
Compositional Semantics for Linguistic Formalisms 

S h u l y  W i n t n e r *  
In s t i t u t e  for Research  in Cogni t ive  Science 

Univers i ty  of Pennsy l van i a  
3401 W a l n u t  St., Sui te  400A 

Phi lade lph ia ,  PA 19018 
shuly@:t±nc,  c i s .  u p e n n ,  edu  

A b s t r a c t  

In what  sense is a grammar the union of its 
rules? This paper  adapts  the notion of com- 
posi t ion,  well developed in the context of pro- 
gramming languages, to the domain of linguis- 
tic formalisms. We s tudy alternative definitions 
for the semantics of such formalisms, suggest- 
ing a denotat ional  semantics that  we show to 
be composit ional  and fully-abstract.  This fa- 
cilitates a clear, mathematical ly  sound way for 
defining grammar  modularity. 

1 I n t r o d u c t i o n  

Developing large scale grammars for natural  
languages is a complicated task, and the prob- 
lems grammar engineers face when designing 
broad-coverage grammars are reminiscent of 
those tackled by software engineering (Erbach 
and Uszkoreit, 1990). Viewing contemporary 
linguistic formalisms as very high level declara- 
tive programming languages, a g r a m m a r  for a 
natural  language can be viewed as a program. 
It is therefore possible to adapt  methods and 
techniques of software engineering to the do- 
main of natural  language formalisms. We be- 
lieve that  any advances in grammar engineering 
must be preceded by a more theoretical work, 
concentrating on the semantics of grammars. 
This view reflects the si tuation in logic program- 
ming, where developments in alternative defini- 
tions for predicate logic semantics led to im- 
plementat ions of various program composit ion 
operators  (Bugliesi et al., 1994). 

This paper  suggests a denotational  seman- 
tics tbr unification-based linguistic formalisms 
and shows that  it is composit ional and fully- 
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abstract.  This facilitates a clear, mathemat i -  
cally sound way for defining grammar  modu- 
larity. While most of the results we report  on 
are probably  not surprising, we believe that  it 
is important  to derive them directly for linguis- 
tic formalisms for two reasons. First,  practi- 
tioners of linguistic formMisms usually do not 
view them as instances of a general logic pro- 
gramming framework, but  rather as first-class 
programming environments which deserve in- 
dependent  study. Second, there are some cru- 
cial differences between contemporary  linguis- 
tic formalisms and, say, Prolog: the basic ele- 
ments - -  typed feature-structures - -  are more 
general than first-order terms, the notion of uni- 
fication is different, and computa t ions  amount  
to parsing, rather  than SLD-resolution. The 
fact that  we can derive similar results in this 
new domain is encouraging, and should not be  
considered trivial. 

Analogously to logic programming languages, 
the denotat ion of grammars can be defined us- 
ing various techniques. We review alternative 
approaches, operational  and denotational ,  to 
the semantics of linguistic formalisms in sec- 
tion 2 and show that  they are "too crude" 
to support  grammar composition. Section 3 
presents an alternative semantics, shown to be  
composit ional (with respect to grammar  union, 
a simple syntactic combination operat ion on 
grammars).  However, this definition is "too 
fine": in section 4 we present an adequate,  
composit ional and fully-abstract  semantics for 
linguistic formalisms. For lack of space, some 
proofs are omitted; an extended version is avail- 
able as a technical report  (Wintner, 1999). 

2 G r a m m a r  s e m a n t i c s  

Viewing grammars as formal entities that  share 
many features with computer  programs, it is 
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na tu ra l  to consider the  not ion  of semantics of 
ratif ication-based formalisms.  We review in this 
se(:tion the opera t iona l  defini t ion of Shieber et 
a,1. (1995) and  the deno ta t iona l  definit ion of, 
e.g., Pereira  and  Shieber (1984) or Carpente r  
(1992, pp. 204-206). We show tha t  these def- 
ini t ions are equivalent  and  tha t  none of t hem 
suppor t s  composi t ional i ty .  

2.1 B a s i c  n o t i o n s  

W(, assume famil iar i ty  wi th  theories of feature 
s t ruc tu re  based unif icat ion grammars ,  as for- 
mula ted  by, e.g., Carpen te r  (1992) or Shieber 
(1992). G r a m m a r s  are defined over typed fea- 
twre .structures (TFSs) which can be viewed as 
general izat ions of f irst-order te rms (Carpenter ,  
1991). TFSs  are par t ia l ly  ordered by subsump-  
tion, wi th  ± the least (or most  general) TFS.  A 
multi-rooted structure (MRS, see Sikkel (1997) 
()r Win tne r  and  Francez (1999)) is a sequence 
of TFSs ,  wi th  possible reentrancies  among dif- 
fi;rent elements  in the sequence. Meta-variables 
A, /3  range over TFSs  and  a, p - over MRSs. 
MRSs are par t ia l ly  ordered by subsumpt ion ,  de- 
n()ted '__', wi th  a least upper  b o u n d  opera t ion  
()f 'an'llfication, denoted  'U', and  a greatest  lowest 
t)(mnd denoted  'W. We assume the existence of 
a. fixed, finite set WORDS of words. A lexicon 
associates wi th  every word a set of TFSs,  its cat- 
egory. Meta-var iable  a ranges over  WORDS and 
.w -- over str ings of words (elements of WORDS*).  

G r a m m a r s  are defined over a signature of types  
and  features,  a s sumed  to be fixed below. 

D e f i n i t i o n  1. A ru le  is an M R S  of length 
greater than or equal to 1 with a designated 
(fir'st) element, the head  o.f the rule. The rest of 
the elements .form the rule's body (which may 
be em, pty, in which case the rule is depicted 
a.s' a TFS).  A l e x i con  is a total .function .from 
WORDS to .finite, possibly empty sets o.f TFSs. 
A g r a m m a r  G = (T¢,/:, A s} is a .finite set of 
,rules TO, a lexicon £. and a s t a r t  s y m b o l  A s 
that is a TFS. 

Figure 1 depicts an  example  g rammar ,  1 sup- 
pressing the under ly ing  type  hierarchy. 2 

The  defini t ion of unif icat ion is lifted to MRSs: 
let a , p  be two MRSs of the same length; the 

'Grammars are displayed using a simple description 
language, where ':' denotes feature values. 

2Assmne that in all the example grammars, the types 
s, n, v and vp are maximal and (pairwise) inconsistent. 

A '~ = (~:at : .~) 

{ ( c a t : s )  -+ (co, t : n )  ( c a t : v p )  ] 
7~ = (ca t :  vp) ---> (c.at: v) ( c a t :  n) 

vp) + .,,) 

Z2(John) = Z~(Mary) = { (ca t :  'n)} 
£(sleeps) = £(sleep) = £(lovcs) = {(co, t : v)} 

Figure 1: An example  g rammar ,  G 

unification of a and  p, denoted  c, U p, is the 
most  general  MRS tha t  is subsmned  by bo th  er 
and  p, if it exists. Otherwise,  the unif icat ion 
.fails. 

D e f i n i t i o n  2. An M R S  (AI, . . . ,A~:)  reduces 
to a TFS  A with respect to a gram, mar G (de- 
noted ( A t , . . . , A k )  ~(-~ A)  'li~' th, ere exists a 
rule p E T~ such, that (B,131, . . . ,B~:)  = p ll 
(_L, A1, . . . ,  Ak) and B V- A. Wll, en G is under- 
stood from. the context it is om, itted. Reduction 
can be viewed as the bottom-up counterpart of 
derivation. 

If  f ,  g, are f lmctions over the same (set) do- 
main,  .f + g is )~I..f(I) U .q(I). Let ITEMS = 
{[w, i ,A , j ]  [ w E WORDS*, A is a T F S  and  
i , j  E { 0 , 1 , 2 , 3 , . . . } } .  Let  Z = 2 ITEMS. Meta-  
variables x, y range over i tems and  I - over sets 
of items. W h e n  27 is ordered by set inclusion 
it forms a complete  lat t ice wi th  set un ion  as a 
least upper  b o u n d  (lub) operat ion.  A f lmct ion 
T : 27 -+ 27 is monotone  if whenever  11 C_/2, also 
T(I1) C_ T(I2).  It is cont inuous i f tbr  every chain 
I1 C_ /2 C_ . . . ,  T ( U j <  ~/. i)  = U j < ~ T ( I j )  . If  a 
funct ion T is monotone  it has a least f ixpoint  
(Tarski -Knaster  theorem);  if T is also continu- 
ous, the  f ixpoint  can be ob ta ined  by i terat ive 
appl icat ion of T to the  empty  set (Kleene the- 
orem): lfp(T) = T S w ,  where T I "  0 = 0 and  
T t n = T ( T  t ( n -  1)) when  'n is a succes- 
sor ordinal  and  (_Jk<n(T i" n) when  n is a l imit  
ordinal.  

W h e n  the semantics  of p rog ramming  lan- 
guages are concerned, a not ion  of observables 
is called for: Ob is a f lmct ion associat ing a set 
of objects,  the observables, wi th  every program.  
The  choice of semantics  induces a na tu ra l  equiv- 
alence opera tor  on grammars :  given a semantics  
' H ' ,  G1 ~ G2 iff ~GI~ = ~G2~. An essential  re- 
qui rement  of any  semant ic  equivalence is t ha t  it 
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be correct (observables-preserving): if G1 - G 2 ,  
then Ob(G1) = Ob(G2). 

Let 'U' be a composit ion operat ion on gram- 
mars and ' • '  a combination operator  on deno- 
rations. A (correct) semantics ' H '  is compo- 
.s'itional (Gaifinan and Shapiro, 1989) if when- 
ever ~ 1 ~  : ~G2~ and ~G3] -- ~G4], also 
~G, U G3~ = [G2 U G4]. A semantics is com- 
mutat ive  (Brogi et al., 1992) if ~G1 UG2] = 
~G,~ • [G2~. This is a stronger notion than 
(:ompositionality: if a semantics is commutat ive 
with respect to some operator  then it is compo- 
sitional. 

2.2 A n  operat iona l  semant ics  

As Van Emden  and Kowalski (1976) note, "to 
define an operat ional  semantics for a program- 
ruing language is to define an implementat ional  
independent  interpreter for it. For predicate 
logic the proof  procedure behaves as such an in- 
terpreter." Shieber et al. (1995) view parsing as 
a. deductive process that  proves claims about  the 
grammatical  s ta tus  of strings from assumptions 
derived from the grammar.  We follow their in- 
sight and notat ion and list a deductive system 
for parsing unification-based grammars.  

Def in i t ion  3. The deductive parsing system 
associated with a grammar G = (7~,F.,AS} is 
defined over ITEMS and is characterized by: 

Axioms:  [a, i, A, i + 1] i.f B E Z.(a) and B K A; 
[e, i, A,  i] i f  B is an e-rule in T~ and B K_ A 

Goals: [w, 0, A, [w]] where A ~ A s 

Inference  rules: 

[wx , i l , A1, i l l , . . . ,  [Wk, ik, Ak , Jk ] 

[Wl " " " Wk, i, A,  j] 

i f  .'h = i1,+1 .for 1 <_ l < k and i = il  and 
J = Jk and ( A 1 , . . . , A k )  =>a A 

When  an i tem [ w , i , A , j ]  can be deduced, 
applying k times the inference rules associ- 
z~ted with a grammar G, we write F-~[w, i, A, j]. 
When  the number  of inference steps is irrele- 
vant it is omitted.  Notice that  the domain of 
items is infinite, and in particular that  the num- 
ber of axioms is infinite. Also, notice that  the 
goal is to deduce a TFS which is subsumed by 
the start  symbol, and when TFSs  can be cyclic, 
there can be infinitely many such TFSs  (and, 
hence, goals) - see Wintner  and Francez (1999). 

Def in i t ion  4. The operational denotat ion 
o.f a grammar G is EG~o,, = {x  IF-v; :,:}. G1 - o p  

G2 iy ]C1 o, =  G2Bo , 

We use the operational  semantics to de- 
fine the language generated by a grammar  G: 
L(G)  = { ( w , A }  [ [w,O,A,l',,[] E [G]o,} .  Notice 
that  a language is not merely a set of strings; 
rather, each string is associated with a TFS  
through the deduction procedure.  Note also 
that  the start  symbol  A ' does not play a role 
in this definition; this is equivalent to assuming 
that  the start  symbol  is always the most general 
TFS, _k. 

The most natural  observable for a grammar  
would be its language, either as a set of strings 
or augmented by TFSs. Thus we take Ob(G) 
to be L(G)  and by definition, the operat ional  
semantics '~.] op' preserves observables. 

2.3 D e n o t a t i o n a l  semant ics  

In this section we consider denotat ional  seman- 
tics through a fixpoint of a t ransformational  op- 
erator associated with grammars.  -This is es- 
sentially similar to the definition of Pereira and 
Shieber (1984) and Carpenter  (1992, pp. 204- 
206). We then show that  the denotat ional  se- 
mantics is equivalent to the operat ional  one. 

Associate with a grammar G an operator  
7~ that,  analogously to the immediate  conse- 
quence operator  of logic programming, can be 
thought of as a "parsing step" operator  in the 
context of grammat ica l  formalisms. For the 
following discussion fix a part icular  grammar  
G = ( n , E , A ~ ) .  

Def in i t ion  5. Let T c  : Z -+ Z be a trans- 
format ion on sets o.f i tems, where .for every 
I C_ ITEMS, [ w , i , A , j ]  E T(~(I) i f f  either 

• there exist Y l , . . . , y k  E I such that Yl = 
[w1,,iz,Al,jt] .for" 1 < 1 <_ k and il+l = jz 
for  1 < l < k and il = 1 and jk  = J and 
(A1, . . .  ,Ak )  ~ A and w = "w~ .. • wk; or 

• i = j  a n d B  is an e-rule in G a n d B  K A 
and w = e; or 

• i + l  = j  and [w[ = 1 a n d B  G 12(w) and 
B K A .  

For every grammar G, To., is monotone and 
continuous, and hence its least fixpoint exists 
and l.fp(TG) = TG $ w. Following the paradigm 
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of logic programming languages, define a fix- 
point semantics for unification-based grammars 
by taking the least fixpoint of the parsing step 
operator  as the denotat ion of a grammar. 

D e f i n i t i o n  6. The f ixpoint  deno ta t ion  of a 
grammar G is ~G[.fp = l.fp(Ta). G1 =--.fp G2 iff  

~ti,( T<; ~ ) = l fp(Ta~). 

The denotat ional  definition is equivalent to 
the operational  one: 

T h e o r e m  1. For x E ITEMS, X E lfp(TG) iff 
~-(? x. 

The proof  is that  [ w , i , A , j ]  E Ta $ n iff 
F-7;,[w, i, A, j], by induction on n. 

C o r o l l a r y  2. The relation '=fp' is correct: 

whenever G1 =.fp G2, also Ob(G1) = Ob(a2) .  

2 .4  C o m p o s i t i o n a l i t y  

While the operational  and the denotational  se- 
mantics defined above are s tandard for com- 
plete grammars,  they are too coarse to serve 
as a model  when the composit ion of grammars 
is concerned. When  the denotat ion of a gram- 
mar is taken to be ~G]op, important  character- 
istics of the internal s t ructure of the grammar 
are lost. To demonstra te  the problem, we intro- 
duce a natural  composit ion operator  on gram- 
mars, namely union of the sets of rules (and the 
lexicons) in the composed grammars. 

D e f i n i t i o n  7. / f  GI = <T¢1, ~1, A~) and G2 = 

(7-~2,E'2,A~) are two grammars over the same 
signature, then the u n i o n  of the two gram- 
mars, denoted G1 U G2, is a new grammar G = 
(T~, £,  AS> such that T~ = 7~ 1 (.J 7"~2, ft. = ff~l + ff~2 
and A s = A~ rq A~. 

Figure 2 exemplifies grammar union. Observe 
that for every G, G', G O G' = G' O G. 

• P r o p o s i t i o n  3. The equivalence relation '=op' 
is not compositional with respect to Ob, {U}. 

Proof. Consider the grammars in figure 2. 
~a:~o,,  = l a d o .  = {["loves",/, (cat :  v ) , i  + 1]l 
i > 0} but  tbr I = {["John loves John", i, (cat :  
s ) , i + 3  I i >_ 0}, I C_ [G1UG4]op whereas 
I ~ [G1UGa~op.  Thus Ga =-op G4 but  
(Gl (2 Go) ~op (G1 tO G4), hence '~--Op' is not 
composit ional  with respect to Ob, {tO}. [] 

G1 : A s = (cat :.s) 
(co, t :  s) -+ (c.,t: ,,,,) (co, t :  vp) 
C(John) = {((:.t : n)} 

a 2 :  A s = (_1_) 
(co, t :  vp) -+ (co, t :  v) 
(cat : vp) -+ ( c a t : v )  ( c a t : n )  
/:(sleeps) = / : ( loves )  = { (ca t :  v)} 

Go:  A s = (&) 
/:(loves) = {(cat :  v)} 

G4:  A s = (_1_) 
( ca t :vp )  -+ (co, t : v )  ( c a t : n )  
C(loves) = {(cat :  v)} 

G1 U G2 : A s = (cat : s) 
(co, t :  ~) -+ (~:o,t: ,,,,) (~.at : vp )  
(cat  : vp) -~ (co, t : v) 
(cat:  vp) --+ (cat:  v) (cat :  n) 
/ : (John) = { (ca t :  n)} 
£(sleeps) = £(loves) = { (ca t :  v)} 

G 1 U G a  : A s = (cat : s) 
(cat:  s) --+ (ca t :  n) (cat:  vp) 
C(John) = {(cat :  ',,,)} 
£(loves) = {(ca t :  v)} 

GI U G4 : A s = (cat : s) 
(co, t :  ~) + (co.t: ,,,.) (cat :  vp) 
(co, t : vp )  -~ (ca t : , , )  (co, t : ~) 
/ :(John) = {(cat :  n)} 
/:(loves) = { (ca t :  v)} 

Figure 2: Grammar  union 

The implication of the above proposit ion is that  
while grammar union might be a natural,  well 
defined syntactic operation on grammars,  the 
s tandard semantics of grannnars is too coarse to 
support  it. Intuitively, this is because when a 
grammar G1 includes a particular rule p that  is 
inapplicable for reduction, this rule contributes 
nothing to the denotat ion of the grammar.  But  
when G1 is combined with some other grammar,  
G2, p might be used for reduction in G1 U G2, 
where it can interact with the rules of G2. We 
suggest an alternative, fixpoint based semantics 
for unification based grammars that  natural ly 
supports  compositionality. 

3 A c o m p o s i t i o n a l  s e m a n t i c s  

To overcome the problems delineated above, we 
follow Mancarella and Pedreschi (1988) in con- 
sidering the grammar t ransformation operator  
itself (rather than its fixpoint) as the denota- 
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tion of a grammar.  

D e f i n i t i o n  8. The a lgebraic  d e n o t a t i o n  o.f 
G is ffGffa I = Ta.  G1 - a t  G2 iff Tal = TG2. 

Not only is the algebraic semantics composi- 
tionM, it is also commutative with respect to 
grammar union. To show that ,  a composition 
operation on denotations has to be defined, and 
we tbllow Mancarella and Pedreschi (1988) in 
its definition: 

Tc;~ • To;., = ),LTc, (~) u Ta2 ( 5  

T h e o r e m  4. The semantics '==-at ' is commuta- 
tive with respect to grammar union and '•': for 
e, vcry two grammars G1, G2, [a l f f a t "  ~G2ffal = 
: G  I [-J G 2 f f  (tl . 

Proof. It has to be shown that, for every set of 
i tems L Tca~a., (I)  = Ta ,  ( I ) u  Ta. , (I) .  

• if x E TG1 (I) U TG~, (I) then either x G 
Tch (I) or x E Ta.,(I). From the definition 
of grammar union, x E TG1uG2(I)  in any 
case. 

• if z E Ta~ua.,(I) then x can be added by 
either of the three clauses in the definition 
of Ta. 

- if x is added by the first clause then 
there is a rule p G 7~1 U T~2 that  li- 
censes the derivation through which 
z is added. Then either p E 7~1 or 
p G T~2, but in any case p would have 
licensed the same derivation, so either 

~ Ta~ (I)  or • ~ Ta~ (I).  

- if x is added by the second clause then 
there is an e-rule in G1 U G2 due to 
which x is added, and by the same 
rationale either x C TG~(I) or x E 
TG~(I). 

- if x is added by the third clause then 
there exists a lexical category in £1 U 
£2 due to which x is added, hence this 
category exists in either £1 or £2, and 
therefore x C TG~ (I) U TG2 (I). 

[] 

Since '==-at' is commutative,  it is also compo- 
sitional with respect to grammar union. In- 
tuitively, since TG captures only one step of 

the computation,  it cannot capture interactions 
among different rules in the (unioned) grammar,  
and hence taking To: to be the denotat ion of G 
yields a compositional semantics. 

The Ta operator reflects the s tructure of the 
grammar better than its fixpoint. In other 
words, the equivalence relation induced by TG is 
finer than  the relation induced by l fp(Tc).  The 
question is, how fine is the ' - a l '  relation? To 
make sure that  a semantics is not too fine, one 
usually checks the reverse direction. 

D e f i n i t i o n  9. A f u l l y - a b s t r a c t  equivalence 
relation ' - '  is such that G1 =- G'2 'i,.[.-f .for all G, 
Ob(G1 U G) = Ob(G.e U G). 

P r o p o s i t i o n  5. Th, e semantic equivalence re- 
lation '--at' is not fully abshuct. 

Proof. Let G1 be the grammar 

A~ = ±,  

£1 = 0, 
~ = { (ca t :  ~) -~ (~:.,t : ,,,,p) (c.,t : vp), 

( ca t :  up) -~ (,:..t : ',,.p)} 

and G2 be the gramm~:r 

A~ = 2 ,  
Z:2 = O, 
n ~  = {(~at : .~) -~ (~,.,t : .,p) ( . a t :  ~p)}  

• G1 ~at G2: because tbr I = {["John loves 
Mary" ,6 , (ca t  : np),9]}, T(;I(I  ) = I but 
To., (I)  = O 

• for all G, Ob(G U G~) = Ob(G [3 G2). The 
only difference between GUG1 and GUG2 is 
the presence of the rule (cat : up) -+ (cat : 
up) in the former. This rule can contribute 
nothing to a deduction procedure, since any 
item it licenses must already be deducible. 
Therefore, any item deducible with G U G1 
is also deducible with G U G2 and hence 
Ob(G U G1) ---- Ob(G U G,2). 

[] 

A better  a t tempt  would have been to con- 
sider, instead of TG, the fbllowing operator as 
the denotat ion of G: [G]i d = AI .Ta( I )  U I. In 
other words, the semantics is Ta + Id, where 
Id  is the identity operator. Unfortunately,  this 
does not solve the problem, a s  '~']id' is still not 
fully-abstract. 
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4 A ful ly  abs tract  s emant i c s  

We have shown so far that  ' H f p '  is not com- 

positional, and that  ' H i d '  is compositional but  
not fully abstract .  The "right" semantics, there- 
fore, lies somewhere in between: since the choice 
of semantics induces a natural  equivalence on 
grammars,  we seek an equivalence that  is cruder 
thzm ' H i d '  but  finer than 'H.fp'. In this section 

we adapt  results from Lassez and Maher (1984) 
a.nd Maher (1988) to the domain of unification- 
b~Lsed linguistic formalisms. 

Consider the following semantics for logic 
programs: rather than taking the operator  asso- 
d a t e d  with the entire program, look only at the 
rules (excluding the facts), and take the mean- 
ing of a program to be the function that is ob- 
tained by an infinite applications of the opera- 
tor associated with the rules. In our framework, 
this would amount  to associating the following 
operator  with a grammar: 

D e f i n i t i o n  10. Le t  RG : Z -~ Z be a trans- 
f o rma t ion  on sets o.f i tems,  where .for every 
[ C ITEMS, [ w , i , A , j ]  E R G ( I )  i f f  there exist 
Y l , . . . , Y k  E I such that yl = [wz , i t ,A l , j d  .for 
1 _ < l _ < k and il+t = jl .for 1 < l < k and 
i, = 1 and. jk  = J and ( A 1 , . . . , A k )  ~ A and 
"~1) ~ 'tl) 1 • • • ?U k .  

Th, e func t ional  denotat ion of a g ra mmar  G is 
/[G~.f,,, = ( R e  + Id)  ~ = End-0 (RG + Id)  n. Notice 

that R w is not  RG "[ w: the f o r m e r  is a func t ion  " d  

f rom sets of i tems to set of i tems; the latter is 
a .set of  i tems. 

Observe that  R c  is defined similarly to Ta 
(definition 5), ignoring the items added (by Ta) 
due to e-rules and lexical items. If we define the 
set of items I ' n i t c  to be those items that  are 
a.dded by TG independently of the argument it 
operates on, then for every grammar G and ev- 
ery set of items I,  T a ( I )  = R a ( I )  U I n i t a .  Re- 
lating the functional semantics to the fixpoint 
one, we tbllow Lassez and Maher (1984) in prov- 
ing that  the fixpoint of the grammar transfor- 
mation operator  can be computed by applying 
the fimctional semantics to the set In i tG.  

D e f i n i t i o n  11. For G = (hg ,£ ,A~) ,  I n i t c  = 
{[e, i ,A,i]  [ B is an e~-rule in G and B E_A} U 
{[a , i ,A , i  + 1J I B E £ ( a )  .for B E A }  

T h e o r e m  6. For every g r a m m a r  G, 

(R.c + fd.) (z',,.itcd = tb(TG) 

Proof. We show that tbr every 'n., (T~ + Id)  
n = (E~.-~ (R e  + Id) ~:) (I 'nit(;) by induction on 
Tt. 
For n = 1, (Tc  + Id)  ~[ 1 = (Tc~ + I d ) ( ( T a  + 
Id)  ~ O) = (Tc, + Id)(O).  Clearly, the only 
items added by TG are due to the second and 
third clauses of definition 5, which are exactly 
I n i t a .  Also, (E~=o(Ra + Id)~:)(Initc;)  = ( R a  + 
Id)  ° ( I n i t c )  = I'nitc;. 
Assume that  the proposit ion holds tbr n -  1, 
that  is, (To + Id)  "[ (',, - 1) = t~E'"-2t~'a:=0 txta + 
Id )  k ) U n i t e ) .  Then 

(Ta + Id)  $ n = 
definition of i" 

(TG + I d ) ( ( T a  + Id)  ~[ (v, - 1)) = 
by the induction hypothesis 

~n--2 (Ta + I d ) ( (  k=0(RG + I d ) k ) ( I n i t a ) )  = 
since T a ( I )  = R a ( I )  U I n i t a  

En-2  ( R a  + Id ) ( (  k=Q(Rc; + I d ) ~ ' ) ( I n i t a ) )  U I n i t a  = 
(Ra + (Ra + Id) k) (1',,,its,)) = 
(y ]n -1 /R  , Id)h:)(Init(:) k=0 ~, , G - I -  

Hence (RG + Id)  ~ ( In i t ( ;  = (27(; + Id)  ~ w = 
lfp( TG ) . [] 

The choice of 'Hfl~' as the semantics calls for 

a different notion of' observables. The denota- 
tion of a grammar is now a flmction which re- 
flects an infinite number of' applications of the 
grammar 's  rules, but  completely ignores the e- 
rules and the lexical entries. If we took the ob- 
servables of a grammar G to be L ( G )  we could 
in general have ~G1].f,. = ~G2]fl~. but  Ob(G1) 7 ~ 

Ob(G2) (due to different lexicons), that  is, the 
semantics would not be correct. However, when 
the lexical entries in a grammar (including the e- 
rules, which can be viewed as empty  categories, 
or the lexical entries of traces) are taken as in- 
put, a natural  notion of observables preservation 
is obtained. To guarantee correctness, we define 
the observables of a grammar G with respect to 
a given input. 

D e f i n i t i o n  12. Th, e o b s e r v a b l e s  of a gram- 
mar  G = ( ~ , / : , A  s} with respect to an in- 
put set of items I are  Ot, (C) = {( ' , , , ,A) I 
[w,0, d,  I 1] e 

101 



C o r o l l a r y  7. The semantics '~.~.f ' is correct: 
'llf G1 =fn G2 then .for every I, Obl(G1) = 
Ol,  ( a,e ). 

The above definition corresponds to the pre- 
vious one in a natural  way: when the input is 
taken to be Ini ta,  the observables of a grammar 
are its language. 

T h e o r e m  8. For all G, L(G) = Obinita(G). 

P'moJ: 

L(G) = 
definition of L(G) 

{ (',,,, A) I [w, O, A, I 1] e I[C]lo,,} = 
definition 4 

{ (w,  A) [ F-c [w, O, A, = 
by theorem 1 

{<w, A> I [,w, 0, A, Iwl] e l.fp(Ta)} = 
by theorem 6 

{(,w, A) I [w, O, A, [wl] e [ G ] f n ( I n i t G ) }  = 
by definition 12 

Obt,,,~tc; (G) 

[ ]  

.To show that  the semantics 'Hfn'  is composi- 

tional we must  define an operator  for combining 
denotations.  Unfortunately,  the simplest oper- 
ator, '+ ' ,  would not do. However, a different 
operator  does the job. Define ~Gl~.f~ • [G2~f~ to 

1)e ([[G1]l.fn + [G2~f~) °'. Then 'H.f~' is commuta-  
tive (and hence compositional) with respect to 
~•' and  'U' .  

T h e o r e m  9. fiG1 U G2~fn = ~Gl]fn " ~G2~.fn. 

The proof  is basically similar to the case of 
logic programming (Lassez and Maher, 1984) 
and is detailed in Wintner  (1999). 

T h e o r e m  10. The semantics '~'[fn' is fully 
abstract: ,for every two grammars G1 and G2, 
'llf .for" every grammar G and set of items I, 
Obr(G1 U G) = ObI(G2 U G), then G1 =fn G2. 

The proof  is constructive: assuming that  
G t ~f;~ G2, we show a grammar G (which de- 

t)ends on G1 and G2) such that  Obt(G1 U G) ¢ 
Obr(G2 U G). For the details, see Wintner  
(1999). 

5 C o n c l u s i o n s  

This paper  discusses alternative definitions for 
the semantics of unification-based linguistic for- 
malisms, culminating in one that  is bo th  com- 
positional and fully-abstract  (with respect  to 
grammar union, a simple syntactic combinat ion 
operations on grammars).  This is mostly an 
adapta t ion of well-known results from h)gic pro- 
gramming to the ti 'amework of unification-based 
linguistic tbrmalisms, and it is encouraging to 
see that  the same choice of semantics which 
is composit ional and fiflly-abstra(:t for Prolog 
turned out to have the same desirable proper- 
ties in our domain. 

The functional semantics '~.].f,' defined here 

assigns to a grammar a fimction which reflects 
the (possibly infinite) successive application of 
grammar rules, viewing the lexicon as input  to 
the parsing process. We, believe that  this is a 
key to modular i ty  in grammar design. A gram- 
mar module has to define a set of i tems that  
it "exports",  and a set of items that  can be 
"imported",  in a similar way to the declarat ion 
of interfaces in programming languages. We 
are currently working out the details of such 
a definition. An immediate  application will fa- 
cilitate the implementat ion of grammar  devel- 
opment systems that  suppor t  modular i ty  in a 
clear, mathematical ly  sound way. 

The results reported here can be  extended 
in various directions. First, we are only con- 
cerned in this work with one composi t ion oper- 
ator, grammar union. But  alternative operators  
are possible, too. In particular,  it would be  in- 
teresting to define an operator  which combines 
the information encoded in two grammar  rules, 
for example by unifying the rules. Such an op- 
erator would facilitate a separate development 
of grammars along a different axis: one module 
can define the syntactic component  of a gram- 
mar while another module would account for the 
semantics. The composit ion operator  will unify 
each rule of one module with an associated rule 
in the other. It remains to be seen whether  the 
grammar semantics we define here is composi- 
tional and fully abstract  with respect to such an 
operator.  

A different extension of these results should 
provide for a distr ibution of the type  hierarchy 
among several grammar modules. While we as- 
sume in this work that  all grammars are defined 
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over a given signature, it is more realistic to as- 
sume separate, interacting signatures. We hope 
to be able to explore these directions in the fu- 
ture. 
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