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A b s t r a c t  

This paper presents a genetic algorithm based 
approach to the automatic  discovery of finite- 
state au tomata  (FSAs) from positive data. 
FSAs are commonly used in computational  
phonology, but - given the limited learnabil- 
ity of FSAs from arbitrary language subsets 
- are usually constructed manually. The ap- 
proach presented here offers a practical auto- 
matic method that  helps reduce the cost of man- 
ual FSA construction. 

1 B a c k g r o u n d  

Finite-state techniques have always been cen- 
tral to computational  phonology. Definite 
FSAs are commonly used to encode phonotac- 
tic constraints in a variety of NLP contexts. 
Such FSAs are usually constructed in a time- 
consuming manual process. 

Following notational convention, an FSA is a 
quintuple (S,I,  ~, so, F),  in which S is a finite 
nonempty set of states, I is a finite nonempty 
alphabet,  $ is the state transition function, so 
is the initial state, and F is a nonempty set 
of final states in S. The language L accepted 
by the finite au tomaton  A, denoted L(A), is 

• F}. 
Generally, the problem considered here is that  

of identifying a language L from a fixed finite 
sample D = ( D + , D - ) ,  where D + C L and 
D -  A L  = 0 ( D -  may be empty).  If D -  is 
empty, and D + is structurally complete with re- 
gard to L, the problem is not complex, and there 
exist a number of algorithms based on first con- 
structing a canonical au tomaton  from the data  
set which is then reduced or merged in various 
ways. If D + is an arbitrary strict subset of L, 
the problem is less clearly defined. Since any fi- 
nite sample is consistent with an infinite number 
of languages, L cannot be identified uniquely 

from D +. "...the best we can hope to do is to 
infer a grammar  that  will describe the strings 
in D + and predict other strings that  in some 
sense are of the same nature as those contained 
in D+. " (Fu and Booth, 1986, p. 345) 

To constrain the set of possible languages L, 
the inferred grammar  is typically required to 
be as small as possible. However, the prob- 
lem of finding a minimal grammar  consistent 
with a given sample D was shown to be NP- 
hard by Gold (1978). Nonapproximability re- 
sults of varying strength have been added since. 
In the special case where D contains all strings 
of symbols over a finite alphabet I of length 
shorter than k, a polynomial-time algorithm can 
be found (Trakhtenbrot and Barzdin, 1973), but 
if even a small fraction of examples is missing, 
the problem is again NP-hard (Angluin, 1978). 

2 Task D e s c r i p t i o n  

Given a known finite alphabet of symbols I ,  a 
target finite-state language L, and a data  sam- 
ple D + _C L _C I ' ,  the task is to find an FSA A, 
such that  L( A ) is consistent with D +, L( A ) is 
a superset of D + encoding generalisation over 
the structural regularities of D +, and the size 
of S is as small as possible. Where the target 
language is known in advance, the degree of lan- 
guage and size approximation can be measured, 
and its adequacy relative to training set size and 
representativeness can be described. In the case 
of inference of au tomata  that  encode (part of) 
a phonological grammar,  language approxima- 
tion and its degree of adequacy can be described 
relative to a set of theoretical linguistic assump- 
tions that  describes a target grammar.  

3 S e a r c h  M e t h o d  

By direct analogy with natural  evolution, ge- 
netic algorithms (GAs) work with a population 
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of individuals each of which represents a candi- 
date solution to the given problem. These indi- 
viduals are assigned a fitness score and on its ba- 
sis are selected to 'mate' ,  and produce the next 
generation. This process is typically iterated 
until the population has converged, i.e. when 
individuals have reached a degree of similarity 
beyond which further improvement becomes im- 
possible. Characteristics that form part of good 
solutions are passed on through the generations 
and begin to combine in the offspring to ap- 
proach global optima, an effect that has been 
explained in terms of the building block hypothe- 
sis (Goldberg, 1989). Unlike other search meth- 
ods, GAs sample different areas of the search 
space simultaneously, and are therefore able to 
escape local optima and to avoid areas of low 
fitness. 

The main issues in GA design are encoding 
the candidate solutions (individuals) as data 
structures for the GA to work on, defining a 
fitness .function that accurately expresses the 
goodness of candidate solutions, and designing 
genetic operators that combine and alter the 
genetic material of good solutions (parents) to 
produce new, better solutions (offspring). 

In the present GA 1, the state-transition ma- 
trices of FSAs are directly converted into geno- 
types. Mutation randomly adds or deletes one 
transition in each FSA and a variant of uniform 
crossover tends to preserve the general struc- 
ture of the fitter parent, while adding some sub- 
structures from the weaker parent (offspring can 
be larger or smaller than both parents). Fit- 
ness is evaluated according to three fitness cri- 
teria. The first two follow directly from the 
task description: (1) size of S (smallness), and 
(2) ability to parse strings in D + (consistency), 
where ability to partially parse strings is also 
rewarded. Used on their own, however, these 
criteria lead search in the direction of universal 
automata that produce all strings x E I= Up to 
the length of the longest string in D +. To avoid 
this, (3) an overgeneration criterion is added 
that requires automata to achieve a given degree 
of generalisation, such that the size of L(A) is 
equal to the size of the target language (where 
the target language is not known, its size is es- 

1Developed jointly with Berkan Eskikaya, COGS, 
University of Sussex, and described in more detail in 
(Belz and Eskikaya, 1998) 

S "t" SuEt. 
size (Avg) 

8 0 
16 3(1.4) 
32 6(3.7) 
48 10(5.2) 
64 8(5.4) 
80 9(6.0) 
96 9(6.2) 
112 9(6.1) 
128 9(6.4) 

Target 
found 
(Avg) 

33(49) 
40(67) 
46(83) 
45(68) 
37(73) 
35(75) 
46(73) 
36(77) 

Conver- 
gence 

at gen. 
201 
211 
172 
171 
191 
142 
114 
158 
135 

Accurate 
(Target) 

automata 
0 

25(21) 
58(49) 
99(92) 
79(73) 
79(79) 
s0(76) 
s0(s0) 
89(89) 

Table 1: Toy data set results. 

timated). Transitions that are not required to 
parse any string in D + are eliminated. Fitness 
criteria 1-3 are weighted (reflecting their rela- 
tive importance to fitness evaluation). These 
weights can be manipulated to directly affect 
the structural and functional properties of au- 
tomata. 

4 R e s u l t s  

Toy D a t a  Set  The data used in the first set 
of tests was generated with the grammar S --, 
cA, A --* C l V l B  , A ~ c 2 v 2 B ,  B "-'* c. Here, c 
abbreviates a set of 4 consonants, cl 2 sharped 
consonants, c2 2 non-sharped consonants, v 1 2 
front vowels, and v2 2 non-front vowels. The 
grammar (generating a total of 128 strings) is 
a simple version of a phonotactic constraint in 
Russian, where non-sharped consonants cannot 
be followed by front vowels, (e.g. Halle (1971)). 

Tests were carried out for different-size ran- 
domly selected language subsets. Different com- 
binations of weights for the three fitness crite- 
ria were tested. Table 1 gives results for the 
best weight combination averaged over 10 runs 
differing only in random population initialisa- 
tion (and results averaged over all other weight 
combinations in brackets). The first column in- 
dicates how many successful runs there were out 
of 10 for the best weight combination (and the 
average for all weight combinations in brack- 
ets). A run was deemed successful if the target 
automaton was found before convergence. The 
last column shows how many accurate automata 
were in final populations, and in brackets how 
many of these also matched the target FSA in 
size. 
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Train. Test. 
Best 100% 61% 
Avg 94% 49% 

General. States 
100 7 

100.3 7.1 

Table 2: Results for Russian noun data  set. 

The general effects of reducing the size of D + 
are that  successful runs become less likely, and 
that  the weight assigned to the degree of over- 
generation becomes more important  and tends 
to have to be increased. The larger the data  set, 
the more similar the results that  can be achieved 
with different weights. 

R u s s i a n  N o u n  D a t a  Set  The data  used in 
the second series of tests were bisyllabic femi- 
nine Russian nouns ending in -a. The alphabet 
consisted of 36 phonemic symbols 2. The train- 
ing set contained 100 strings, and a related set 
of 100 strings was used as a test set. 

Results are shown in Table 2. The target 
degree of overgeneration was set to 100 times 
the size of the data  set. Tests were carried out 
for different weights assigned to the overgener- 
ation criterion. Results are given for the best 
au tomaton found in 10 runs for the best weight 
settings, and for the corresponding averages for 
all 10 runs. 

Figure 1 shows the fittest au tomaton from 
Table 1. Phonemes are grouped together (as 
label sets on arcs) in several linguistically use- 
ful ways. Vowels and consonants are separated 
completely. Vowels are separated into the set 
of those that  can be preceded by sharped con- 
sonants (capitalised symbols) and those that  
cannot. Correspondingly, sharped consonants 
tend to be separated from nonsharped equiva- 
lents. The phonemes k,  r ,  1: are singled out 
(arc 4 ~ 5) because they combine only with 
nonsharped consonants to form stem-final clus- 
ters. The groupings S (0 ---* 6) and L,M,P,R 
(6 ---* 1) reflect stem-initial consonant clusters. 

These groupings are typical of the au tomata  
discovered in all 10 runs. Occasionally ka (the 
feminine diminutive ending) was singled out as 
a separate ending, and the stem vowels were 
frequently grouped together more efficiently. 

Different degrees of generalisaton were 

2The set of phonemic symbols used here is based on 
HaJJe (Halle, 1971). Capital symbols represent sharped 
versions of non-capitalised counterparts. 

Figure 1: Best au tomaton  for Russian noun set. 

achieved with different weight settings. The au- 
tomaton shown here corresponds most closely to 
(Halle, 1971). 

5 C o n c l u s i o n  a n d  F u r t h e r  R e s e a r c h  

This paper presented a GA for FSA induction 
and preliminary results for a toy data  set and a 
simple set of Russian nouns. These results in- 
dicate that  genetic search can successfully be 
applied to the automatic  discovery of finite- 
state au tomata  that  encode (parts of) phono- 
logical grammars from arbitrary subsets of pos- 
itive data. A more detailed description of the 
GA and a report on subsequent results can be 
found in Belz and Eskikaya (1998). The method 
is currently being extended to allow for sets of 
negative examples. 
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