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A b s t r a c t  

This paper describes how to construct a finite-state 
machine (FSM) approximating a 'unification-based' 
grammar using a left-corner grammar transform. 
The approximation is presented as a series of gram- 
mar transforms, and is exact for left-linear and right- 
linear CFGs, and for trees up to a user-specified 
depth of center-embedding. 

1 I n t r o d u c t i o n  

This paper describes a method for approximat- 
ing grammars with finite-state machines. Unlike 
the method derived from the LR(k) parsing algo- 
rithm described in Pereira and Wright (1991), these 
methods use grammar transformations based on the 
left-corner grammar transform (Rosenkrantz and 
Lewis II, 1970; Aho and Ullman, 1972). One ad- 
vantage of the left corner methods is that they gen- 
eralize straightforwardly to complex feature "unifi- 
cation based" grammars, unlike the LR(k) based ap- 
proach. For example, the implementation described 
here translates a DCG version of the example gram- 
mar given by Pereira and Wright (1991) directly into 
a FSM without constructing an approximating CFG. 

Left-corner based techniques are natural for this 
kind of application because (with the simple opti- 
mization described below) they can parse pure left- 
branching or pure right-branching structures with 
a stack depth of one (two if terminals are pushed 
and popped from the stack). Higher stack depth 
occurs with center-embedded structures, which hu- 
mans find difficult to comprehend. This suggests 
that we may get a finite-state approximation to hu- 
man performance by simply imposing a stack depth 
bound. We provide a simple tree-geometric descrip- 
tion of the configurations that cause an increase in 
a left corner parser's stack depth below. 

The rest of this paper is structured as follows. 
The remainder of this section outlines the "gram- 
mar transform" approach, summarizes the top-down 

* T h i s  research was suppor t ed  by NSF g ran t  SBR526978.  I 
began  th is  research while I was on sabbat ica l  a t  the  Xerox 
Research  Cent re  in Grenoble ,  France.  I would like to t h a n k  
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parsing algorithm and discusses how finite state 
approximations of top-down parsers can be con- 
structed. The fact that this approximation is not ex- 
act for left linear grammars (which define finite-state 
languages) motivates a finite-state approximation 
based on the left-corner parsing algorithm (which 
is presented as a grammar transform in section 2). 
In its standard form the approximation based on the 
left-corner parsing algorithm suffers from the com- 
plementary problem to the top-down approximation: 
it is not exact for right-linear grammars, but the 
"optimized" variants presented in section 3 over- 
come this deficiency, resulting in finite-state CFG 
approximations which are exact for left-linear and 
right-linear grammars. Section 4 discusses how these 
techniques can be combined in an implementation. 

1.1 Pars ing  s t ra teg ies  as g r a m m a r  
t r an s fo rma t ions  

The parsing algorithms discussed here are presented 
as grammar trans]ormations, i.e., functions T that 
map a context-free grammar G into another context- 
free grammar T(G). The transforms have the prop- 
erty that a top-down parse using the transformed 
grammar is isomorphic to some other kind of parse 
using the original grammar. Thus grammar trans- 
forms provide a simple, compact way of describing 
various parsing algorithms, as a top-down parser us- 
ing T(G) behaves identically to the kind of parser 
we want to study using G. 

1.2 Mapp ings  f rom t rees  to t rees  

The transformations presented here can also be un- 
derstood as isomorphisms from the set of parse trees 
of the source grammar G to parse trees of the trans- 
formed grammar which preserve terminal strings. 
Thus it is convenient to explain the transforms in 
terms of their effect on parse trees. We call a parse 
tree with respect to the source grammar G an anal- 
ysis tree, in order to distinguish it from parse trees 
with respect to some transform of G. The analy- 
sis tree t in Figure 1 will be used as an example 
throughout this paper. 
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Figure 1: The analysis tree t used as a running example below, and its left-corner transforms ~Ci(t). Note 
that  the phonological forms are treated here as annotations on the nodes drawn above them, rather  than 
independent nodes. Tha t  is, DEW (annotated with the) is a terminal node. 

1.3 T o p - d o w n  p a r s e r s  a n d  p a r s e  t r e e s  

The "predictive" or "top-down" recognition algo- 
r i thm is one of the simplest CFG recognition al- 
gorithms. Given a CFG G = (N, T, P, S), a (top- 
down) stack state is a sequence of terminals and 
nonterminals. Let Q = (N U T)* be the set of stack 
states for G. The start state qo E Q is the sequence 
S, and the final state ql E Q is the empty sequence e. 
The state transition function 6 : Q x (TU {e}) ~ 2 Q 
maps a state and a terminal or epsilon into a set of 
states. It is the smallest function 5 that  satisfies the 
following conditions: 

-~ ~ ~(a% a) : a ~ T,'~ ~ (N u T)*. 
f17 E ~(AT, e) : A E N, 3' E (N W T)*, A --~ fl • P. 
A string w is accepted by the top-down recognition 
algorithm if q/ E 5*(q0,w), where 5* is the reflex- 
ive transitive closure of 6 with respect to epsilon 
moves. Extending this top-down parsing algorithm 
to a 'unification-based' grammar is straight-forward, 
and described in many textbooks, such as Pereira 
and Shieber (1987). 

It is easy to read off the stack states of a top- 
down parser constructing a parse tree from the tree 
itself. For any node X in the tree, the stack contents 
of a top-down parser just before the construction 
of X consists of (the label of) X followed by the 
sequence of labels on the right siblings of the nodes 
encountered on the path from X back to the root. 
It is easy to check that  a top-down parser requires a 
stack of depth 3 to construct the tree t depicted in 
Figure 1. 

1.4 F i n i t e - s t a t e  a p p r o x i m a t i o n s  

We obtain a finite-state approximation to a top- 
down parser by restricting at tention to only a finite 
number of possible stack states. The system imple- 
mented here imposes a stack depth restriction, i.e., 
the transit ion function is modified so that  there are 

no transitions to any stack state whose size is larger 
than some user-specified limit. 1 This restriction en- 
sures that  there is only a finite number of possible 
stack states, and hence that  the top down parser 
is an finite-state machine. The resulting finite-state 
machine accepts a subset of the language generated 
by the original grammar.  

The situation becomes more complicated when we 
move to 'unification-based' grammars,  since there 
may be an unbounded number of different categories 
appearing in the accessible stack states. In the sys- 
tem implemented here we used restriction (Shieber, 
1985) on the stack states to restrict at tention to a 
finite number of distinct stack states for any given 
stack depth. Since the restriction operation maps 
a stack state to a more general one, it produces a 
finite-state approximation which accepts a superset 
of the language generated by the original unification 
grammar. Thus for general constraint-based gram- 
mars the language accepted by our finite-state ap- 
proximation is not guaranteed to be either a superset 
or a subset of the language generated by the input 
grammar. 

2 T h e  l e f t - c o r n e r  t r a n s f o r m  

While conceptually simple, the top-down parsing al- 
gorithm presented in the last section suffers from 
a number of drawbacks for a finite-state approxi- 
mation. For example, the number of distinct ac- 
cessible stack states is unbounded if the grammar 
is left-recursive, yet left-linear grammars always 
generate regular languages. This section presents 

1With the optimized left-corner transforms described be- 
low we obtain acceptable approximations with a stack size 
limit of 5 or less. In many useful cases, including the example 
grammar provided by Pereira and Wright (1991), this stack 
bound is never reached and the system reports that  the FSA 
it returns is exact. 
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the s tandard left-corner grammar transformation 
(Rosenkrantz and Lewis II, 1970; Aho and Ull- 
man, 1972); these references should be consulted for 
proofs of correctness. This transform serves as the 
basis for the further transforms described in the next 
section; these transforms have the property that  the 
output  grammar induces a finite number of distinct 
accessible stack states if their input is a left-recursive 
left-linear grammar. 

Given an input grammar G with nonterminals 
N and terminals T,  these transforms £Ci produce 
grammars with an enlarged set of nonterminals N t = 
N O (N x (N O T)) .  The new "pair" categories in 
N x (N U T) are written A - X ,  where A is a non- 
terminal of G and X is either a terminal or non- 
terminal of G. It turns out that  if A =~* X 7  then G 
A - X  ~*~cI(G) 7, i.e., a non-terminal A - X  in the 
transformed grammar derives the difference between 
A and X in the original grammar, and the notation 
is meant to be suggestive of this. 

The left-corner trans/orm of a CFG G = 
(N, T, P, S) is a grammar/2C1 (G) = (N',  T, P1, S), 
where P1 contains all productions of the form (1.a- 
1.c). This paper assumes that  N n T = 0, as is 
standard. To save space we assume that  P does not 
contain any epsilon productions (but it is straight- 
forward to deal with them). 

A --4 a A - a  : A e N,  a e T. (1.a) 
A - X  --~ fl A - B  : A e N,  B -+ X fl e P. (1.b) 

A - A  ~ e : A e N.  (1.c) 
Informally, the productions (1.a) start  the left- 
corner recognition of A by recognizing a terminal 
a as a possible left-corner of A. The actual left- 
corner recognition is performed by the productions 
(1.b), which extend the left-corner from X to its 
parent B by recognizing fl; these productions are 
used repeatedly to construct increasingly larger left- 
corners. Finally, the productions (1.c) terminate the 
recognition of A when this left-corner construction 
process has constructed an A. 

The left-corner transform preserves the number 
of parses of a string, so it defines an isomorphism 
from analysis trees (i.e., parse trees with respect to 
G) to parse trees with respect to £g l  (G). If t is a 
parse tree with respect to G then (abusing notation) 
£Cl(t)  is the corresponding parse tree with respect 
to £CI(G).  Figure 1 shows the effect of this map- 
ping on a simple tree. The transformed tree is con- 
siderably more complex: it has double the number 
of nodes of the original tree. In a top-down parse 
of the tree £Cl( t )  in Figure 1 the maximum stack 
depth is 3, which occurs at the recognition of the 
terminals ran and/as t .  

2.1 F i l t e r i n g  use less  categories 
In general the grammar produced by the transform 
£¢1(G) contains a large number of useless nonter- 

minals, i.e., non-terminals which can never appear 
in any complete derivation, even if the grammar G is 
fully pruned (i.e., contains no useless productions). 
While £C1(G) can be pruned using standard algo- 
rithms, given the observation about  the relationship 
between the pair non-terminals in £:C1 (G) and non- 
terminals in G, it is clear tha t  certain productions 
can be discarded immediately as useless. Define the 
le f -eorner relation ¢ C (N U T) x N as follows: 

X ~A iff 3ft. A ~ X f l  E P, 

Let 4" be the reflexive and transitive closure of 4. 
It is easy to show that  a category A - X  is useless 
in £CI(G) (i.e., derives no sequence of terminals) 
unless X 4" A. Thus we can restrict the productions 
in (1.a-l .c) without affecting the language (strongly) 
generated to those that  only contain pair categories 
A - X  where X 4" A. 

2.2 Unif ication grammars 

One of the main advantages of left-corner parsing 
algorithms over LR(k) based parsing algorithms is 
that  they extend straight-forwardly to complex fea- 
ture based "unification" grammars. The transfor- 
mation £C1 itself can be encoded in several lines of 
Prolog (Matsumoto et al., 1983; Pereira and Shieber, 
1987). This contrasts with the LR(k) methods. In 
LR(k) parsing a single LR state may correspond 
to several items or dotted rules, so it is not clear 
how the feature "unification" constraints should be 
associated with transitions from LR state to LR 
state (see Nakazawa (1995) for one proposal). In 
contrast, extending the techniques described here 
to complex feature based "unification" grammar is 
straight-forward. 

The main complication is the filter on useless non- 
terminals and productions just discussed. General- 
izing the left-corner closure filter on pair categories 
to complex feature "unification" grammars in an ef- 
ficient way is complicated, and is the primary diffi- 
culty in using left-corner methods with complex fea- 
ture based grammars, van Noord (1997) provides 
a detailed discussion of methods for using such a 
"left-corner filter" in unification-grammar parsing, 
and the methods he discusses are used in the imple- 
mentation described below. 

3 E x t e n d e d  l e f t - c o r n e r  t r a n s f o r m s  

This section presents some simple extensions to the 
basic left-corner transform presented above. The 
'tail-recursion' optimization permits bounded-stack 
parsing of both left and right linear constructions. 
Further manipulation of this transform puts it into a 
form in which we can identify precisely the tree con- 
figurations in the original grammar which cause the 
stack size of a left-corner parser to increase. These 
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observations motivate the special binarization meth- 
ods described in the next section, which minimize 
stack depth in grammars that contain productions 
of length no greater than two. 

3.1 A tail-recursion optimization 
If G is a left-linear grammar, a top-down parser us- 
ing £.C1 (G) can recognize any string generated by G 
with a constant-bounded stack size. However, the 
corresponding operation with right-linear grammars 
requires a stack of size proportional to the length 
of the string, since the stack fills with paired cate- 
gories A - A  for each non-left-corner nonterminal in 
the analysis tree. 

The 'tail recursion' or 'composition' optimiza- 
tion (Abney and Johnson, 1991; Resnik, 1992) per- 
mits right-branching structures to be parsed with 
bounded stack depth. It is the result of epsilon re- 
moval applied to the output of £C1, and can be de- 
scribed in terms of resolution or partial evaluation 
of the transformed grammar with respect to pro- 
ductions (1.c). In effect, the schema (1.b) is split 
into two cases, depending on whether or not the 
rightmost nonterminal A - B  is expanded by the ep- 
silon rules produced by schema (1.c). This expansion 
yields a grammar L:C2 (G) = (N', T, P2, S), where P2 
contains all productions of the form (2.a-2.c). (In 
these schemata A ,B  E N; a E T; X E N U T and 
fl E ( N O T ) * ) .  

A ~ a A-a (2.a) 
A - X  -+ ~ A - B  : B ~ X / 3  E P. (2.b) 

A - X  --+/3 : A --+ X / 3  E P. (2.c) 
Figure 1 shows the effect of the transform L:C2 on 
the example tree. The maximum stack depth re- 
quired for this tree is 2. When this 'tail recursion' 
optimization is applied, pair categories in the trans- 
formed grammar encode proper left-corner relation- 
ships between nodes in the analysis tree. This lets 
us strengthen the 'useless category' filter described 
above as follows. Let ,~+ be the transitive closure of 
the left-corner relation ~ defined above. It is easy 
to show that a category A - X  is useless in L:C2(G) 
(i.e., derives no sequence of terminals) unless X,~ + A. 
Thus we can restrict the productions in (2.a-2.b) 
without affecting the language (strongly) generated 
to just those that only contain pair categories A - X  
where X 4 + A. 

3.2 The  special  case of  b ina ry  productions 
We can get a better idea of the properties of transfor- 
mation L:C2 if we investigate the special case where 
the productions of G are unary or binary. In this 
situation, transformation £C2(G) can be more ex- 
plicitly written as /:C3(G) = (N', T, P3, S), where 
P3 contains all instances of the production schemata 
(3.a-3.e). (In these schemata, a E T; A, B E N and 
X ,  Y E N o T ) .  

/ ~  . : C  

a 

A - X  ~ a C - a  A - B  (4.0 

Figure 2: The highly distinctive "zig-zag" or "light- 
ning bolt" configuration of nodes in the analysis tree 
characteristic of the use of production schema (4. 0 
in transform £C4. This is the only configuration 
which causes an increase in stack depth in a top- 
down parser using a grammar transformed with L:C4. 

A --+ a A -a .  (3.a) 
A - X  --~ A - B  : B ~ X E P. (3.b) 

A - X  ~ ~ : A --+ X ~ P. (3.c) 
A - X  -~ Y A - B  : B --+ X Y E P. (3.d) 

A - X  --+ Y : A --~ X Y E P. (3.e) 
Productions (3.b-3.c) and (3.d-3.e) correspond to 
unary and binary productions respectively in the 
original grammar. Now, note that nonterminals 
from N only appear in the right hand sides of pro- 
ductions of type (3.d) and (3.e). Moreover, any such 
nonterminals must be immediately expanded by a 
production of type (3.a). Thus these non-terminals 
are eliminable by resolving them with (3.a); the 
only remaining nonterminal is the start symbol S. 
This expansion yields a new transform £:C4, where 
EC4(G) = ({S} U (N × ( N U T ) ) , T ,  P4 ,S ) .  P4, de- 
fined in (4.a-4.g), still contains productions of type 
(3.a), but these only expand the start symbol, as all 
occurences of nonterminals in N have been resolved 
away. (In these schemata a E T; A, B, C, D E N 
and X E N U T ) .  

S --+ a S - a .  (4.a) 
A - X  --~ A - B  : B --~ X E P. (4.b) 

A - X  ~ e : A -~ X E P. (4.c) 
A - X  --+ a A - B  : B -~ X a E P. (4.d) 

A - X  -~ a : A -~ X a E P. (4.e) 
A - X  -~ a C - a  A - B  : B -~ X C E P. (4.f) 

A - X  --+ a C - a  : A ~ X C E P. (4.g) 
In the production schemata defining/2C4, (4.a-4.c) 
are copied directly from (3.a-3.c) respectively. The 
schemata (4.d-4.e) are obtained by instantiating Y 
in (3.d-3.e) to a terminal a E T, while the other two 
schemata (4.f-4.g) are obtained by instantiating Y in 
(3.d-3.e) with the right hand sides of (3.a). Figure 1 
shows the result of applying the transformation £1C4 
to the example analysis tree t. 

The transform also simplifies the specification of 
finite-state machine approximations. Because all 
terminals are introduced as the left-most symbols in 
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their productions, there is no need for terminal sym- 
bols to appear on the parser's stack, saving an ep- 
silon transition associated with a stack push and an 
immediately following stack pop with respect to the 
standard left-corner algorithm. Productions (4.a) 
and (4.d-4.g) can be understood as transitions over 
a terminal a that replace the top stack element with 
a sequence of other elements, while the other produc- 
tions can be interpreted as epsilon transitions that 
manipulate the stack contents accordingly. 

Note that the right hand sides of all of these 
productions except for schema (4.f) are right-linear. 
Thus instances of this schema are the only produc- 
tions that can increase the stack size in a top-down 
parse with EC4(G), and the stack depth required 
to parse an analysis tree is the maximum number 
of "zig-zag" patterns in the path in the analysis 
tree from any terminal node to the root. Figure 2 
sketches the configuration of nodes in the analysis 
trees in which instances of schemata (4.f) would be 
used in a parse using £C4(G). This highly distinc- 
tive "zig-zag" or "lightning bolt" pattern does not 
occur at all in the example tree t in Figure 1, so the 
maximum required stack depth is 2. (Recall that in 
a traditional top-down parser terminals are pushed 
onto the stack and popped later, so initialization 
productions (4.a) cause two symbols to be pushed 
onto the stack). It follows that this finite state ap- 
proximation is exact for left-linear and right-linear 
CFGs. Indeed, analysis trees that consist simply of a 
left-branching subtree followed by a right-branching 
subtree, such as the example tree t, are transformed 
into strictly right-branching trees by/:C4. 

4 I m p l e m e n t a t i o n  

This section provides further details of the finite- 
state approximator implemented in this research. 
The approximator is written in Sicstus Prolog. It 
takes a user-specifier Definite Clause Grammar G 
(without Prolog annotations) as input, which it bi- 
narizes and then applies transform/:C4 to. 

The implementation annotates each transition 
with the production it corresponds to (represented 
as a pair of a /2C4 schema number and a produc- 
tion number from G), so the finite-state approxima- 
tion actually defines a transducer which transduces 
a lexical input to a sequence of productions which 
specify a parse of that input with respect to/:C4(G). 
A following program inverts the tree transform EC4, 
returning a corresponding parse tree with respect 
to G. This parse tree can be checked by perform- 
ing complete unifications with respect to the orig- 
inal grammar productions if so desired. Thus the 
finite-state approximation provides an efficient way 
of determining if an analysis of a given input string 
with respect to a unification grammar G exists, and 
if so, it can be used to suggest such analyses. 

5 C o n c l u s i o n  

This paper surveyed the issues arising in the con- 
struction of finite-state approximations of left-corner 
parsers. The different kinds of parsers were pre- 
sented as grammar transforms, which let us abstract 
away from the algorithmic details of parsing algo- 
rithms themselves. It derived the various forms of 
the left-corner parsing algorithms in terms of gram- 
mar transformations from the original left-corner 
grammar transform. 

R e f e r e n c e s  

Stephen Abney and Mark Johnson. 1991. Mem- 
ory requirements and local ambiguities of parsing 
strategies. Journal of Psycholinguistic Research, 
20(3):233-250. 

Alfred V. Aho and Jeffery D. Ullman. 1972. The 
Theory of Parsing, Translation and Compiling; 
Volume 1: Parsing. Prentice-Hall, Englewood 
Cliffs, New Jersey. 

Yuji Matsumoto, Hozumi Tanaka, Hideki Hirakawa, 
Hideo Miyoshi, and Hideki Yasukawa. 1983. 
BUP: A bottom-up parser embedded in Prolog. 
New Generation Computing, 1(2):145-158. 

Tsuneko Nakazawa. 1995. Construction of LR pars- 
ing tables for grammars using feature-based syn- 
tactic categories. In Jennifer Cole, Georgia M. 
Green, and Jerry L. Morgan, editors, Linguis- 
tics and Computation, number 52 in CSLI Lecture 
Notes Series, pages 199-219, Stanford, California. 
CSLI Publications. 

Fernando C.N. Pereira and Stuart M. Shieber. 1987. 
Prolog and Natural Language Analysis. Num- 
ber 10 in CSLI Lecture Notes Series. Chicago Uni- 
versity Press, Chicago. 

Fernando C. N. Pereira and Rebecca N. Wright. 
1991. Finite state approximation of phrase struc- 
ture grammars. In The Proceedings of the 29th 
Annual Meeting of the Association for Computa- 
tional Linguistics, pages 246-255. 

Philip Resnik. 1992. Left-corner parsing and psy- 
chological plausibility. In The Proceedings of the 
fifteenth International Conference on Computa- 
tional Linguistics, COLING-92, volume 1, pages 
191-197. 

Stanley J. Rosenkrantz and Philip M. Lewis II. 
1970. Deterministic left corner parser. In IEEE 
Conference Record of the 11th Annual Symposium 
on Switching and Automata, pages 139-152. 

Stuart M. Shieber. 1985. Using Restriction to ex- 
tend parsing algorithms for unification-based for- 
malisms. In Proceedings of the 23rd Annual Meet- 
ing of the Association for Computational Linguis- 
tics, pages 145-152, Chicago. 

Gertjan van Noord. 1997. An efficient implemen- 
tation of the head-corner parser. Computational 
Linguistics, 23(3):425-456. 

623 


