syntactic paths connecting pred-
icates and arguments), while in their case each of the
two processes predicts the full set of dependencies.

6 Experiments

We present experiments using our syntactic-
semantic parser on the CoNLL-2009 Shared Task
English benchmark (Hajič et al., 2009). It consists
of the usual WSJ training/development/test sections
mapped to dependency trees, augmented with se-
mantic predicate-argument relations from PropBank
(Palmer et al., 2005) and NomBank (Meyers et al.,
2004) also represented as dependencies. It also con-
tains a PropBanked portion of the Brown corpus as
an out-of-domain test set.

Our goal was to evaluate the contributions of pars-
ing algorithms in the following configurations:

Base Pipeline Runs a syntactic parser and then runs
an SRL parser constrained to paths of the best
syntactic tree. In the SRL it only enforces con-
straint cArg, by simply classifying the candi-
date argument in each path into one of the pos-
sible semantic roles or as NULL.

Pipeline with Assignment Runs the assignment al-
gorithm for SRL, enforcing constraints cRole
and cArg, but constrained to paths of the best
syntactic tree.

Forest Runs the assignment algorithm for SRL on
a large set of precomputed syntactic paths, de-
scribed below. This configuration corresponds
to running Dual Decomposition for a single it-
eration, and is not guaranteed to predict consis-
tent syntactic and semantic structures.

Dual Decomposition (DD) Runs dual decomposi-
tion using the assignment algorithm on the set
of precomputed paths. Syntactic and semantic
structures are consistent when it reaches con-
vergence.

All four systems used the same type of discrimina-
tive scorers and features. Next we provide details
about these systems. Then we present the results.

6.1 Implementation

Syntactic model We used two discriminative arc-
factored models for labeled dependency parsing: a
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first-order model, and a second-order model with
grandchildren interactions, both reimplementations
of the parsers by McDonald et al. (2005) and Car-
reras (2007) respectively. In both cases we used
projective dependency parsing algorithms based on
(Eisner, 2000).4 To learn the models, we used a
log-linear loss function following Koo et al. (2007),
which trains probabilistic discriminative parsers.
At test time, we used the probabilistic parsers to
compute marginal probabilities p(h,m, l | x), us-
ing inside-outside algorithms for first/second-order
models. Hence, for either of the parsing models, we
always obtain a table of first-order marginal scores,
with one score per labeled dependency. Then we
run first-order inference with these marginals to ob-
tain the best tree. We found that the higher-order
parser performed equally well on development us-
ing this method as using second-order inference to
predict trees: since we run the parser multiple times
within Dual Decomposition, our strategy results in
faster parsing times.

Precomputed Paths Both Forest and Dual De-
composition run assignment on a set of precomputed
paths, and here we explain how we build it. We first
observed that 98.4% of the correct arguments in de-
velopment data are either direct descendants of the
predicate, direct descendants of an ancestor of the
predicate, or an ancestor of the predicate.5 All meth-
ods we test are restricted to this syntactic scope. To
generate a list of paths, we did as follows:

• Calculate marginals of unlabeled dependencies
using the first-order parser: p(h,m | x) =∑

l p(h,m, l | x). Note that for each m, the
probabilities p(h,m|x) for all h form a distri-
bution (i.e. they sum to one). Then, for eachm,
keep the most-likely dependencies that cover at
least 90% of the mass, and prune the rest.
• Starting from a predicate p, generate a path

by taking any number of dependencies that as-
cend, and optionally adding one dependency
that descends. We constrained paths to be pro-
jective, and to have a maximum number of 6

4Our method allows to use non-projective dependency pars-
ing methods seamlessly.

5This is specific to CoNLL-2009 data for English. In gen-
eral, for other languages the coverage of these rules may be
lower. We leave this question to future work.

ascendant dependencies.
• Label each unlabeled edge 〈h,m〉 in the paths

with l = argmaxl p(h,m, l | x).

On development data, this procedure generated an
average of 43.8 paths per predicate that cover 86.2%
of the correct paths. In contrast, enumerating paths
of the single-best tree covers 79.4% of correct paths
for the first-order parser, and 82.2% for the second-
order parser.6

SRL model We used a discriminative model with
similar features to those in the system of Johansson
(2009). In addition, we included the following:

• Unigram/bigram/trigram path features. For
all n-grams in the syntactic path, patterns
of words and POS tags (e.g., mary+loves+to,
mary+VB+to).
• Voice features. The predicate voice together

with the word/POS of the argument (e.g., pas-
sive+mary).
• Path continuity. Count of non-consecutive to-

kens in a predicate-argument path.

To train SRL models we used the averaged per-
ceptron (Collins, 2002). For the base pipeline we
trained standard SRL classifiers. For the rest of
models we used the structured Perceptron running
the assignment algorithm as inference routine. In
this case, we generated a large set of syntactic paths
for training using the procedure described above,
and we set the loss function to penalize mistakes in
predicting the semantic role of arguments and their
syntactic path.

Dual Decomposition We added a parameter β
weighting the syntactic and semantic components of
the model as follows:

(1− β) s syn(x,y) + β s srl(x, z,π) .

As syntactic scores we used normalized marginal
probabilities of dependencies, either from the first
or the higher-order parser. The scores of all factors
of the SRL model were normalized at every sen-
tence to be between -1 and 1. The rest of details

6One can evaluate the maximum recall on correct arguments
that can be obtained, irrespective of whether the syntactic path
is correct: for the set of paths it is 98.3%, while for single-best
trees it is 91.9% and 92.7% for first and second-order models.
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o LAS UAS semp semr semF1 sempp

Pipeline 1 85.32 88.86 86.23 67.67 75.83 45.64
w. Assig. 1 85.32 88.86 84.08 71.82 77.47 51.17
Forest - - - 80.67 73.60 76.97 51.33
Pipeline 2 87.77 90.96 87.07 68.65 76.77 47.07
w. Assig. 2 87.77 90.96 85.21 73.41 78.87 53.80

Table 1: Results on development for the baseline and as-
signment pipelines, running first and second-order syn-
tactic parsers, and the Forest method. o indicates the or-
der of syntactic inference.

of the method were implemented following Koo et
al. (2010), including the strategy for decreasing the
step size αt. We ran the algorithm for up to 500 it-
erations, with initial step size of 0.001.

6.2 Results

To evaluate syntactic dependencies we use unla-
beled attachment score (UAS), i.e., the percentage
of words with the correct head, and labeled attach-
ment scores (LAS), i.e., the percentage of words
with the correct head and syntactic label. Semantic
predicate-argument relations are evaluated with pre-
cision (semp), recall (semr) and F1 measure (semF1)
at the level of labeled semantic dependencies. In ad-
dition, we measure the percentage of perfectly pre-
dicted predicate structures (sempp).7

Table 1 shows the results on the development set
for our three first methods. We can see that the
pipeline methods running assignment improve over
the baseline pipelines in semantic F1 by about 2
points, due to the application of the cRole constraint.
The Forest method also shows an improvement in
recall of semantic roles with respect to the pipeline
methods. Presumably, the set of paths available in
the Forest model allows to recognize a higher num-
ber of arguments at an expense of a lower preci-
sion. Regarding the percentage of perfect predicate-
argument structures there is a remarkable improve-
ment in the systems that apply the full set of con-

7Our evaluation metrics differ slightly from the official met-
ric at CoNLL-2009. That metric considers predicate senses
as special semantic dependencies and, thus, it includes them
in the calculation of the evaluation metrics. In this paper, we
are not addressing predicate sense disambiguation and, conse-
quently, we ignore predicate senses when presenting evaluation
results. When we report the performance of CoNLL systems,
their scores will be noticeably lower than the scores reported at
the shared task. This is because predicate disambiguation is a
reasonably simple task with a very high baseline around 90%.

o β LAS UAS semp semr semF1 sempp %conv
1 0.1 85.32 88.86 84.09 71.84 77.48 51.77 100
1 0.4 85.36 88.91 84.07 71.94 77.53 51.85 100
1 0.5 85.38 88.93 84.08 72.03 77.59 51.96 100
1 0.6 85.41 88.95 84.05 72.19 77.67 52.03 99.8
1 0.7 85.44 89.00 84.10 72.42 77.82 52.24 99.7
1 0.8 85.48 89.02 83.99 72.69 77.94 52.57 99.5
1 0.9 85.39 88.93 83.68 72.82 77.88 52.49 99.8
2 0.1 87.78 90.96 85.20 73.11 78.69 53.74 100
2 0.4 87.78 90.96 85.21 73.12 78.70 53.74 100
2 0.5 87.78 90.96 85.19 73.12 78.70 53.72 100
2 0.6 87.78 90.96 85.20 73.13 78.70 53.72 99.9
2 0.7 87.78 90.96 85.19 73.13 78.70 53.72 99.8
2 0.8 87.80 90.98 85.20 73.18 78.74 53.77 99.8
2 0.9 87.84 91.02 85.20 73.23 78.76 53.82 100

Table 2: Results of the dual decomposition method on
development data, for different values of the β parame-
ter. o is the order of the syntactic parser. %conv is the
percentage of examples that converged.

straints using the assignment algorithm. We believe
that the cRole constraint that ensures no repeated
roles for a given predicate is a key factor to predict
the full set of arguments of a predicate.

The Forest configuration is the starting point to
run the dual decomposition algorithm. We ran ex-
periments for various values of the β parameter. Ta-
ble 2 shows the results. We see that as we increase
β, the SRL component has more relative weight, and
the syntactic structure changes. The DD methods are
always able to improve over the Forest methods, and
find convergence in more than 99.5% of sentences.
Compared to the pipeline running assignment, DD
improves semantic F1 for first-order inference, but
not for higher-order inference, suggesting that 2nd

order predictions of paths are quite accurate. We
also observe slight benefits in syntactic accuracy.

Table 3 presents results of our system on the
test sets, where we run Pipeline with Assignment
and Dual Decomposition with our best configura-
tion (β = 0.8/0.9 for 1st/2nd order syntax). For
comparison, the table also reports the results of
the best CoNLL–2009 joint system, Merlo09 (Ges-
mundo et al., 2009), which proved to be very com-
petitive ranking third in the closed challenge. We
also include Lluı́s09 (Lluı́s et al., 2009), which is an-
other joint syntactic-semantic system from CoNLL–
2009.8 In the WSJ test DD obtains the best syntactic
accuracies, while the Pipeline obtains the best se-

8Another system to compare to is the joint system by Jo-
hansson (2009). Unfortunately, a direct comparison is not possi-
ble because it is evaluated on the CoNLL-2008 datasets, which
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WSJ LAS UAS semp semr semF1 sempp

Lluı́s09 87.48 89.91 73.87 67.40 70.49 39.68
Merlo09 88.79 91.26 81.00 76.45 78.66 54.80
Pipe-Assig 1st 86.85 89.68 85.12 73.78 79.05 54.12
DD 1st 87.04 89.89 85.03 74.56 79.45 54.92
Pipe-Assig 2nd 89.19 91.62 86.11 75.16 80.26 55.96
DD 2nd 89.21 91.64 86.01 74.84 80.04 55.73

Brown LAS UAS semp semr semF1 sempp

Lluı́s09 80.92 85.96 62.29 59.22 60.71 29.79
Merlo09 80.84 86.32 68.97 63.06 65.89 38.92
Pipe-Assig 1st 80.96 86.58 72.91 60.16 65.93 38.44
DD 1st 81.18 86.86 72.53 60.76 66.12 38.13
Pipe-Assig 2nd 82.56 87.98 73.94 61.63 67.23 38.99
DD 2nd 82.61 88.04 74.12 61.59 67.28 38.92

Table 3: Comparative results on the CoNLL–2009 En-
glish test sets, namely the WSJ test (top table) and the
out of domain test from the Brown corpus (bottom table).

mantic F1. The bottom part of Table 3 presents re-
sults on the out-of-domain Brown test corpus. In this
case, DD obtains slightly better results than the rest,
both in terms of syntactic accuracy and semantic F1.

Table 4 shows statistical significance tests for the
syntactic LAS and semantic F1 scores of Table 3.
We have applied the sign test (Wackerly et al., 2007)
and approximate randomization tests (Yeh, 2000)
to all pairs of systems outputs. The differences be-
tween systems in the WSJ test can be considered
significant in almost all cases with p = 0.05. In
the Brown test set, results are more unstable and dif-
ferences are not significant in general, probably be-
cause of the relatively small size of that test.

Regarding running times, our implementation of
the baseline pipeline with 2nd order inference parses
the development set (1,334 sentences) in less than
7 minutes. Running assignment in the pipeline in-
creases parsing time by ∼8% due to the overhead
from the assignment algorithm. The Forest method,
with an average of 61.3 paths per predicate, is∼13%
slower than the pipeline due to the exploration of the
space of precomputed paths. Finally, Dual Decom-
position with 2nd order inference converges in 36.6
iterations per sentence on average. The first itera-
tion of DD has to perform roughly the same work
as Forest, while subsequent iterations only need to
re-parse the sentence with respect to the dual up-

are slightly different. However, note that Merlo09 is an applica-
tion of the system by Titov et al. (2009). In that paper authors
report results on the CoNLL-2008 datasets, and they are com-
parable to Johansson’s.

WSJ Brown
ME PA1 DD1 PA2 DD2 ME PA1 DD1 PA2 DD2

LL ◦•�� ◦•�� •�� ◦•�� ◦•�� �� �� �� ◦•�� ◦•��
ME ◦• ◦•�� ◦•�� ◦•�� • •
PA1 ◦•�� ◦•�� ◦•�� • ◦•� ◦•��
DD1 ◦•�� ◦•�� ◦•� ◦•��
PA2 •��

Table 4: Statistical tests of significance for LAS and
semF1

differences between pairs of systems from Table 3.
◦/• = LAS difference is significant by the sign/ approxi-
mate randomization tests at 0.05 level. �/� = same mean-
ing for semF1

. The legend for systems is: LL: Lluı́s09,
ME: Merlo09, PA1/2: Pipeline with Assignment, 1st/2nd

order, DD1/2: Dual Decomposition, 1st/2nd order.

dates, which are extremely sparse. Our current im-
plementation did not take advantage of the sparsity
of updates, and overall, DD was on average 13 times
slower than the pipeline running assignment and 15
times slower than the baseline pipeline.

7 Conclusion

We have introduced efficient methods to parse
syntactic dependency structures augmented with
predicate-argument relations, with two key ideas.
One is to predict the local syntactic structure that
links a predicate with its arguments, and seek agree-
ment with the full syntactic structure using dual
decomposition techniques. The second is to con-
trol linear assignment constraints in the predicate-
argument structure.

In experiments we observe large improvements
resulting from the assignment constraints. As for
the dual decomposition technique for joint parsing,
it does improve over the pipelines when we use a
first order parser. This means that in this configu-
ration the explicit semantic features help to find a
solution that is better in both layers. To some ex-
tent, this empirically validates the research objec-
tive of joint models. However, when we move to
second-order parsers the differences with respect to
the pipeline are insignificant. It is to be expected
that as syntactic parsers improve, the need of joint
methods is less critical. It remains an open question
to validate if large improvements can be achieved
by integrating syntactic-semantic features. To study
this question, it is necessary to have efficient pars-
ing algorithms for joint dependency structures. This
paper contributes with a method that has optimality
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guarantees whenever it converges.
Our method can incorporate richer families of fea-

tures. It is straightforward to incorporate better se-
mantic representations of predicates and arguments
than just plain words, e.g. by exploiting WordNet or
distributional representations as in (Zapirain et al.,
2013). Potentially, this could result in larger im-
provements in the performance of syntactic and se-
mantic parsing.

It is also necessary to experiment with differ-
ent languages, where the performance of syntactic
parsers is lower than in English, and hence there is
potential for improvement. Our treatment of local
syntactic structure that links predicates with argu-
ments, based on explicit enumeration of likely paths,
was simplistic. Future work should explore meth-
ods that model the syntactic structure linking predi-
cates with arguments: whenever this structure can be
parsed efficiently, our dual decomposition algorithm
can be employed to define an efficient joint system.
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Jan Hajič, Massimiliano Ciaramita, Richard Johans-
son, Daisuke Kawahara, Maria Antònia Martı́, Lluı́s
Màrquez, Adam Meyers, Joakim Nivre, Sebastian
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A second-order joint eisner model for syntactic and
semantic dependency parsing. In Proceedings of
the Thirteenth Conference on Computational Natu-
ral Language Learning (CoNLL 2009): Shared Task,
pages 79–84, Boulder, Colorado, June.
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