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Abstract 
This paper proposes a mistake-driven mix- 
ture method for learning a tag model. The 
method iteratively performs two proce- 
dures: 1. constructing a tag model based 
on the current data distribution and 2. 
updating the distribution by focusing on 
data that are not well predicted by the 
constructed model. The final tag model 
is constructed by mixing all the models 
according to their performance. To well 
reflect the data distribution, we repre- 
sent each tag model as a hierarchical tag 
(i.e.,NTT 1 < proper noun < noun) con- 
text tree. By using the hierarchical tag 
context tree, the constituents of sequential 
tag models gradually change from broad 
coverage tags (e.g.,noun) to specific excep- 
tional words that cannot be captured by 
generM tags. In other words, the method 
incorporates not only frequent connec- 
tions but also infrequent ones that are of- 
ten considered to be collocationah We 
evaluate several tag models by implement- 
ing Japanese part-of-speech taggers that  
share all other conditions (i.e.,dictionary 
and word model) other than their tag 
models. The experimental results show 
the proposed method significantly outper- 
forms both hand-crafted and conventional 
statistical methods. 

1 Introduction 

The last few years have seen the great success of 
stochastic part-of-speech (POS) taggers (Church, 
1988: Kupiec, 1992; Charniak et M., 1993; Brill, 
1992; Nagata, 1994). The stochastic approach gen- 
erally attains 94 to 96% accuracy and replaces the 
labor-intensive compilation of linguistics rules by 
using an automated learning algorithm. However, 

1NTT is an abbreviation of Nippon Telegraph and 
Telephone Corporation. 

practical systems require more accuracy because 
POS tagging is an inevitable pre-processing step for 
all practical systems. 

To derive a new stochastic tagger, we have two 
options since stochastic taggers generally comprise 
two components: word model  and tag model. The 
word model is a set of probabilities that  a word oc- 
curs with a tag (part-of-speech) when given the pre- 
ceding words and their tags in a sentence. On the 
contrary, the tag model is a set of probabilities that 
a tag appears after the preceding words and their 
tags. 

The first option is to construct more sophisticated 
word models. (Charniak et al., 1993) reports that  
their model considers the roots and suffixes of words 
to greatly improve tagging accuracy for English cor- 
pora. However, the word model approach has the 
following shortcomings: 

• For agglutinative languages such as Japanese 
and Chinese, the simple Bayes transfer rule is 
inapplicable because the word length of a sen- 
tence is not fixed in all possible segmentations -~. 
We can only use simpler word models in these 
languages. 

• Sophisticated word models largely depend on 
the target language. It is time-consuming to 
compile fine-grained word models for each lan- 
guage. 

The second option is to devise a new tag model. 
(Sch~tze and Singer. 1994) have introduced a 
variable-memory-length tag model. Unlike conven- 
tional bi-gram and tri-gram models, the method 
selects the optimal length by using the context 
tree (Rissanen, 1983) which was originally intro- 
duced for use in data compression (Cover and 
Thomas, 1991). Although the variable-memory 
length approach remarkably reduces the number of 
parameters, tagging accuracy is only as good as con- 
ventional methods. Why didn't  the method have 
higher accuracy ? The crucial problem for current 

P(,,,)P(,,lu,,) P (wi )  cannot be consid- 2In P(w,]t ,)  = P(t,) ' 

ered to be identical for ~ll segmentations. 
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tag models is the set of collocational sequences of 
words that  cannot be captured by just their tags. 
Because the maximal likelihood estimator (MLE) 
emphasizes the most frequent connections, an ex- 
ceptional connection is placed in the same class as a 
frequent connection. 

To tackle this problem, we introduce a new tag 
model based on the mistake-driven mixture of hi- 
erarchical tag context trees. Compared to Schiitze 
and Singer's context tree (Schiitze and Singer, 1994), 
the hierarchical tag context tree is extended in that 
the context is represented by a hierarchical tag set 
(i.e.,NTT < proper noun < noun). This is extremely 
useful in capturing exceptional connections that can 
be detected only at the word level. 

To make the best use of the hierarchical con- 
text tree, the mistake-driven mixture method imi- 
tates the process in which linguists incorporate ex- 
ceptional connections into hand-crafted rules: They 
first construct coarse rules which seems to cover 
broad range of data. They then try to analyze data 
by using the rules and extract exceptions that the 
rules cannot handle. Next they generalize the ex- 
ceptions and refine the previous rules. The following 
two steps abstract the human algorithm for incorpo- 
rating exceptional connections. 

1. construct temporary rules which seem to well 
generalize given data. 

2. try to analyze data by using the constructed 
rules and extract the exceptions that cannot 
be correctly handled, then return to the first 
step and focus on the exceptions. 

To put the above idea into our learning algo- 
rithm, The mistake-driven mixture method attaches 
a weight vector to each example and iteratively per- 
forms the following two procedures in the training 
phase: 

1. constructing a context tree based on the current 
data distribution (weight vector) 

2. updating the distribution (weight vector) by fo- 
cusing on data not well predicted by the con- 
structed tree. More precisely, the algorithm re- 
duces the weight of examples that are correctly 
handled. 

For the prediction phase, it then outputs a final 
tag model by mixing all the constructed models ac- 
cording to their performance. By using the hierar- 
chical tag context tree, the constituents of a series 
of tag models gradually change from broad coverage 
tags (e.g.,noun) to specific exceptional words that 
cannot be captured by general tags, In other words, 
the method incorporates not only frequent connec- 
tions but also infrequent ones that are often consid- 
ered to be exceptional. 

The construction of the paper is as follows. Sec- 
tion 2 describes the stochastic POS tagging scheme 
and hierarchical tag setting. Section 3 presents a 

new probability estimator that uses a hierarchical 
tag context tree and Section 4 explains the mistake- 
driven mixture method. Section 5 reports a prelim- 
inary evaluation using Japanese newspaper articles. 
We tested several tag models by keeping all other 
conditions (i.e., dictionary and word model) iden- 
tical. The experimental results show that the pro- 
posed method significantly outperforms both hand- 
crafted and conventional statistical methods. Sec- 
tion 6 concerns related works and Sections 7 con- 
cludes the paper. 

2 P r e l i m i n a r i e s  

2.1 Basic  E q u a t i o n  

In this section, we will briefly review the basic 
equations for part-of-speech tagging and introduce 
hierarchical-tag setting. 

The tagging problem is formally defined as finding 
a sequence of tags t l , ,  that maximize the probability 
of input string L. 

P ( w l , . , t l , ~ , L )  
a r g m a x t .  P(Wl,n,t l ,nlL) = argmazq , .  P(L)  

¢~ argmaxtl  . . . . . . .  ~ L P( tl,~ , Wl,~ ) 

We break out P(ta,~, Wl,n) as a sequence of the prod- 
ucts of tag probability and word probability. 

rl 

P(tl,n, Wl,~) = 1-I P( u'iltl ,i-l '  wl , i -1)P( t i l t l ' i - l '  wx,i ) 
i = 1  

By approximating word probability as con- 
strained only by its tag, we obtain equation (1). 
Equation (1) yields various types of stochastic tag- 
gers. For example, bi-gram and tri-gram models 
approximate their tag probability as P(til t i-1) and 
P( t i l t i_ l , t i_ . ) ,  respectively. In the rest of the pa- 
per, we assume all tagging methods share the word 
model P(wilt i)  and differ only in the tag model 
P( ti ltl,i-1, Wl,i ). 

argmaxt . . . . . . . .  eL l " I  P( t i [ t l , i -a '  wi . i )P(wi l t i )  (1) 
i =1 .  

2.2 H ie r a r ch i ca l  Tag  Set 

To construct a tag model that captures excep- 
tional connections, we have to consider word-level 
context as well as tag-level. In a more general 
form, we introduce a tag set that has a hierarchi- 
cal structure. Our tag set has a three-level struc- 
ture as shown in Figure 1. Tile topmost and the 
second level of the hierarchy are part-of-speech level 
and part-of-speech subdivision level respectively. Al- 
though stochastic taggers usually make use of subdi- 
vision level, part-of-speech level is remarkably robust 
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Figure 1: Hierarchical Tag Set 

against data sparseness. The bot tom level is word 
level and is indispensable in coping with exceptional 
and collocational sequences of words. Our objective 
is to construct a tag model that precisely evaluates 
P(tiltl,i-1, Wl,i) (in equation (1)) by using the three- 
level tag set. 

To construct this model, we have to answer the 
following questions. 

1. Which level is appropriate for t i .9 

2. Which length is to be considered for tl,i-1 and 
wl,i ? 

:3. Which level is appropriate for tl,i-1 and wl,i ? 

To resolve the first question, we fix ti at subdivision 
level as is done in other tag models. The second and 
third questions are resolved by introducing hierar- 
chical tag context trees and mistake-driven mixture 
method that are respectively described in Section 3 
and 4. 

Before moving to the next section, let us define 
the basic tag set. If all words are considered con- 
text candidates, the search space will be enormous. 
Thus, it is reasonable for the tagger to constrain the 
candidates to frequent open class words and closed 
class words. Tile basic tag set is a set of tile most 
detailed context elements that comprises the words 
selected above and part-of-speech subdivision level. 

3 H i e r a r c h i c a l  T a g  C o n t e x t  T r e e  

A hierarchical tag context tree is constructed by a 
two-step methodology. The first step produces a 
context tree by using tile basic tag set. The sec- 
ond step then produces the hierarchical tag context 
tree. It generalizes the basic tag context tree and 
avoids over-fitting the data by replacing excessively 
specific context in the tree wi4h more general tags. 

Finally, the generated tree is transformed into a fi- 
nite automaton to improve tagging efficiency (Ron 
et al., 1997). 

3.1 C o n s t r u c t i n g  a Basic  Tag  C o n t e x t  T r e e  

In this section, we construct a basic tag context tree. 
Before going into detail of the algorithm, we briefly 
explain the context tree by using a simple binary 
case. The context tree was originally introduced 
in the field of data compression (Rissanen, 1983; 
Willems et al., 1995; Cover and Thomas, 1991) to 
represent how many times and in what context each 
symbol appeared in a sequence of symbols. Figure 
2 exemplifies two context trees comprising binary 
symbols 'a '  and 'b'. T(4) is constructed from the se- 
quence 'baab'and T(6) from 'baabab '. The root node 
of T(4) explains that both ' a ' and  'b ' appeared twice 
in 'baab' when no consideration is taken of previous 
symbols. The nodes of depth 1 represent an order 1 
(bi-gram) model. The left node of T(4) represents 
that  both 'a '  and "b' appeared only once after sym- 
bol 'a', while the right node of T(4) represents only 
'a '  occurred once after 'b '. In the same way, the node 

of depth 2 in T(6) represents an order 2 (tri-gram) 
context model. 

It is straightforward to extend this binary tree to a 
basic tag context tree. In this case, context symbols 
'a '  and 'b" are replaced by an element of the basic 

tag set and the frequency table of each node then 
consists of the part-of-speech subdivision set. 

The procedure construct-btree which constructs a 
basic tag context tree is given below. Let a set of 
subdivision tags to be Sl,--.,sn. Let weight[t] be 
a weight vector attached to the tth example x(t). 
Initial values of weight[t] are set to 1. 

1. the only node, the root, is marked with the 
count table (c(s l , )0 ,"- ,  C(Sn,)~) = (0,'--.0)). 

2. Apply the following recursively. Let T(t-1) be 

232 



a b 
-- (2,2) - 

(1,1) (1,o) 

r(4) 

a b 
(3,3) . 

(1,2) (2,o) 

(o,1) (1,o) (o,o) 

r(6) 

Figure 2: Context  Trees for 'baab" and 'baabab' 

the last constructed tree with counts of nodes 
z, (c(sl ,z) , - . . ,  c(sn,z)). After the next symbol 
whose subdivision is x(t) is observed, generate 
the next tree T(t)  as follows: follow the T(t-1),  
starting at the root and taking the branch in- 
dicated by each successive symbol in the past 
sequence by using basic tag level. For each 
node z visited, increment the component  count 
c(x(t) , : )  by weight[t]. Continue until node w 
is a leaf node. 

3. If w is a leaf, extend the tree by creat- 
ing new leaves: c(x(t),wsl)=...=c(x(t),wsn) 
= weight[t], c(x(t),wsl) . . . . .  c(x(t),wsn)=O. 
Define the resulting tree to be T(t) .  

3.2 C o n s t r u c t i n g  a H i e r a r c h i c a l  T a g  
C o n t e x t  T r e e  

This section delineates how a hierarchical tag con- 
text tree is constructed from a basic tag context tree. 
Before describing the algorithm, we prepare some 
definitions and notations. 

Let .4 be a part-of-speech subdivision set. As de- 
scribed in the previous section, frequency tables of 
each node consist of the set A. At ally node s of a 
context tree, let n(ats ) and /5(als ) be tile count of 
element a and its probability, respectively. 

p(ats) _ n(als) 
~bc_.a n(bls) 

We introduce an information-theoretical criteria 
A(sb) (Weinberger et al., 1995) to evaluate the gain 
of expanding a node s by its daughter sb. 

._k(sb) = Z n ( a l s b l l ° g ~  ) (2) 
aCA 

A(sb) is the difference in optimal code lengths 
when symbols at node sb are compressed by using 

probability distribution P(.Is) at node s and P('lsb) 
at node sb. Thus, the larger A(sb) is, the more 
meaningful it is to expand a node by sb. 

Now, we go back to the hierarchical tag context 
tree construction. As illustrated in Figure 3, the gen- 
eration process amounts to the iterative selection of b 
out of word level, subdivision, part-of-speech and null 
(no expansion). Let us look at the procedure from 
the information-theoretical viewpoint. Breaking out 
equation (2) as (3), 2x(sb) is represented as the prod- 
uct of the frequencies of all subdivision symbols at 
node sb and Kullback-Leibler (KL) divergence. 

n(alsb), P(alsb) 
A(sb)= n(sb) E - -  *og - -  ac_a n(sb) p(als ) 

= n ( s b ) ~  P(alsb)log P(alsb) 
~g.-t P( als ) 

= n(sb)D~.L(P(.[sb),/~(.[s)) (3) 

Because the KL divergence defines a distance 
measure between probability distributions, P(.]sb) 
and P(.Is), there is the following trade-off between 
the two terms of equation (3). 

• The more general b is, the more subdivision 
symbols appear at node sb. 

• The more specific b is, the more /~(-[s) and 

P(.Isb) differ. 

By using the trade-off, the optimal level of b is se- 
•lected. 

Table 1 summarizes the algorithm construct-htree 
that  constructs the hierarchical tag context tree. 
First, construct-htree generates a basic tag context 
tree by calling construct-btree. Assume that  the 
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(root) 

~ a d j e c t i v e  

Which is appropriate for b 
word, subdivision, part-of-speech 

$b or null ? 

Figure 3: Constructing Hierarchical Tag Context Tree 

training examples consist of a sequence of triples, 
< pt ,s t ,wt  >, in which Pt, st and wt represent 
part-of-speech, subdivision and word, respectively. 
Eachtime the algorithm reads an example, it first 
reaches current leaf node s by following the past se- 
quence, computes A(sb), and then selects the opti- 
mal b. The initially constructed basic tag context 
tree is used to compute A(sb)s. 

4 M i s t a k e - D r i v e n  M i x t u r e  o f  

H i e r a r c h i c a l  T a g  Context Trees 

Up to this section, we introduced a new tag model 
that uses a single hierarchical tag context tree to 
cope with the exceptional connections that cannot 
be captured by just part-of-speech level. However, 
this approach has a clear limitation; the exceptional 
connections that do not occur so often cannot be 
detected by the single tree model. In such a ease, 
the first term n(sb) in equation (3) is enormous for 
general b and the tree is expanded by using more 
general symbols. 

To overcome this limitation, we devised the 
mistake-driven mixture algorithm summarized in Ta- 
ble 4 which constructs T context trees and outputs 
the final tag model. 

mistake-driven mixture sets the weights to 1 for 
all examples and repeats the following procedures 
T times. The algorithm first construct a hierarchi- 
cal context tree by using the current weight vector. 
Example data are then tagged by the tree and the 
weights of correctly handled examples are reduced 
by equation (4). Finally, the final tag model is con- 
structed by mixing T trees according to equation 
(5). 

By using the mistake-driven mixture method, the 
constituents of a series of hierarchical tag context 
trees gradually change from broad coverage tags 

(e.g.,noun) to specific exceptional words that can- 
not be captured by part-of-speech and subdivisions. 
The method, by mixing different levels of trees, in- 
corporates not only frequent connections but also 
infrequent ones that are often considered to be col- 
locational without over-fitting the data. 

5 Preliminary Evaluation 

We performed an preliminary evaluation using the 
first 8939 Japanese sentences in a year's volume of 
newspaper articles(Mainichi, 1993). We first auto- 
matically segmented and tagged these sentences and 
then revised them by hand. The total number of 
words in the hand-revised corpus was 226162. We 
trained our tag models on the corpora with every 
tenth sentence removed (starting with the first sen- 
tence) and then tested the removed sentences. There 
were 22937 words in the test corpus. 

As the first milestone of performance, we tested 
a hand-crafted tag model of JUMAN (Kurohashi et 
al., 1994), the most widely used Japanese part-of- 
speech tagger. The tagging accuracy of JUMAN for 
the test corpus was only 92.0 %. This shows that our 
corpus is difficult to tag because the corpus contains 
various genres of texts; from obituaries to poetry. 

Next. we compared the mixture of bi-grams and 
the mixture of hierarchical tag context trees. In this 
experiment, only post-positional particles and aux- 
iliaries were word-level elements of basic tags and all 
other elements were subdivision level. In contrast, 
bi-gram was const ructedby using subdivision level. 
We set the iteration number T to 5. The results of 
our experiments are summarized in Figure 4. 

As a single tree estimator (Number of Mixture = 
1), the hierarchical tag context tree attained 94.1% 
accuracy, while bi-gram yielded 93.1%. A hierarchi- 
cal tag context tree offers a slight improvement, but 
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Initialize weight[j] = 1 for all examples j 
1 = 1  
call constrnct-btree 
do 

Read tth example xt(< pt,dt, wt >) 
in which Pt, dt and wt represent part-of-speech, subdivision and word, respectively. 
Follow ;gt_l,Xt_2,...,xt_(i_l) and Reach leaf node s 
low = swt-i,  high = sdt-i 
while(max(iN(low), ,.3,(high)) >_ Threshold) { 

if(iN(low) > A(high)) 
Expand the tree by the node low 

else if(high==spt-i ) 
Expand the tree by the node high 

else low = sdt_i, high = spt-i 
} 
t = t + l  

while(xt  is not empty) 

Table 1: Algorithm construct-htree 

I n p u t :  sequence of N examples < Pl, dl, wl >, . •., < pN, dN, WN > 
in which Pi, di and wi represent part-of-speech, subdivision and word, respectively. 
In i t ia l ize  the weight vector weight[i] =1 for i = 1 . . . . .  N 
D o  f o r  t = 1 , 2  . . . . .  T 

Call  construct-htree providing it with the weight vector weight D and 
Construct a part-of-speech tagger h t  
Let Error be a set of examples that are not identified by ht 

• • N 
Compute the error rate of hi: et = EicError  we*ght[2]/Y"~i=l weight[i] 
¢~t = i'--'d 
For examples correctly predicted by ht, update the weights vector to be 

weight[i] = weight[i]flt (4) 
O u t p u t  a final tag model 

h I = ET=l( log~)h t /ET=l( log~)  (5) 

Table 2: Algorithm mistake-driven mixture 

not a gret deal• This conclusion agrees with Schiitze 
and Singer's experiments that used a context tree of 
usual part-of-speech. 

When we turn to the mixture estimator, a great 
difference is seen between hierarchical tag context 
trees and bi-grams. The hierarchical tag con- 
text trees produced by the mistake-driven mixture 
method, greatly improved the accuracy and over- 
fitting data was not serious. The best and worst 
performances were 96.1% (Number of Mixture = 3) 
and 94.1% (Number of Mixture = 1), respectively. 
On the other hand, the performance of the bi-gram 
mixture was not satisfactory. Tile best and worst 
performances were 93.8 % (Number of Mixture = 2) 
and 90.8 % (Number of Mixture = 5), respectively. 

From the result, we may say exceptional connec- 
tions are well captured by hierarchical context trees 
but not by bi-grams. Bi-grams of subdivision are too 

general to selectively detect exceptions. 

6 R e l a t e d  W o r k  

Although statistical natural language processing has 
mainly focused on Maximum Likelihood Estimators, 
(Pereira et al., 1995) proposed a mixture approach 
to predict next words by using the Context Tree 
Weighting (CTW) method .(Willems et al., 1995). 
The CTW method computes probability by mixing 
subtrees in a single context tree in Bayesian fashion. 
Although the method is very efficient, it cannot be 
used to construct hierarchical tag context trees. 

Various kinds of re-sampling techniques have been 
studied in statistics (Efron, 1979; Efron and Tibshi- 
rani, 1993) and machine learning (Breiman, 1996; 
Hull et al., 1996; Freund and Schapire, 1996a). 
In particular, the mistake-driven mixture algorithm 
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Figure 4: Context Tree Mixture v.s. Bi-gram Mixture 

was directly motivated by Adaboost (Freund and 
Schapire, 1996a). The Adaboost method was de- 
signed to construct a high-performance predictor by 
iteratively calling a weak learning algorithm (that 
is slightly better than random guess). An em- 
pirical work reports that the method greatly im- 
proved the performance of decision-tree, k-nearest- 
neighbor, and other learning methods given rela- 
tively simple and sparse data (Freund and Schapire, 
1996b). We borrowed the idea of re-sampling to de- 
tect exceptional connections and first proved that  
such a re-sampling method is also effective for a 
practical application using a large amount of data. 
The next step is to fill the gap between theory and 
practition. Most theoretical work on re-sampling as- 
sumes i.i.d (identically, independently distributed) 
samples. This is not a realistic assumption in part- 
of-speech tagging and other NL applications. An 
interesting future research direction is to construct 
a theory that handles Markov processes. 

7 Conclus ion 

We have described a new tag model that uses 
mistake-driven mixture to produce hierarchical tag 
context trees that can deal with exceptional con- 
nections whose detection is not possible at part-of- 
speech level. Our experinaental results show that  
combining hierarchical tag context trees with the 

mistake-driven mixture method is extremely effec- 
tive for 1. incorporating exceptional connections 
and 2. avoiding data over-fitting. Although we have 
focused on part-of-speech tagging in this paper, the  
mistake-driven mixture method should be useful for 
other applications because detecting and incorporat- 
ing exceptions is a central problem in corpus-based 
NLP. We are now costructing a Japanese depen- 
dency parser that employes mistake-driven mixture 
of decision trees. 
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