
A Unification-based Approach to Morpho-syntactic Parsing of
Agglutinative and Other (Highly) Inflectional Languages

G~ibor Pr6sz6ky

proszeky@morphologic.hu

M o r p h o L o g i c
K6smdrki u. 8.

Budapest, Hungary, H-1118
http://www.morphologic.hu

Bal~tzs Kis

kis@morphologic.hu

Abstract
This paper introduces a new approach to
morpho-syntactic analysis through Humor 99
(High-speed Unification Mo.rphology), a re-
versible and unification-based morphological
analyzer which has already been integrated
with a variety of industrial applications. Hu-
mor 99 successfully copes with problems of
agglutinative (e.g. Hungarian, Turkish, Esto-
nian) and other (highly) inflectional lan-
guages (e.g. Polish, Czech, German) very ef-
fectively. The authors conclude the paper by
arguing that the approach used in Humor 99
is general enough to be well suitable for a
wide range of languages, and can serve as
basis for higher-level linguistic operations
such as shallow parsing.

Introduction

There are several linguistic phenomena that are
possible to process by means of morphological
tools for agglutinative and other highly inflec-
tional languages, while processing the same fea-
tures requires syntactic parsers in case of other
languages such as English. This paper provides a
brief description of Humor 99 first presenting a
general theoretical background of the system.
This is followed by examples of the most recent
applications (in addition to those listed earlier)
where the authors argue that the approach used in
Humor 99 is general enough to be well suitable
for a wide range of languages, and can serve as

basis for higher-level linguistic operations such
as shallow or even full parsing.

1 Affix arrays rather than affixes

Segmentation of a word-form in Humor 99 is
based on surface patterns, that is, typical sequen-
ces of separate suffix morphemes are analyzed as
a whole. For example, the English nominal end-
ing string ers' (NtoV+PL+POSS) is a complex
affix handled as an atomic string in Humor 991 .
The string ers' is generated from er+s+ 's in an
earlier development phase by a dedicated utility.
The generator is able to make a finite set of affix
sequences from an (even recursive) description 2.
Running this utility can be considered the learn-
ing phase of the algorithm. The resulting suffix
combinations are stored in a compressed internal
lexicon structure that guarantees very fast
searching) The entire algorithm shows features
similar to the hypothesis according to which most
segments of word-forms in agglutinative lan-

We use mainly English examples in spite of the fact that
English morphology is simpler than the morphologies of
agglutinative and highly inflectional languages.

2 Depth of the recursive process can be given as a
parameter. The method is similar to the one of Goldberg
& K=ilm=in (1992) used in the BUG system: the
description is theoretically infinite, hut there is a finite
performance limit when running.

3 The idea has something in common with the PC-Kimmo
based analyzer of the University of Pennsylvania (Karp
et al. 1992). Our compression ratio is around 20%.

261

guages are handled as "Gestalts" by native
speakers, instead of parsing them on-line. 4

This idea is not new in the literature: according to
Bybee, "a psycholinguistic argument for treating
(some) ending sequences as wholes comes from
the observation that children acquiring inflec-
tional languages seldom make errors involving
the order of morphemes in a word." (Bybee
1985) Another source is Karlsson: "The endings
and entries are often listed as wholes, especially
in close-knit combinations. 5 Such combinations
are often subject to bi-directional dependencies
that are hard to capture otherwise" (Karlsson
1986).

2 Allomorphs rather than base
forms

Karlsson (1986) shows several ways in which
lexical forms of words may be constructed: full
listing, minimal listing, methods with unique
lexical forms and methods with phonologically
distinct stem variants. Full listing does not need
rules at all, but it is implausible for agglutinative
languages. Minimal listings need a quite large
rule system in case of highly inflectional lan-
guages, although their lexicons are relatively
small. In methods based on unique lexical forms
allowing diacritics and morpho-phonemes (Ko-
skenniemi 1983, Abondolo 1988) paradigms are
represented by a single base form 6. Our approach
is close to the minimal listing methods, but less
rules are needed. Finally, the representation pre-
sented here regards phonologically distinct bound
variants of a base form as separate stems. 7 There

4 Psycholinguists are interested in testing this hypothesis
with native speakers (Pl~h, pers. comm.)

5 A good example is the linguistic tradition handling
number and person combinations of Hungarian definite
conjugation.

6 That is why it is very difficult to add new entries to the
lexicons automatically in real NLP environments.

7 Actual two-level (and some other) descriptions apply
similar methods in order to cope with morphotactic
problems that cannot be treated phonologically in an
elegant way.

are two known important variants of this method:
one using technical stems - - that is, strings that
linguists do not consider stem variants - - and
another using real allomorphs. The former was
applied in the TEXFIN system of Karttunen
(1981), the latter was used by Karlsson (1986).
This is the method we have chosen for the Hu-
mor 99 system.

Humor 99 lexicons contain stem allomorphs
(generated by the learning phase mentioned
above) instead of single stems. Relations among
allomorphs of the same base form (e.g. wolf,
wolv) are, however, important for syntax, seman-
tics, and the end-user. An online morphological
parser needs not be directly concerned with the
derivation of allomorphs from their base forms,
for example, it does not matter how happi is de-
rived from happy before -ly. This phenomenon -
a consequence of the orthographical system - is
handled by the off-line linguistic process of Hu-
mor 99, which makes the analysis much faster.
This method is close to the lexicon compilation
used in finite-state models.

3 Paradigm groups and
paradigms

Concatenation of stem allomorphs and suffix al-
lomorphs is licensed with the help of the follow-
ing two factors: continuation classes s defined by
paradigm descriptions, and classes of surface al-
lomorphs. The latter is a cross-classification of
the paradigms according to phonological and
graphemic properties of the surface forms. Both
verbal and nominal stem allomorphs can be char-
acterized by sets of suffix allomorphs that can
follow them. When describing the behavior of
stems, all suffix combinations beginning with the
same morpheme are considered equivalent be-
cause the only relevant pieces of information
come from the suffix that immediately follows
the stem. E.g. from the point of view of the pre-
ceding stem (humid) morpheme combinations

8 Similar to the two-level descriptions' continuation
classes (Koskenniemi 1983).

262

Example I

Example 2

Word'form

l humidity

humidi~ ' s

humidities

humidities'

Humor's real-time Humor's output
segmentation segmentation

humid + ity humid + ity

humid + ity's humid + it)/+ 's

humid + ities humid + iti + es

humid + ities' humid + iti + es '

~ e s

Features=
÷/- Values

Nbr=Pl

Deriv=Adv
Deriv=Abstr

[Deg=Comp

Deg=Super

, M o ~ h m e

S

H e s s

er

est

Subcat=-N
f i sh house

+

Stems !0
Ca~Nom
Subeat=-Adj

green happy

+

+ +

+ +

+ +

Subcat=Adv

like ity+SG, ity+PL, ity+SG+GEN, ity+PL+GEN
behave as ity itself (Example 1). Therefore, every
affix array is represented by its starting affix 9.
Each equivalence class and each paradigm is
given an abstract name, that is, each existing set
of equivalence classes can have its own abstract
name. Example 2 shows a simplified default
paradigm of adjectives. For instance, the stem
green belongs to the paradigm that can be de-
scribed by the set {Deriv=Abstr, Deg=Comp,
Deg=Super}, er is a suffix belonging to
{Deg=Comp}, thus the word-form greener is
morphotactically licensed by the unifiability of
the two structures: the feature 'Deg' occurs in
both with the same value. It is possible to con-
struct a net - a partial ordering of paradigm sets -
according to the degree and sort of defectivity.
The Subsumption hierarchy is useful in aggluti-
native languages where allomorph paradigms of
various stem classes might behave the same way
although they have been derived by different
morphonological processes.

9 There is an equivalence relation on the set of affix
arrays.

l0 Nom means nominal, N, Adj and Adv as usual. Some
remarks to the sample words: greens does exist, but as a
lexical noun. Some affixed forms, like happily, happier,

The scheme shown in Example 2 would better
suit languages like Hungarian, but here we try to
demonstrate constructing morphological classes
without naming them. The (partial) paradigm net
based on Example 2 can be the following:

CLASShappy > CLASS green > CLASS far >
> CLASS~sh

CLASShou~ > CLASS ~sh

This classsification might be used by traditional
linguists for creating definitions (or rather nam-
ing conventions) of morpheme classes that are
more precise than usual.

4 Unifiability without unification

Features used for checking appropriate properties
of stems and suffixes are relevant attributes of
morpho-graphemic behavior. Checking 'appro-
priateness' is based on unification, or, strictly
speaking, checking unifiability of the adequate
features of stems and suffixes. A phonologically
and ortographically motivated allomorph-based
variant of Example 3 is shown by Example 4.

happiest, farther, farthest, are influenced also by
phonological and/or orthographical processes.

263

Example 3

Features=

• +/- Values

Lex=Base

Nbr=PI s

~ e s

Deg=Comp
i

• Deg=Super

Deriv=Adv ly

Deriv=Abstr ness

e r

e s t

Subcat=N

Stem Atlomorphs

Cat=Nom

Subcat=-Adj

f i s h h o u s e

+ +

- +

g r e e n h a p p y h a p p i

+ +

- +

+ + .

+ . +

+ . +

Subcat=Adv

f a r f a r t h

+

Features (morpho-phonological properties) are
used to characterize both stem and suffix allo-
morphs. A list of Feature=Value pairs shows the
morphological structure of the morphemes green
and er:

green."
[Cat=-Nom, Lex=Base, Subcat=-Adj, Deriv
=Abstr, Deg={Comp, Super}]

er:[Cat=Nom, Subcat={Adj,Adv}, Deg=C
omp]They are unifiable, thus the word-
form greener is also morpho-
phonologically licensed 11:

INPUT: greener

OUTPUT: green[A] + er[CMP]

The most important advantage of this feature-
based method is that possible paradigms and
morpho-phonological types need not be defined
previously, only the classification criteria have to
be clarified. Since the number of these criteria is
around a few dozens (in case of a language with
rather complicated morphology), the number of
theoretically possible paradigm classes is several
millions or more. According to our practice lin-

11 Unifiability in Humor 99 is defined as follows:
An f feature of the D description can have either a single
value or a set of values.
An f feature of the D description has compatible values
in the E description iffone of the values of f can be
found among the values of f in the E description.
D and E are unifiable iffevery f feature of the E
description has compatible values in the D description.

guists choose about 10-20 orthogonal properties
which produce 21°-22o possible classes, but, in

fact, most of these hypothetical classes are empty
in the language chosen.

The implemented morphological analyzer
provides the user with more detailed category
information (lexical, morpho-syntactic, semantic,
etc.) according to the case illustrated by Example
4 (see next page).

Allomorphs happy and ly cannot be unified be-
cause of contradicting values of Allom, but happi
and ly can. If the unifiability check is successful,
the base form is reconstructed (according to the
Base information: happi ~ happy) and the output
information (that is, Category code in our case)
is returned:

INPUT: happyly

OUTPUT: *happyly

INPUT: happily

OUTPUT: happy[A]=happi+ly [A2ADV]

As we have seen, lexical information has a cen-
tral role in Humor, because only a single rule -
unifiability-checking - is to be applied.

5 Controlling morpheme
sequence recognition

Humor 99 is capable of much more than sketched
above. For instance, there can be more than one
concatenation points in a single word form.
Therefore effective analysis requires an elegant

2 6 4

Example 4
• I

Allomorph Feature=Value
happy Cat=Nom

Subcat=Adj
Deriv=Abstr
Allom=y
Lex=Base

happi Cat=Nom
Subcat=Adj
Deriv=Adv
Deg=Comp
DerSuper
Allom=i
Lex=NonBase

ly Cat=-Nom
Subcat=Adj
Deriv=Adv
Allom=i
Lex=NonBase

Base
0

i ->__.y

cate~or~
[ADJ]

[ADH

[ADV]

way of handling compounding and adequate han-
dling of derivational affixes.

Recent implementations of Humor 99 define the
set of possible morpheme sequences by means of
the so-called meta-dictionary (in fact, it's a fi-
nite-state automaton). This structure transforms
Humor 99 into a representation where three inde-
pendent types of conditions can be set (on differ-
ent levels) to control which morphemes (and in
what way) may be following each other. All of
them were mentioned earlier; the list below is
only a summary:

1. Morpheme sequence recognition is achieved
through the meta-dictionary.

2. A continuation class matrix provides concate-
nation licensing based on paradigm descriptions.

3. A feature structure controls concatenation li-
censing based on surface allomorph classification
by means of unifiability checking.

Earlier implementations of Humor used the fol-
lowing hard-coded scheme to control morpheme
order where all parts except STEM1 were optional
(Example 5).

Example 5

(INFL. AFF.)

265

Example 6 shows how a meta-dictionary can be
drawn up to handle the above structure. 12

Example 6

[% indicates the starting state; $ indicates ending (or ac-
cepting) states]

START : %

PREFIX -> STEM REQUIRED

STEM1 -> STEM~ PASSED

STEM_REQUIRED :
STEM1 -> STEM1 PASSED

STEMI_PASSED : $
STEM2 -> AFFIXES POSSIBLE

DERIV AFF -> INFL AFF POSSIBLE

INFL AFF -> END -- --

AFFIXES_POSSIBLE : $

DERIV AFF -> INFL AFF POSSIBLE

INFL AFF -> END -- --

INFL AFF POSSIBLE:$

INFL AFF -> END

END : $

Here is an example how Humor's analyzer reacts
to a typical construction of an agglutinative lan-
guage (Hungarian): elsz6mlt6gdpezgethettem. ("I
could use a computer to make fun for a while"):

INPUT:
elsz~tmit6g~pezgethettem

INTERNAL SEGMENTATION:
el[PREFIX]+sz~mit6[STEM 1]+g~p[STEM2]+
+ezgethet[DERIV.AFF.]+tem[INFL.AFF]

OUTPUT:
eI[VPREF]+s~it6[ADJ]+g~p[N]+ez[N2V]+
+get[FREQ]+het[OPT]+tem[PAST-SG- 1]

6 Comparison with other methods

There are only a few general, reversible mor-
phological systems that are suitable for more than
a single language. In addition to the well-known
two-level morphology (Koskenniemi 1983) and
its modifications (Karttunen 1993) it is worth
mentioning the Nabu system (Slocum 1988).
There are some morphological description sys-
tems showing some features in common with
Humor 99 - like paradigmatic morphology (Cal-
der 1989), or the Paradigm Description Language
(Anick & Artemieff 1992) - but they don't have

12 The meta-dictionary shown in the example compiles
with Humor's lexicon compiler without any changes.

large-scale implementations. Two-level mor-
phology is a reversible, orthography-based sys-
tem that has several advantages from a linguist's
point o f view. Namely, the morpho-phone-
mic/graphemic rules can be formalized in a gen-
eral and very elegant way. It also has computa-
tional advantages, but the lexicons must contain
entries with extra symbols and other sophisti-
cated elements in order to produce the necessary
surface forms. Non-linguist users need an easy-
to-extend dictionary into which words can be in-
serted (almost) automatically. The lexical basis
of Humor 99 contains surface characters only -
no transformations are applied - , while the meta-
dictionary mechanism retains many advantages
of the two-level systems. It means in the practice
that users can add entries to the running system
without re-compiling it.

The compilation time of a Humor 99 dictionary is
usually 1-2 minutes (for 100,000 basic entries)
on an average PC, which is another advantage (at
least, for the linguist) when comparing it with
other two-level systems. The result of the com-
pilation is a compressed structure that can be
used by any Humor 99 applications. The com-
pression ratio is less than 20% in terms of lexicon
size compared to the source material. The size of
the dictionary has very little affect on the speed
of the run-time system because the tree-based
searching algorithm is enhanced with a special
paging mechanism developed exclusively for this
purpose.

7 Recent applications of the Humor
99 system

There are several applications o f Humor 99 -
most o f them are ful ly implemented, some others
are still in a planning phase. For the time being,
our research focuses on two applications, both
serving one larger goal: the improvement of
translation support of morphologically complex
languages. This paper does not cover industrial
applications such as spelling checkers, hyphen-
ators, thesauri etc., since these modules have

2 6 6

been on the market for several years. The fol-
lowing sections briefly describe (1) linguistic
stemming for searching purposes, (2) an en-
hancement to the Humor 99 morphological ana-
lyzer that can act as a shallow or full parser in
translation support systems.

Linguistic stemming may be considered as a
normalizer function which 'normalizes' word
forms into canonic lexical forms, thus enabling
searching systems to find any form of a specific
word in an information base regardless of the
word form entered in the search expression. In
languages where a single lexical item can take
thousands of possible forms, it is essential to
have this normalization in electronic dictionaries
used for translation support. However, it is these
languages where linguistic stemming is impossi-
ble without morphological analysis - otherwise
several billions of word forms would have to be
included in a single database. Thus stemming is a
combination of the morphological analysis and a
post-processing phase where the actual stems
(lexical forms) are extracted from the analysis re-
suits. Both the analysis and the extraction phase
have to be very precise, otherwise false stems
may be returned, and, in case of an electronic
dictionary, wrong articles may be retrieved. In
languages where words consist of several parts
(i.e. productive compounding and/or sequences
of derivative suffixes are possible), there might
be a lot of possible stems of a single word form -
the degree of disambiguity within a single word
form can be much higher than in languages hav-
ing less complex morphologies.

Extraction is based on the results of morphologi-
cal analysis where the original word form is seg-
mented into morphemes, with each morpheme
having a category label and a lexical form. From
the segmented results, this phase selects mor-
phemes with stem categories (adjective, noun,
verb etc.). Example 7 shows a typical stemming
problem where the computer is not entitled to
choose between the different possible stems. In
these cases, all stems must be returned. Choice is
a task of either the end-user or a disambiguator
module that is based on the context of the word.

Example 7

There are two possible segmentations of
the Hungarian word 'szemetek':

szemetek = szem[N] + etek[Poss-P3]
in English: 'your eyes' ('you' in plural)

szemetek = szemdt[N]=szemet + ek[Pl]
in English: 'pieces o f rubbish'

The two possible stems are: 'szem' (eye)
and 'szemdt' (rubbish).

8 An enhancement: shallow and
full parsing with HumorESK

HumorESK (Humor Enhanced with Syntactic
Knowledge) is a twofold application of Humor
99 that is used for shallow and full parsing. 13 The
first point of using the morphological analyzer in
the parser is to get as much linguistic information
about a single word form as possible. The second
point is using the basic principles of the mor-
phological analyzer to implement the parser it-
self. This means that we either collect or generate
phrase patterns on different linguistic levels
(noun phrases, prepositional phrases, verbal
phrases etc.), and compile a Humor-like lexicon
of them. On a specific linguistic level each
atomic element of a pattern actually corresponds
to a (more) complex structure on a lower linguis-
tic level. Example 8 shows how a noun phrase
pattern can be constructed from the result of the
morphological analysis.

Example 8

Surface string:

the big bad wolves

Morphological analysis:

the[Det] big[Adj] bad[Adj]
wolf[N]=wolve+s[PL]

Noun phrase pattern:

[Det] [Adj] [Adj] [N] [PL]

13 In our environment, shallow parsing of noun phra-
ses - noun phrase extraction - is already implemented.

267

The example is quite simplified, and does not
show an important aspect of the parser, namely, it
retains the unification-based approach introduced
in the morphological analyzer. This means that
all atomic elements in a phrase pattern have three
feature structures; two for the concatenation of
two adjacent symbols, and one that describes the
global ('phrase-wide') behavior of the symbol in
question. After recognizing a phrase pattern
(where recognition includes surface order li-
censing based on unifiability checking), another
licensing step is performed, based on the global
features of each phrase element. This step (1)
may reflect the internal hierarchy of symbols
within the phrase, (2) sometimes includes actual
unification of feature structures. Thus a single
higher-level symbol can be generated from the
phrase pattern that inherits features from the
lower levels. The parser is still in development,
although there is an implementation that is being
tested together with the dictionary system.

References

Abondolo, D. M. Hungarian Inflectional Mor-
phology. Akad6miai, Budapest. (1988)

Anick, Peter & Susan Artemieff A High-level
Morphological Description Language Exploit-
ing Inflectional Paradigms. Proceedings of
COLING-92, Nantes: 67-73. (1992)

Beesley, K. R. Constraining Separated Morpho-
tactic Dependencies In Finite State Grammars.
Proceedings of the International Workshop on
Finite State Methods in Natural Language
Processing: 41-49 (1998)

Bybee, J. L. Morphology. A Study of the Relation
between Meaning and Form. Benjamins, Am-
sterdam. (1985)

Calder, J. Paradigmatic Morphology. Proceed-
ings of 4th Conference of EACL 89:58-65
(1989)

Carter, D. Rapid Development of Morphological
Descriptions for Full Language Processing
Systems. Proceedings of EACL 95:202-209
(1995)

Goldberg, J. & K~ilm~in, L. The First BUG Re-
port. Proceedings of COLING-92: 945-949
(1992)

J~ippinen, H. and Ylilammi, M. Associative
Model of Morphological Analysis: An Em-
pirical Inquiry. Computational Linguistics
12(4): 257-252 (1986)

Karlsson, F. A Paradigm-based Morphological
Analyzer. Papers from the Fifth Scandinavian
Conference of Computational Linguistics,
Helsinki: 95-112 (1986)

Karp, D. & Schabes, Y. A Wide Coverage Public
Domain Morphological Analyzer for English.
Proceedings of COLING-92: 950-95 5 (1992)

Karttunen, L., Root, R. and Uszkoreit, H. Mor-
phological Analysis of Finnish by Computer.
Proceedings of the 71st Annual Meeting of the
SASS. Albuquerque, New Mexico. (1981)

Karttunen, L.Finite-State Lexicon Compiler.
Technical Report. ISTL-NLTT-1993-04-02.
Xerox PARC, Palo Alto, California (1993)

Koskenniemi, K. Two-level Morphology: A Gen-
eral Computational Model for Word-form
Recognition and Production. Univ. of Hel-
sinki, Dept. of Gen. Ling., Publications
No.11. (1983)

Oflazer, K. Two-Level Description of Turkish
Morphology. Proceedings of EACL-93.
(1993)

Slocum, J. Morphological Processing in the Nabu
System. Proceedings of the 2nd Applied Natu-
ral Language Processing: 228-234 (1988)

Voutilainen, A. Does Tagging Help Parsing? A
Case Study on Finite State Parsing. Proceed-
ings of the International Workshop on Finite
State Methods in Natural Language Process-
ing." 25-36 (1998)

Zajac, R. Feature Structures, Unification and Fi-
nite-State Transducers. Proceedings of the
International Workshop on Finite State Meth-
ods in Natural Language Processing." 101-
109 (1998)

268

