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Abstract 

Filled pauses are characteristic of 
spontaneous speech and can present 
considerable problems for speech 
recognition by being often recognized as 
short words. An um can be recognized as 
thumb or arm if the recognizer's language 
model does not adequately represent FP's. 
Recognition of quasi-spontaneous speech 
(medical dictation) is subject to this problem 
as well. Results from medical dictations by 
21 family practice physicians show that 
using an FP model trained on the corpus 
populated with FP's produces overall better 
results than a model trained on a corpus that 
excluded FP's or a corpus that had random 
FP's. 

Introduction 

Filled pauses (FP's), false starts, repetitions, 
fragments, etc. are characteristic of 
spontaneous speech and can present 
considerable problems for speech 
recognition. FP's are often recognized as 
short words of similar phonetic quality. For 
example, an um can be recognized as thumb 
or arm if the recognizer's language model 
does not adequately represent FP's. 
Recognition of quasi-spontaneous speech 
(medical dictation) is subject to this problem 
as well. The FP problem becomes 
especially pertinent where the corpora used 
to build language models are compiled from 
text with no FP's. Shriberg (1996) has 
shown that representing FP's in a language 
model helps decrease the model' s 
perplexity. She finds that when a FP occurs 

at a major phrase or discourse boundary, the 
FP itself is the best predictor of the 
following lexical material; conversely, in a 
non-boundary context, FP's are predictable 
from the preceding words. Shriberg (1994) 
shows that the rate of disfluencies grows 
exponentially with the length of the 
sentence, and that FP's occur more often in 
the initial position (see also Swerts (1996)). 

This paper presents a method of using 
bigram probabilities for extracting FP 
distribution from a corpus of hand- 
transcribed dam. The resulting bigram 
model is used to populate another Iraining 
corpus that originally had no FP's. Results 
from medical dictations by 21 family 
practice physicians show that using an FP 
model trained on the corpus populated with 
FP's produces overall better results than a 
model trained on a corpus that excluded 
FP's or a corpus that had random FP's. 
Recognition accuracy improves 
proportionately to the frequency of FP's in 
the speech. 

1. Filled Pauses 

FP's are not random events, but have a 
systematic distribution and well-defined 
functions in discourse. (Shriberg and 
Stolcke 1996, Shriberg 1994, Swerts 1996, 
Macalay and Osgood 1959, Cook 1970, 
Cook and Lalljee 1970, Christenfeld, et al. 
1991) Cook and Lalljee (1970) make an 
interesting proposal that FP's may have 
something to do with the listener's 
perception of disfluent speech. They 
suggest that speech may be more 
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comprehensible when it contains filler 
material during hesitations by preserving 
continuity and that a FP may serve as a 
signal to draw the listeners attention to the 
next utterance in order for the listener not to 
lose the onset of  the following utterance. 
Perhaps, from the point of  view of  
perception, FP's are not disfluent events at 
all. This proposal bears directly on the 
domain of  medical dictations, since many 
doctors who use old voice operated 
equipment train themselves to use FP's 
instead of  silent pauses, so that the recorder 
wouldn't cut off  the beginning of  the post 
pause utterance. 

2. Quasi-spontaneous speech 

Family practice medical dictations tend to be 
pre-planned and follow an established 
SOAP format: (Subjective (informal 
observations), Objective (examination), 
Assessment (diagnosis) and Plan (treatment 
plan)). Despite that, doctors vary greatly in 
how frequently they use FP's, which agrees 
with Cook and Lalljee's (1970) findings of  
no correlation between FP use and the mode 
of  discourse. Audience awareness may also 
play a role in variability. My observations 
provide multiple examples where the 
doctors address the transcriptionists directly 
by making editing comments and thanking 
them. 

3. Training Corpora and FP 
Model 

This study used three base and two derived 
corpora Base corpora represent three 
different sets of  dictations described in 
section 3.1. Derived corpora are variations 
on the base corpora conditioned in several 
different ways described in section 3.2. 

3.1 Base 

Balanced FP training corpus (BFP- 
CORPUS) that has 75, 887 words of  
word-by-word transcription data evenly 
distributed between 16 talkers. This 

3.2 

corpus was used to build a BIGRAM- 
FP-LM which controls the process of  
populating a no-FP corpus with artificial 
FP's. 

Unbalanced FP training corpus (UFP- 
CORPUS) of  approximately 500,000 
words of  all available word-by-word 
transcription data from approximately 
20 talkers. This corpus was used only to 
calculate average frequency of  FP use 
among all available talkers. 

Finished transcriptions corpus (FT- 
CORPUS) of  12,978,707 words 
contains all available dictations and no 
FP's. It represents over 200 talkers of  
mixed gender and professional status. 
The corpus contains no FP's or any 
other types of  disfluencies such as 
repetitions, repairs and false starts. The 
language in this corpus is also edited for 
grammar. 

Derived 

CONTROLLED-FP-CORPUS is a 
version of  the finished transcriptions 
corpus populated stochastically with 
2,665,000 FP's based on the BIGRAM- 
FP-LM. 

RANDOM-FP-CORPUS- 1 (normal 
density) is another version of  the 
finished transcriptions corpus populated 
with 916,114 FP's where the insertion 
point was selected at random in the 
range between 0 and 29. The random 
function is based on the average 
frequency of  FPs in the unbalanced 
UFP-CORPUS where an FP occurs on 
the average after every 15 th word. 
Another RANDOM-FP-CORPUS-2 
(high density) was used to approximate 
the frequency of  FP's in the 
CONTROLLED-FP-CORPUS. 
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4. Models 

The language modeling process in this study 
was conducted in two stages. First, a bigram 
model containing bigram probabilities of  
FP's in the balanced BFP-COPRUS was 
built followed by four different trigram 
language models, some of  which used 
corpora generated with the BIGRAM-FP- 
LM built during the first stage. 

4.1 Bigram FP model 

This model contains the distribution of  FP's 
obtained by using the following formulas: 

P(FPIwi-O = Cw-i Fp/Cw-i 
P(FPIwH) = CFp w+l/Cw+l 

Thus, each word in a corpus to be populated 
with FP's becomes a potential landing site 
for a FP and does or does not receive one 
based on the probability found in the 
BIGRAM-FP-LM. 

4.2 Trigram models 

The following trigram models were built 
using ECRL's Transcriber language 
modeling tools (Valtchev, et al. 1998). Both 
bigram and trigram cutoffs were set to 3. 

• NOFP-LM was built using the FT- 
CORPUS with no FP's. 

• ALLFP-LM was built entirely on 
CONTROLLED-FP-CORPUS. 

• ADAPTFP-LM was built by 
interpolating ALLFP-LM and NOFP- 
LM at 90/10 ratio. Here 90 % of  the 
resulting ADAPTFP-LM represents the 
CONTROLLED-FP-CORPUS and 10% 
represents FT-CORPUS. 

• RANDOMFP-LM-1 (normal density) 
was built entirely on the RANDOM-FP- 
CORPUS-1. 

= RANDOMFP-LM-2 (high density) was 
built entirely on the RANDOM-FP- 
CORPUS-2 

5. Testing Data 

Testing data comes from 21 talkers selected 
at random and represents 3 (1-3 min) 
dictations for each talker. The talkers are a 
random mix of  male and female medical 
doctors and practitioners who vary greatly in 
their use of  FP's. Some use literally no FP's 
(but long silences instead), others use FP's 
almost every other word. Based on the 
frequency of  FP use, the talkers were 
roughly split into a high FP user and low FP 
user groups. The relevance of  such division 
will become apparent during the discussion 
of  test results. 

6. Adaptation 

Test results for ALLFP-LM (63.01% avg. 
word accuracy) suggest that the model over 
represents FP's. The recognition accuracy 
for this model is 4.21 points higher than that 
of  the NOFP-LM (58.8% avg. word 
accuracy) but lower than that of  both the 
RANDOMFP-LM-1 (67.99% avg. word 
accuracy) by about 5% and RANDOMFP- 
LM-2 (65.87% avg. word accuracy) by 
about 7%. One way of  decreasing the FP 
representation is to correct the BIGRAM- 
FP-LM, which proves to be computationally 
expensive because of  having to rebuild the 
large training corpus with each change in 
BIGRAM-FP-LM. Another method is to 
build a NOFP-LM and an ALLFP-LM once 
and experiment with their relative weights 
through adaptation. I chose the second 
method because ECRL Transcriber toolkit 
provides an adaptation tool that achieves the 
goals of  the first method much faster. The 
results show that introducing a NOFP-LM 
into the equation improves recognition. The 
difference in recognition accuracy between 
the ALLFP-LM and ADAPTFP-LM is on 
average 4.9% across all talkers in 
ADAPTFP-LM's favor. Separating the 
talkers into high FP user group and low FP 
user group raises ADAPTFP-LM's gain to 
6.2% for high FP users and lowers it to 3.3% 
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for low FP users. This shows that 
adaptation to no-FP data is, counter- 
intuitively more beneficial for high FP users. 

7. Resul t s  and  d iscuss ion  

Although a perplexity test provides a good 
theoretical measure o f  a language model, it 
is not always accurate in predicting the 
model 's performance in a recognizer (Chen 
1998); therefore, both perplexity and 
recognition accuracy were used in this 
study. Both were calculated using ECRL's 
LM Transcriber tools. 

7.1 Perplexity 

Perplexity tests were conducted with 
ECRL's LPlex tool based on the same text 
corpus (BFP-CORPUS) that was used to 
build the BIGRAM-FP-LM. Three 
conditions were used. Condition A used the 
whole corpus. Condition B used a subset o f  
the corpus that contained high frequency FP 
users  (FPs/Words ratio above 1.0). 
Condition C used the remaining subset 
containing data from lower frequency FP 
users (FPs/Words ratio below 1.0). Table 1 
summarizes the results o f  perplexity tests at 
3-gram level for the models under the three 
conditions. 

.... , : L p ~  Lplex.: :: i OOV: ~ .  : L p l ~  

:NOFP~LIV, ::, = ,,: ,: 617.59 6.35 1618.35 6.08 287.46 

ADAVT~. M ........ i .. ;'L = 132.74 6.35 ::: ..... 6.08 ' ~:13L70 : .... 

: ~DOMFP~LM~. : 138.02 6.3_5 ~ 6.08 125,79 
i ,R.ANDOMFP~2 156.09 6.35 152.16 6.08 145.47 6.06 

980.67 6.35 964.48 6.08 916.53 6.06 

Table 1. Perplexity measurements 

O O V  r~:: 
(%),:,, ,,,, 
6.06 
6.06 
6.06 

The perplexity measures in Condition A show 
over 400 point difference between ADAPTFP- 
LM and NOFP-LM language models. The 
363,08 increase in perplexity for ALLFP-LM 
model corroborates the results discussed in 
Section 6. Another interesting result is 
contained in the highlighted fields o f  Table 1. 
ADAPTFP-LM based on CONTROLLED-FP- 
CORPUS has lower perplexity in general. 
When tested on conditions B and C, ADAPTFP- 
LM does better on frequent FP users, whereas 

RANDOMFP-LM-Â does better on infrequent 
FP users, which is consistent with the 
recognition accuracy results for the two models 
(see Table 2). 

7.2 Recognition accuracy 

Recognition accuracy was obtained with 
ECRL's HResults tool and is summarized in 
Table 2. 

::~. ~,::,~: 1 5140 % 
[ . . . . .  ~ I ~ ~ / )  ~ ~:::l 66.57 % 

[ ~  ii: ~ii~! iiiiiii!!iiiiiii!i ii]67.14% 
Table 2. Recognition accuracy tests for LM's. 

!A~ ! i ~ ~ )  i:~i~::.~:i. ~i!~i I 
67.76% 
71.46 % 
69.23 % 
71.24% 

The results in Table 2 demonstrate two 
things. First, a FP model performs better 
than a clean model that has no FP 

representation~ Second, a FP model based on 
populating a no-FP training corpus with 
FP's whose distribution was derived from a 
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small sample o f  speech data performs better 
than the one populated with FP's at random 
based solely on the frequency of  FP's. The 
results also show that ADAPTFP-LM 
performs slightly better than RANDOMFP- 
LM-1 on high FP users. The gain becomes 
more pronounced towards the higher end of  
the FP use continuum. For example, the 
scores for the top four high FP users are 
62.07% with RANDOMFP-LM-1 and 
63.51% with ADAPTFP-LM. This 
difference cannot be attributed to the fact 
that RANDOMFP-LM-1 contains fewer 
FP's than ADAPTFP-LM. The word 
accuracy rates for RANDOMFP-LM-2 
indicate that frequency of  FP's in the 
training corpus is not responsible for the 
difference in performance between the 
RANDOM-FP-LM-1 and the ADAPTFP- 
LM. The frequency is roughly the same for 
both RANDOMFP-CORPUS-2 and 
CONTROLLED-FP-CORPUS, but 
RANDOMFP-LM-2 scores are lower than 
those of  RANDOMFP-LM-1, which allows 
in absence of  further evidence to attribute 
the difference in scores to the pattern of  FP 
distribution, not their frequency. 

Conclusion 

Based on the results so far, several 
conclusions about FP modeling can be 
made: 

1. Representing FP's in the training data 
improves both the language model's 
perplexity and recognition accuracy. 

2. It is not absolutely necessary to have a 
corpus that contains naturally occurring 
FP's for successful recognition. FP 
distribution can be extrapolated from a 
relatively small corpus containing 
naturally occurring FP's to a larger 
clean corpus. This becomes vital in 
situations where the language model has 
to be built from "clean" text such as 
finished transcriptions, newspaper 
articles, web documents, etc. 

3. If one is hard-pressed for hand 
transcribed data with natural FP's, a 

. 

random population can be used with 
relatively good results. 
FP's are quite common to both quasi- 
spontaneous monologue and 
spontaneous dialogue (medical 
dictation). 

Research in progress 

The present study leaves a number of  issues 
to be investigated further: 

1. The results for RANDOMFP-LM-1 
are very close to those o f  
ADAPTFP-LM. A statistical test is 
needed in order to determine i f  the 
difference is significant. 

2. A systematic study of  the syntactic as 
well as discursive contexts in which 
FP's are used in medical dictations. 
This will involve tagging a corpus of  
literal transcriptions for various kinds o f  
syntactic and discourse boundaries such 
as clause, phrase and theme/rheme 
boundaries. The results of  the analysis 
of  the tagged corpus may lead to 
investigating which lexical items may be 
helpful in identifying syntactic and 
discourse boundaries. Although FP's 
may not always be lexically 
conditioned, lexical information may be 
useful in modeling FP's that occur at 
discourse boundaries due to co- 
occurrence o f  such boundaries and 
certain lexical items. 

3. The present study roughly categorizes 
talkers according to the frequency of  
FP's in their speech into high FP users 
and low FP users. A more finely tuned 
categorization of  talkers in respect to FP 
use as well as its usefulness remain to be 
investigated. 

4. Another area of  investigation will focus 
on the SOAP structure of  medical 
dictations. I plan to look at relative 
frequency of  FP use in the four parts of  
a medical dictation. Informal 
observation of  data collected so f a r  
indicates that FP use is more frequent 
and different from other parts during the 
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Subjective part o f  a dictation. This is 
when the doctor uses fewer frozen 
expressions and the discourse is closest 
to a natural conversation. 
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