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Abstract

Recent work has shown that the integration of
visual information into text-based models can
substantially improve model predictions, but
so far only visual information extracted from
static images has been used. In this paper, we
consider the problem of grounding sentences
describing actions in visual information ex-
tracted from videos. We present a general
purpose corpus that aligns high quality videos
with multiple natural language descriptions of
the actions portrayed in the videos, together
with an annotation of how similar the action
descriptions are to each other. Experimental
results demonstrate that a text-based model of
similarity between actions improves substan-
tially when combined with visual information
from videos depicting the described actions.

1 Introduction

The estimation of semantic similarity between
words and phrases is a basic task in computational
semantics. Vector-space models of meaning are one
standard approach. Following the distributional hy-
pothesis, frequencies of context words are recorded
in vectors, and semantic similarity is computed as a
proximity measure in the underlying vector space.
Such distributional models are attractive because
they are conceptually simple, easy to implement and
relevant for various NLP tasks (Turney and Pan-
tel, 2010). At the same time, they provide a sub-
stantially incomplete picture of word meaning, since
they ignore the relation between language and extra-
linguistic information, which is constitutive for lin-
guistic meaning. In the last few years, a growing
amount of work has been devoted to the task of
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grounding meaning in visual information, in par-
ticular by extending the distributional approach to
jointly cover texts and images (Feng and Lapata,
2010; Bruni et al., 2011). As a clear result, visual
information improves the quality of distributional
models. Bruni et al. (2011) show that visual infor-
mation drawn from images is particularly relevant
for concrete common nouns and adjectives.

A natural next step is to integrate visual infor-
mation from videos into a semantic model of event
and action verbs. Psychological studies have shown
the connection between action semantics and videos
(Glenberg, 2002; Howell et al., 2005), but to our
knowledge, we are the first to provide a suitable data
source and to implement such a model.

The contribution of this paper is three-fold:

e We present a multimodal corpus containing
textual descriptions aligned with high-quality
videos. Starting from the video corpus of
Rohrbach et al. (2012b), which contains high-
resolution video recordings of basic cooking
tasks, we collected multiple textual descrip-
tions of each video via Mechanical Turk. We
also provide an accurate sentence-level align-
ment of the descriptions with their respective
videos. We expect the corpus to be a valu-
able resource for computational semantics, and
moreover helpful for a variety of purposes, in-
cluding video understanding and generation of
text from videos.

e We provide a gold-standard dataset for the
evaluation of similarity models for action verbs
and phrases. The dataset has been designed
as analogous to the Usage Similarity dataset of
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Erk et al. (2009) and contains pairs of natural-
language action descriptions plus their associ-
ated video segments. Each of the pairs is an-
notated with a similarity score based on several
manual annotations.

e We report an experiment on similarity model-
ing of action descriptions based on the video
corpus and the gold standard annotation, which
demonstrates the impact of scene information
from videos. Visual similarity models outper-
form text-based models; the performance of
combined models approaches the upper bound
indicated by inter-annotator agreement.

The paper is structured as follows: We first place
ourselves in the landscape of related work (Sec. 2),
then we introduce our corpus (Sec. 3). Sec. 4 re-
ports our action similarity annotation experiment
and Sec. 5 introduces the similarity measures we ap-
ply to the annotated data. We outline the results of
our evaluation in Sec. 6, and conclude the paper with
a summary and directions for future work (Sec. 7).

2 Related Work

A large multimodal resource combining language
and visual information resulted from the ESP game
(von Ahn and Dabbish, 2004). The dataset contains
many images tagged with several one-word labels.

The Microsoft Video Description Corpus (Chen
and Dolan, 2011, MSVD) is a resource providing
textual descriptions of videos. It consists of multiple
crowd-sourced textual descriptions of short video
snippets. The MSVD corpus is much larger than our
corpus, but most of the videos are of relatively low
quality and therefore too challenging for state-of-
the-art video processing to extract relevant informa-
tion. The videos are typically short and summarized
with a single sentence. Our corpus contains coher-
ent textual descriptions of longer video sequences,
where each sentence is associated with a timeframe.

Gupta et al. (2009) present another useful re-
source: their model learns the alignment of
predicate-argument structures with videos and uses
the result for action recognition in videos. However,
the corpus contains no natural language texts.

The connection between natural language sen-
tences and videos has so far been mostly explored
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by the computer vision community, where dif-
ferent methods for improving action recognition
by exploiting linguistic data have been proposed
(Gupta and Mooney, 2010; Motwani and Mooney,
2012; Cour et al., 2008; Tzoukermann et al., 2011;
Rohrbach et al., 2012b, among others). Our resource
is intended to be used for action recognition as well,
but in this paper, we focus on the inverse effect of
visual data on language processing.

Feng and Lapata (2010) were the first to enrich
topic models for newspaper articles with visual in-
formation, by incorporating features from article il-
lustrations. They achieve better results when in-
corporating the visual information, providing an en-
riched model that pairs a single text with a picture.

Bruni et al. (2011) used the ESP game data to cre-
ate a visually grounded semantic model. Their re-
sults outperform purely text-based models using vi-
sual information from pictures for the task of mod-
eling noun similarities. They model single words,
and mostly visual features lead only to moderate im-
provements, which might be due to the mixed qual-
ity and random choice of the images. Dodge et al.
(2012) recently investigated which words can actu-
ally be grounded in images at all, producing an au-
tomatic classifier for visual words.

An interesting in-depth study by Mathe et al.
(2008) automatically learnt the semantics of motion
verbs as abstract features from videos. The study
captures 4 actions with 8-10 videos for each of the
actions, and would need a perfect object recognition
from a visual classifier to scale up.

Steyvers (2010) and later Silberer and Lapata
(2012) present an alternative approach to incorpo-
rating visual information directly: they use so-called
feature norms, which consist of human associations
for many given words, as a proxy for general percep-
tual information. Because this model is trained and
evaluated on those feature norms, it is not directly
comparable to our approach.

The Restaurant Game by Orkin and Roy (2009)
grounds written chat dialogues in actions carried out
in a computer game. While this work is outstanding
from the social learning perspective, the actions that
ground the dialogues are clicks on a screen rather
than real-world actions. The dataset has successfully
been used to model determiner meaning (Reckman
et al., 2011) in the context of the Restaurant Game,



but it is unclear how this approach could scale up to
content words and other domains.

3 The TACOS Corpus

We build our corpus on top of the “MPII Cook-
ing Composite Activities” video corpus (Rohrbach
et al., 2012b, MPII Composites), which contains
videos of different activities in the cooking domain,
e.g., preparing carrots or separating eggs. We ex-
tend the existing corpus with multiple textual de-
scriptions collected by crowd-sourcing via Amazon
Mechanical Turk! (MTurk). To facilitate the align-
ment of sentences describing activities with their
proper video segments, we also obtained approxi-
mate timestamps, as described in Sec. 3.2.

MPII Composites comes with timed gold-
standard annotation of low-level activities and par-
ticipating objects (e.g. OPEN [HAND,DRAWER] or
TAKE OUT [HAND,KNIFE,DRAWER]). By adding
textual descriptions (e.g., The person takes a knife
from the drawer) and aligning them on the sentence
level with videos and low-level annotations, we pro-
vide a rich multimodal resource (cf. Fig. 2), the
“Saarbriicken Corpus of Textually Annotated Cook-
ing Scenes” (TACOS). In particular, the TACOS cor-
pus provides:

e A collection of coherent fextual descrip-
tions for video recordings of activities of
medium complexity, as as a basis for empiri-
cal discourse-related research, e.g., the selec-
tion and granularity of action descriptions in
context

o A high-quality alignment of sentences with
video segments, supporting the grounding of
action descriptions in visual information

e Collections of paraphrases describing the same
scene, which result as a by-product from the
text-video alignment and can be useful for text
generation from videos (among other things)

e The alignment of textual activity descriptions
with sequences of low-level activities, which
may be used to study the decomposition of ac-
tion verbs into basic activity predicates

'mturk.com
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We expect that our corpus will encourage and en-
able future work on various topics in natural lan-
guage and video processing. In this paper, we will
make use of the second aspect only, demonstrating
the usefulness of the corpus for the grounding task.

After a more detailed description of the basic
video corpus and its annotation (Sec. 3.1) we de-
scribe the collection of textual descriptions with
MTurk (Sec. 3.2), and finally show the assembly and
some benchmarks of the final corpus (Sec. 3.3).

3.1 The video corpus

MPII Composites contains 212 high resolution video
recordings of 1-23 minutes length (4.5 min. on av-
erage). 41 basic cooking tasks such as cutting a cu-
cumber were recorded, each between 4 and 8 times.
The selection of cooking tasks is based on those pro-
posed at “Jamie’s Home Cooking Skills”.2 The cor-
pus is recorded in a kitchen environment with a total
of 22 subjects. Each video depicts a single task exe-
cuted by an individual subject.

The dataset contains expert annotations of low-
level activity tags. Annotations are provided for seg-
ments containing a semantically meaningful cook-
ing related movement pattern. The action must go
beyond single body part movements (such as move
arm up) and must have the goal of changing the state
or location of an object. 60 different activity labels
are used for annotation (e.g. PEEL, STIR, TRASH).
Each low-level activity tag consists of an activity
label (PEEL), a set of associated objects (CARROT,
DRAWER,...), and the associated timeframe (start-
ing and ending points of the activity). Associated
objects are the participants of an activity, namely
tools (e.g. KNIFE), patient (CARROT) and location
(CUTTING-BOARD). We provide the coarse-grained
role information for patient, location and tool in the
corpus data, but we did not use this information in
our experiments. The dataset contains a total of
8818 annotated segments, on average 42 per video.

3.2 Collecting textual video descriptions

We collected textual descriptions for a subset of the
videos in MPII Composites, restricting collection to
tasks that involve manipulation of cooking ingredi-
ents. We also excluded tasks with fewer than four

2www.jamieshomecookingskills.com



video recordings in the corpus, leaving 26 tasks to be
described. We randomly selected five videos from
each task, except the three tasks for which only four
videos are available. This resulted in a total of 127
videos. For each video, we collected 20 different
textual descriptions, leading to 2540 annotation as-
signments. We published these assignments (HITSs)
on MTurk, using an adapted version® of the annota-
tion tool Vatic (Vondrick et al., 2012).

In each assignment, the subject saw one video
specified with the task title (e.g. How fo prepare an
onion), and then was asked to enter at least five and
at most 15 complete English sentences to describe
the events in the video. The annotation instructions
contained example annotations from a kitchen task
not contained in our actual dataset.

Annotators were encouraged to watch each video
several times, skipping backward and forward as
they wished. They were also asked to take notes
while watching, and to sketch the annotation before
entering it. Once familiarized with the video, sub-
jects did the final annotation by watching the entire
video from beginning to end, without the possibil-
ity of further non-sequential viewing. Subjects were
asked to enter each sentence as soon as the action de-
scribed by the sentence was completed. The video
playback paused automatically at the beginning of
the sentence input. We recorded pause onset for
each sentence annotation as an approximate ending
timestamp of the described action. The annotators
resumed the video manually.

The tasks required a HIT approval rate of 75%
and were open only to workers in the US, in order
to increase the general language quality of the En-
glish annotations. Each task paid 1.20 USD. Before
paying we randomly inspected the annotations and
manually checked for quality. The total costs of col-
lecting the annotations amounted to 3,353 USD. The
data was obtained within a time frame of 3.5 weeks.

3.3 Putting the TACOS corpus together

Our corpus is a combination of the MTurk data and
MPII Composites, created by filtering out inappro-
priate material and computing a high-quality align-
ment of sentences and video segments. The align-
ment is done by matching the approximate times-

3github.com/marcovzla/vatic/tree/bolt
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Figure 1: Aligning action descriptions with the video.

tamps of the MTurk data to the accurate timestamps
in MPII Composites.

We discarded text instances if people did not time
the sentences properly, taking the association of sev-
eral (or even all) sentences to a single timestamp as
an indicator. Whenever we found a timestamp asso-
ciated with two or more sentences, we discarded the
whole instance. Overall, we had to filter out 13%
of the text instances, which left us with 2206 textual
video descriptions.

For the alignment of sentence annotations and
video segments, we assign a precise timeframe to
each sentence in the following way: We take the
timeframes given by the low-level annotation in
MPII Composites as a gold standard micro-event
segmentation of the video, because they mark all
distinct frames that contain activities of interest. We
call them elementary frames. The sequence of el-
ementary frames is not necessarily continuous, be-
cause idle time is not annotated.

The MTurk sentences have end points that con-
stitute a coarse-grained, noisy video segmentation,
assuming that each sentence spans the time between
the end of the previous sentence and its own end-
ing point. We refine those noisy timeframes to gold
frames as shown in Fig. 1: Each elementary frame
(11-15) is mapped to a sentence (s/-s3) if its noisy
timeframe covers at least half of the elementary
frame. We define the final gold sentence frame then
as the timespan between the starting point of the first
and the ending point of the last elementary frame.

The alignment of descriptions with low-level ac-
tivities results in a table as given in Fig. 3. Columns
contain the textual descriptions of the videos; rows



Top 10 cut, take, get, put, wash, place,
Verbs rinse, remove, *pan, peel

Top 10 move, take out, cut, wash, take
Activities apart, add, shake, screw, put in, peel

Figure 4: 10 most frequent verbs and low-level actions in
the TACOS corpus. pan is probably often mis-tagged.

correspond to low-level actions, and each sentence
is aligned with the last of its associated low-level ac-
tions. As a side effect, we also obtain multiple para-
phrases for each sentence, by considering all sen-
tences with the same associated time frame as equiv-
alent realizations of the same action.

The corpus contains 17,334 action descrip-
tions (tokens), realizing 11,796 different sentences
(types). It consists of 146,771 words (tokens),
75,210 of which are content word instances (i.e.
nouns, verbs and adjectives). The verb vocabulary
comprises 28,292 verb tokens, realizing 435 lem-
mas. Since verbs occurring in the corpus typically
describe actions, we can note that the linguistic vari-
ance for the 58 different low-level activities is quite
large. Fig. 4 gives an impression of the action re-
alizations in the corpus, listing the most frequent
verbs from the textual data, and the most frequent
low-level activities.

On average, each description covers 2.7 low-level
activities, which indicates a clear difference in gran-
ularity. 38% of the descriptions correspond to ex-
actly one low-level activity, about a quarter (23%)
covers two of them; 16% have 5 or more low-level
elements, 2% more than 10. The corpus shows how
humans vary the granularity of their descriptions,
measured in time or number of low-level activities,
and it shows how they vary the linguistic realization
of the same action. For example, Fig. 3 contains dice
and chop into small pieces as alternative realizations
of the low-level activity sequence SLICE - SCRATCH
OFF - SLICE.

The descriptions are of varying length (9 words
on average), reaching from two-word phrases to de-
tailed descriptions of 65 words. Most sentences are
short, consisting of a reference to the person in the
video, a participant and an action verb (The person
rinses the carrot, He cuts off the two edges). People
often specified an instrument (from the faucet), or
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the resulting state of the action (chop the carrots in
small pieces). Occasionally, we find more complex
constructions (support verbs, coordinations).

As Fig. 3 indicates, the timestamp-based align-
ment is pretty accurate; occasional errors occur like
He starts chopping the carrot... in NL Sequence 3.
The data contains some typos and ungrammatical
sentences (He washed carrot), but for our own ex-
periments, the small number of such errors did not
lead to any processing problems.

4 The Action Similarity Dataset

In this section, we present a gold standard dataset,
as a basis for the evaluation of visually grounded
models of action similarity. We call it the “Action
Similarity Dataset” (ASim) in analogy to the Usage
Similarity dataset (USim) of Erk et al. (2009) and
Erk et al. (2012). Similarly to USim, ASim con-
tains a collection of sentence pairs with numerical
similarity scores assigned by human annotators. We
asked the annotators to focus on the similarity of the
activities described rather than on assessing seman-
tic similarity in general. We use sentences from the
TACOS corpus and record their timestamps. Thus
each sentence comes with the video segment which
it describes (these were not shown to the annotators).

4.1 Selecting action description pairs

Random selection of annotated sentences from the
corpus would lead to a large majority of pairs which
are completely dissimilar, or difficult to grade (e.g.,
He opens the drawer — The person cuts off the ends
of the carrot). We constrained the selection pro-
cess in two ways: First, we consider only sentences
describing activities of manipulating an ingredient.
The low-level annotation of the video corpus helps
us identify candidate descriptions. We exclude rare
and special activities, ending up with CUT, SLICE,
CHOP, PEEL, TAKE APART, and WASH, which oc-
cur reasonably frequently, with a wide distribution
over different scenarios. We restrict the candidate
set to those sentences whose timespan includes one
of these activities. This results in a conceptually
more focussed repertoire of descriptions, and at the
same time admits full linguistic variation (wash an
apple under the faucet — rinse an apple, slice the
cucumber — cut the cucumber into slices).
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The man takes out a cutting board.
He washes a carrot.
He takes out a knife.
He slices the carrot.
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Low level annotations with timestamps, actions and objects

timestamp-based alignment

Figure 2: Corpus Overview

Natural language descriptions
with ending times of the actions

Sample frame Start End Action Participants NL Sequence 1 NL Sequence 2 NL Sequence 3
743 911 wash  hand, carrot He washed carrot  The person rinses the ~ He rinses the carrot from
carrot. the faucet.
982 1090 cut knife, carrot, Hecutoffendsof The person cuts off He cuts off the two edges.
cutting board  carrots the ends of the carrot.
1164 1257 open  hand, drawer
1679 1718 close  hand, drawer He searches for some-
thing in the drawer, failed
attempt, he throws away
the edges in trash.
1746 1799 trash  hand, carrot The person searches
for the trash can, then
throws the ends of
the carrot away.
1854 2011 wash  hand, carrot He rinses the carrot again.
2011 2045 shake hand, carrot He washed carrot  The person rinses the  He starts chopping the
carrot again. carrot in small pieces.
2083 2924  slice knife, carrot,
cutting board
2924 2959  scratch hand, carrot,
off knife, cutting
board
3000 3696 slice  knife, carrot, He diced carrots He finished chopping the

cutting board

carrots in small pieces.

Figure 3: Excerpt from the corpus for a video on PREPARING A CARROT. Example frames, low-level annotation
(Action and Participants) is shown along with three of the MTurk sequences (NL Sequence 1-3).
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Second, we required the pairs to share some lexi-
cal material, either the head verb or the manipulated
ingredient (or both).* More precisely, we composed
the ASim dataset from three different subsets:

Different activity, same object: This subset con-
tains pairs describing different types of actions car-
ried out on the same type of object (e.g. The man
washes the carrot. — She dices the carrot.). Its fo-
cus is on the central task of modeling the semantic
relation between actions (rather than the objects in-
volved in the activity), since the object head nouns
in the descriptions are the same, and the respective
video segments show the same type of object.

Same activity, same object: Description pairs of
this subset will in many cases, but not always, agree
in their head verbs. The dataset is useful for explor-
ing the degree to which action descriptions are un-
derspecified with respect to the precise manner of
their practical realization. For example, peeling an
onion will mostly be done in a rather uniform way,
while cut applied to carrot can mean that the carrot
is chopped up, or sliced, or cut in halves.

Same activity & verb, different object: Descrip-
tion pairs in this subset share head verb and low-
level activity, but have different objects (e.g. The
man washes the carrot. — A girl washes an apple un-
der the faucet.). This dataset enables the exploration
of the objects’ meaning contribution to the complete
action, established by the variation of equivalent ac-
tions that are done to different objects.

We assembled 900 action description pairs for anno-
tation: 480 pairs share the object; 240 of which have
different activities, and the other 240 pairs share the
same activity. We included paraphrases describing
the same video segment, but we excluded pairs of
identical sentences. 420 additional pairs share their
head verb, but have different objects.

4.2 Manual annotation

Three native speakers of English were asked to judge
the similarity of the action pairs with respect to how

“We refer to the latter with the term object; we don’t require
the ingredient term to be the actual grammatical object in the
action descriptions, we rather use “object” in its semantic role
sense as the entity affected by an action.

31

Part of Gold Standard Sim o p

DIFF. ACTIVITY, SAME OBJECT 220 1.07 0.73
SAME ACTIVITY, SAME OBJECT 4.19 1.04 0.73
ALL WITH SAME OBJECT 320 144 084
SAME VERB, DIFF. OBJECT 334 069 043
COMPLETE DATASET 327 1.15 0.73

Figure 5: Average similarity ratings (Sim), their standard
deviation (o)) and annotator agreement (p) for ASim.

they are carried out, rating each sentence pair with
a score from 1 (not similar at all) to 5 (the same or
nearly the same). They did not see the respective
videos, but we noted the relevant kitchen task (i.e.
which vegetable was prepared). We asked the an-
notators explicitly to ignore the actor of the action
(e.g. whether it is a man or a woman) and score
the similarities of the underlying actions rather than
their verbalizations. Each subject rated all 900 pairs,
which were shown to them in completely random or-
der, with a different order for each subject.

We compute inter-annotator agreement (and the
forthcoming evaluation scores) using Spearman’s
rank correlation coefficient (p), a non-parametric
test which is widely used for similar evaluation tasks
(Mitchell and Lapata, 2008; Bruni et al., 2011; Erk
and McCarthy, 2009). Spearman’s p evaluates how
the samples are ranked relative to each other rather
than the numerical distance between the rankings.

Fig. 5 shows the average similarity ratings in the
different settings and the inter-annotator agreement.
The average inter-rater agreement was p = 0.73 (av-
eraged over pairwise rater agreements), with pair-
wise results of p = 0.77, 0.72, and 0.69, respec-
tively, which are all highly significant at p < 0.001.

As expected, pairs with the same activity and ob-
ject are rated very similar (4.19) on average, while
the similarity of different activities on the same ob-
ject is the lowest (2.2). For both subsets, inter-rater
agreement is high (p = 0.73), and even higher for
both SAME OBJECT subsets together (0.84).

Pairs with identical head verbs and different ob-
jects have a small standard deviation, at 0.69. The
inter-annotator agreement on this set is much lower
than for pairs from the SAME OBJECT set. This indi-
cates that similarity assessment for different variants
of the same activity is a hard task even for humans.



5 Models of Action Similarity

In the following, we demonstrate that visual infor-
mation contained in videos of the kind provided by
the TACOS corpus (Sec. 3) substantially contributes
to the semantic modeling of action-denoting expres-
sions. In Sec. 6, we evaluate several methods for
predicting action similarity on the task provided by
the ASim dataset. In this section, we describe the
models considered in the evaluation. We use two
different models based on visual information, and in
addition two text based models. We will also explore
the effect of combining linguistic and visual infor-
mation and investigate which mode is most suitable
for which kinds of similarity.

5.1 Text-based models

We use two different models of textual similarity
to predict action similarity: a simple word-overlap
measure (Jaccard coefficient) and a state-of-the-art
model based on ‘“contextualized” vector representa-
tions of word meaning (Thater et al., 2011).

Jaccard coefficient. The Jaccard coefficient gives
the ratio between the number of (distinct) words
common to two input sentences and the total num-
ber of (distinct) words in the two sentences. Such
simple surface-oriented measures of textual similar-
ity are often used as baselines in related tasks such as
recognizing textual entailment (Dagan et al., 2005)
and are known to deliver relatively strong results.

Vector model. We use the vector model of Thater
et al. (2011), which “contextualizes™ vector repre-
sentations for individual words based on the particu-
lar sentence context in which the target word occurs.
The basic intuition behind this approach is that the
words in the syntactic context of the target word in a
given input sentence can be used to refine or disam-
biguate its vector. Intuitively, this allows us to dis-
criminate between different actions that a verb can
refer to, based on the different objects of the action.

We first experimented with a version of this vec-
tor model which predicts action similarity scores of
two input sentences by computing the cosine simi-
larity of the contextualized vectors of the verbs in the
two sentences only. We achieved better performance
with a variant of this model which computes vectors
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for the two sentences by summing over the contex-
tualized vectors of all constituent content words.

In the experiments reported below, we only use
the second variant. We use the same experimental
setup as Thater et al. (2011), as well as the parameter
settings that are reported to work best in that paper.

5.2 Video-based models

We distinguish two approaches to compute the sim-
ilarity between two video segments. In the first, un-
supervised approach we extract a video descriptor
and compute similarities between these raw features
(Wang et al., 2011). The second approach builds
upon the first by additionally learning higher level
attribute classifiers (Rohrbach et al., 2012b) on a
held out training set. The similarity between two
segments is then computed between the classifier re-
sponses. In the following we detail both approaches:

Raw visual features. We use the state-of-the-art
video descriptor Dense Trajectories (Wang et al.,
2011) which extracts visual video features, namely
histograms of oriented gradients, flow, and motion
boundary histograms, around densely sampled and
tracked points.

This approach is especially suited for this data as
it ignores non-moving parts in the video: we are
interested in activities and manipulation of objects,
and this type of feature implicitly uses only infor-
mation in relevant image locations. For our setting
this feature representation has been shown to be su-
perior to human pose-based approaches (Rohrbach
et al., 2012a). Using a bag-of-words representation
we encode the features using a 16,000 dimensional
codebook. Features and codebook are provided with
the publicly available video dataset.

We compute the similarity between two encoded
features by computing the intersection of the two
(normalized) histograms.

Visual classifiers. Visual raw features tend to have
several dimensions in the feature space which pro-
vide unreliable, noisy values and thus degrade the
strength of the similarity measure. Intermediate
level attribute classifiers can learn which feature di-
mensions are distinctive and thus significantly im-
prove performance over raw features. Rohrbach et
al. (2012b) showed that using such an attribute clas-
sifier representation can significantly improve per-



MODEL

SAME OBJECT

SAME VERB OVERALL

— JACCARD 0.28 0.25 0.25
E TEXTUAL VECTORS 0.30 0.25 0.27
- TEXT COMBINED 0.39 0.35 0.36
8 VISUAL RAW VECTORS 0.53 -0.08 0.35
A  VISUAL CLASSIFIER 0.60 0.03 0.44
”  VIDEO COMBINED 0.61 -0.04 0.44
< ALL UNSUPERVISED 0.58 0.32 0.48
= ALL COMBINED 0.67 0.28 0.55
UPPER BOUND 0.84 0.43 0.73

Figure 6: Evaluation results in Spearman’s p. All values > 0.11 are significant at p < 0.001.

formance for composite activity recognition. The
relevant attributes are all activities and objects an-
notated in the video data (cf. Section 3.1). For the
experiments reported below we use the same setup
as Rohrbach et al. (2012b) and use all videos in
MPII Composites and MPII Cooking (Rohrbach et
al., 2012a), excluding the 127 videos used during
evaluation. The real-valued SVM-classifier output
provides a confidence how likely a certain attribute
appeared in a given video segment. This results in a
218-dimensional vector of classifier outputs for each
video segment. To compute the similarity between
two vectors we compute the cosine between them.

6 Evaluation

We evaluate the different similarity models intro-
duced in Sec. 5 by calculating their correlation with
the gold-standard similarity annotations of ASim
(cf. Sec. 4). For all correlations, we use Spear-
man’s p as a measure. We consider the two textual
measures (JACCARD and TEXTUAL VECTORS) and
their combination, as well as the two visual mod-
els (VISUAL RAW VECTORS and VISUAL CLAS-
SIFIER) and their combination. We also combined
textual and visual features, in two variants: The
first includes all models (ALL COMBINED), the sec-
ond only the unsupervised components, omitting the
visual classifier (ALL UNSUPERVISED). To com-
bine multiple similarity measures, we simply aver-
age their normalized scores (using z-scores).

Figure 6 shows the scores for all of these mea-
sures on the complete ASim dataset (OVERALL),
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along with the two subparts, where description pairs
share either the object (SAME OBJECT) or the head
verb (SAME VERB). In addition to the model re-
sults, the table also shows the average human inter-
annotator agreement as UPPER BOUND.

On the complete set, both visual and textual mea-
sures have a highly significant correlation with the
gold standard, whereas the combination of both
clearly leads to the best performance (0.55). The
results on the SAME OBJECT and SAME VERB sub-
sets shed light on the division of labor between the
two information sources. While the textual mea-
sures show a comparable performance over the two
subsets, there is a dramatic difference in the contri-
bution of visual information: On the SAME OBJECT
set, the visual models clearly outperform the textual
ones, whereas the visual information has no positive
effect on the SAME VERB set. This is clear evidence
that the visual model does not capture the similar-
ity of the participating objects but rather genuine ac-
tion similarity, which the visual features (Wang et
al., 2011) we employ were designed for. A direction
for future work is to learn dedicated visual object de-
tectors to recognize and capture similarities between
objects more precisely.

The numbers shown in Figure 7 support this hy-
pothesis, showing the two groups in the SAME OB-
JECT class: For sentence pairs that share the same
activity, the textual models seem to be much more
suitable than the visual ones. In general, visual mod-
els perform better on actions with different activity
types, textual models on closely related activities.



MODEL (SAME OBJECT) same action diff. action
~ JACCARD 0.44 0.14
ﬁ TEXT VECTORS 0.42 0.05
& TEXT COMBINED 0.52 0.14
8 VIS. RAW VECTORS 0.21 0.23
A VIS. CLASSIFIER 0.21 0.45
”  VIDEO COMBINED 0.26 0.38
»  ALL UNSUPERVISED 0.49 0.24
= ALL COMBINED 0.48 0.41
UPPER BOUND 0.73 0.73

Figure 7: Results for sentences with the same object, with
either the same or different low-level activity.

Overall, the supervised classifier contributes a
good part to the final results. However, the supervi-
sion is not strictly necessary to arrive at a significant
correlation; the raw visual features alone are suffi-
cient for the main performance gain seen with the
integration of visual information.

7 Conclusion

We presented the TACOS corpus, which provides
coherent textual descriptions for high-quality video
recordings, plus accurate alignments of text and
video on the sentence level. We expect the corpus
to be beneficial for a variety of research activities in
natural-language and visual processing.

In this paper, we focused on the task of grounding
the meaning of action verbs and phrases. We de-
signed the ASim dataset as a gold standard and eval-
uated several text- and video-based semantic simi-
larity models on the dataset, both individually and
in different combinations.

We are the first to provide semantic models for
action-describing expressions, which are based on
information extracted from videos. Our experimen-
tal results show that these models are of considerable
quality, and that predictions based on a combination
of visual and textual information even approach the
upper bound given by the agreement of human an-
notators.

In this work we used existing similarity models
that had been developed for different applications.
We applied these models without any special train-
ing or optimization for the current task, and we com-
bined them in the most straightforward way. There
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is room for improvement by tuning the models to
the task, or by using more sophisticated approaches
to combine modality-specific information (Silberer
and Lapata, 2012).

We built our work on an existing corpus of high-
quality video material, which is restricted to the
cooking domain. As a consequence, the corpus cov-
ers only a limited inventory of activity types and ac-
tion verbs. Note, however, that our models are fully
unsupervised (except the Visual Classifier model),
and thus can be applied without modification to ar-
bitrary domains and action verbs, given that they are
about observable activities. Also, corpora contain-
ing information comparable to the TACOS corpus but
with wider coverage (and perhaps a bit noisier) can
be obtained with a moderate amount of effort. One
needs videos of reasonable quality and some sort of
alignment with action descriptions. In some cases
such alignments even come for free, e.g. via subti-
tles, or descriptions of short video clips that depict
just a single action.

For future work, we will further investigate the
compositionality of action-describing phrases. We
also want to leverage the multimodal information
provided by the TACOS corpus for the improvement
of high-level video understanding, as well as for
generation of natural-language text from videos.

The TACOS corpus and all other data described in
this paper (videos, low-level annotation, aligned tex-
tual descriptions, the ASim-Dataset and visual fea-
tures) are publicly available. >
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