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Abstract 

Our goal is to identify the features that  pre- 
dict the occurrence and placement of dis- 
course cues in tutorial explanations in or- 
der to aid in the automatic generation of 
explanations. Previous at tempts to devise 
rules for text generation were based on in- 
tuition or small numbers of constructed ex- 
amples. We apply a machine learning pro- 
gram, C4.5, to induce decision trees for cue 
occurrence and placement from a corpus of 
data coded for a variety of features previ- 
ously thought to affect cue usage. Our ex- 
periments enable us to identify the features 
with most predictive power, and show that  
machine learning can be used to induce de- 
cision trees useful for text generation. 

1 I n t r o d u c t i o n  

Discourse cues are words or phrases, such as because, 
first, and although, that mark structural and seman- 
tic relationships between discourse entities. They 
play a crucial role in many discourse processing 
tasks, including plan recognition (Litman and Allen, 
1987), text comprehension (Cohen, 1984; Hobbs, 
1985; Mann and Thompson, 1986; Reichman-Adar, 
1984), and anaphora resolution (Grosz and Sidner, 
1986). Moreover, research in reading comprehension 
indicates that felicitous use of cues improves compre- 
hension and recall (Goldman, 1988), but that their 
indiscriminate use may have detrimental effects on 
recall (Millis, Graesser, and Haberlandt, 1993). 

Our goal is to identify general strategies for cue us- 
age that can be implemented for automatic text gen- 
eration. From the generation perspective, cue usage 
consists of three distinct, but interrelated problems: 
(1) occurrence: whether or not to include a cue in the 
generated text, (2) placement: where the cue should 
be placed in the text, and (3) selection: what lexical 
item(s) should be used. 

Prior work in text generation has focused on cue 
selection (McKeown and Elhadad, 1991; Elhadad 
and McKeown, 1990), or on the relation between 
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cue occurrence and placement and specific rhetori- 
cal structures (RSsner and Stede, 1992; Scott and 
de Souza, 1990; Vander Linden and Martin, 1995). 
Other hypotheses about cue usage derive from work 
on discourse coherence and structure. Previous 
research (Hobbs, 1985; Grosz and Sidner, 1986; 
Schiffrin, 1987; Mann and Thompson, 1988; Elhadad 
and McKeown, 1990), which has been largely de- 
scriptive, suggests factors such as structural features 
of the discourse (e.g., level of embedding and segment 
complexity), intentional and informational relations 
in that structure, ordering of relata, and syntactic 
form of discourse constituents. 

Moser and Moore (1995; 1997) coded a corpus 
of naturally occurring tutorial explanations for the 
range of features identified in prior work. Because 
they were also interested in the contrast between oc- 
currence and non-occurrence of cues, they exhaus- 
tively coded for all of the factors thought to con- 
tribute to cue usage in all of the text. From their 
study, Moscr and Moore identified several interesting 
correlations between particular features and specific 
aspects of cue usage, and were able to test specific 
hypotheses from the hterature that were based on 
constructed examples. 

In this paper, we focus on cue occurrence and 
placement, and present an empirical study of the hy- 
potheses provided by previous research, which have 
never been systematically evaluated with naturally 
occurring data. Wc use a machine learning program, 
C4.5 (Quinlan, 1993), on the tagged corpus of Moser 
and Moore to induce decision trees. The number of 
coded features and their interactions makes the man- 
ual construction of rules that predict cue occurrence 
and placement an intractable task. 

Our results largely confirm the suggestions from 
the hterature, and clarify them by highhghting the 
most influential features for a particular task. Dis- 
course structure, in terms of both segment structure 
and levels of embedding, affects cue occurrence the 
most; intentional relations also play an important 
role. For cue placement, the most important factors 
are syntactic structure and segment complexity. 

The paper is organized as follows. In Section 2 we 
discuss previous research in more detail. Section 3 
provides an overview of Moser and Moore's coding 
scheme. In Section 4 we present our learning exper- 
iments, and in Section 5 we discuss our results and 
conclude. 
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2 R e l a t e d  W o r k  

McKeown and Elhadad (1991; 1990) studied severai 
connectives (e.g., but, since, because), and include 
many insightful hypotheses about cue selection; their 
observation that  the distinction between but and ¢l- 
thoug/~ depends on the point of the move is related 
to the notion of core discussed below. However, they 
do not address the problem of cue occurrence. 

Other researchers (R6sner and Stede, 1902; Scott 
and de Souza, 1990) are concerned with generating 
text from "RST trees", hierarchical structures where 
leaf nodes contain content and internal nodes indi- 
cate the rt~etorical relations, as defined in Rhetori- 
cal Structure Theory (RST) (Mann and Thompson, 
1988), that exist between subtrees. They proposed 
heuristics for including and choosing cues based on 
the rhetorical relation between spans of text, the or- 
der of the relata, and the complexity of the related 
text spans. However, (Scott and de Souza, 1990) 
was based on a small number of constructed exam- 
pies, and (R6sner and Stede, 1992) focused on a small 
number of RST relations. 

(Litman, 1996) and (Siegel and McKeown, 1994) 
have applied machine learning to disambiguate be- 
tween the discourse and sentcntial usages of cues; 
however, they do not consider the issues of occur- 
rence and placement, and approach the problem from 
the point of view of interpretation. We closely follow 
the approach in (Litman, 1996) in two ways. First, 
we use C4.5. Second, we experiment first with each 
feature individually, and then with "interesting" sub- 
sets of features. 

3 R e l a t i o n a l  D i s c o u r s e  A n a l y s i s  

This section briefly describes Relational Discourse 
Anal~tsis (RDA)  (Moser, Moore, and Glendening, 
1996), the coding scheme used to tag the data for 
our machine learning experiments. 1 

RDA is a scheme devised for analyzing tutorial ex- 
planations in the domain of electronics troubleshoot- 
ing. It  synthesizes ideas from (Grosz and Sidner, 
1986) and from RST (Mann and Thompson, 1988). 
Coders use RDA to exhaustively analyze each expla- 
nation in the corpus, i.e., every word in each expla- 
nation belongs to exactly one element in the anal- 
ysis. An explanation may consist of multiple seg- 
ments.  Each segment originates with an intention 
of the speaker. Segments are internally structured 
and consist of a core, i.e., that element that most di- 
rectly expresses the segment purpose, and any num- 
ber of contributors, i.e. the remaining constituents. 
For each contributor, one analyzes its relation to the 
core from an intentional perspective, i.e., how it is 
intended to support the core, and from an informa- 
tional perspective, i.e., how its content relates to that 

1For more detail about the RDA coding scheme see 
(Moser and Moore, 1995; Moser and Moore, 1997). 

of the core. The set of intentional relations in RDA 
is a modification of the presentational relations of 
RST, while informational relations are similar to the 
subject matter  relations in RST. Each segment con- 
stituent, both core and contributors, may itself be a 
segment with a core:contributor structure. In some 
cases the core is not explicit. This is often the case 
with the whole tutor's explanation, since its purpose 
is to answer the student's explicit question. 

As an example of the application of RDA, consider 
the partial tutor explanation in (1) 2 . The purpose of 
this segment is to inform the student that she made 
the strategy error of testing inside part3 too soon. 
The constituent that makes the purpose obvious, in 
this case (l-B), is the core of the segment. The other 
constituents help to serve the segment purpose by 
contributing to it. (1-C) is an example ofsubsegment 
with its own core:contributor structure; its purpose 
is to give a reason for testing part2 first. 

The RDA analysis of (I) is shown schematically in 
Figure 1. The core is depicted as the mother of all 
the relations it participates in. Each relation node is 
labeled with both its intentional and informational 
relation, with the order of relata in the label indicat- 
ing the linear order in the discourse. Each relation 
node has up to two daughters: the cue, if any, and 
the contributor, in the order they appear in the dis- 
c o u r s e .  

Coders analyze each explanation in the corpus and 
enter their analyses into a database. The corpus con- 
sists of 854 clauses comprising 668 segments, for a 
total of 780 relations. Table 1 summarizes the dis- 
tribution of different relations, and the number of 
cued relations in each category. Joints are segments 
comprising more than one core, but no contributor; 
clusters are multiunit structures with no recogniz- 
able core:contributor relation. (l-B) is a cluster com- 
posed of two units (the two clauses), related only at 
the informational level by a temporal relation. Both 
clauses describe actions, with the first action descrip- 
tion embedded in a matriz ("You should"). Cues are 
much more likely to occur in clusters, where only in- 
formational relations occur, than in core:contributor 
structures, where intentional and informational rela- 
tions co-occur (X 2 = 33.367, p <.001, df = 1). In 
the following, we will not discuss joints and clusters 
any further. 

An important result pointed out by (Moser and 
Moore, 1995) is that cue placement depends on core 
position. When the core is first and a cue is asso- 
ciated with the relation, the cue never occurs with 
the core. In contrast, when the core is second, if a 
cue occurs, it can occur either on the core or on the 
contributor. 

aTo make the example more intelligible, we replaced 
references to parts of the circuit with the labels partl, 
part2 and part3. 
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(i) 

Although 

This is 
because 

Also, 
and 

A. you know that part1 is good, 
B. you should eliminate part2 

before troubleshooting inside part3. 

C. 

D. 

E. 

1. part2 is moved frequently 
and thus  2. is more susceptible to damage than part3. 

it is more work to open up part3 for testing 
the process of opening drawers and extending cards in part3 
may induce problems which did not already exist. 

concede 
criterion:act 

Although A 

B. you should eliminate part2 
before troubleshooting inside part3 

c o n v i n c e  Conusnce  conugnee 
act:reason act:reason act:reason 

(Th 2 
because } 

c o n v i n c e  

cause:effect 

C.1 and 
thus 

Figure 1: The RDA analysis of (1) 

4 L e a r n i n g  f r o m  t h e  c o r p u s  

4.1 T h e  a l g o r i t h m  

We chose the C4.5 learning algorithm (Quinlan, 
1993) because it is well suited to a domain such as 
ours with discrete valued attributes. Moreover, C4.5 
produces decision trees and rule sets, both often used 
in text generation to implement mappings from func- 
tion features to forms? Finally, C4.5 is both read- 
ily available, and is a benchmark learning algorithm 
that  has been extensively used in NLP applications, 
e.g. (Litman, 1996; Mooney, 1996; Vander Linden 
and Di Eugenio, 1996). 

As our dataset is small, the results we report are 
based on cross-validation, which (Weiss and Ku- 
likowski, 1091) recommends as the best method to 
evaluate decision trees on datasets whose cardinality 
is in the hundreds. Data for learning should be di- 
vided into training and test sets; however, for small 
datasets this has the disadvantage that a sizable por- 
tion of the data is not available for learning. Cross- 
validation obviates this problem by running the algo- 
ri thm N times (N=10 is a typical value): in each run, 

(N~l)th of the data, randomly chosen, is used as the 
training set, and the remaining ~ t h  used as the test 

3We will discuss only decision trees here. 

set. The error rate of a tree obtained by using the 
whole dataset for training is then assumed to be the 
average error rate on the test set over the N runs. 
Further, as C4.5 prunes the initial tree it obtains to 
avoid overfitting, it computes both actual and esti- 
mated error rates for the pruned tree; see (Quinlan, 
1993, Ch. 4) for details. Thus, below we will report 
the average estimated error rate on the test set, as 
computed by 10-fold cross-validation experiments. 

4.2 T h e  f e a t u r e s  

Each data point in our dataset corresponds to a 
core:contributor relation, and is characterized by the 
following features, summarized in Table 2. 

S e g m e n t  S t r u c t u r e .  Three features capture the 
global structure of the segment in which the current 
core:contributor relation appears. 

• (Con)Trib(utor)-pos(it ion) captures the posi- 
tion of a particular contributor within the larger 
segment in which it occurs, and encodes the 
structure of the segment in terms of how many 
contributors precede and follow the core. For ex- 
ample, contributor (l-D) in Figure 1 is labeled 
as BIA3-2after, as it is the second contributor 
following the core in a segment with 1 contrib- 
utor before and 3 after the core. 
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of relation tl Total I # of cued relations II 
Core:Contributor 406 181 
Joints 64 19 
Clusters 310 276 
Total 780 476 

Table 1: Distributions of relations and cue occurrences 

[I feature type feature dencription 
Segment ntructure Trib-pos relative position of contrib in segment t 

number of contribs before and after core 
Inten-structure intentional structure of segment 
Infor-structure informational structure of segment 

Core:contributor Inten-rel enable, convince, concede 
relation Info-rel 4 classes of about 30 distinct relations 

Syn-rel independent sentences / segments, 
coordinated clauses, subordinated clauses 

Adjacency are core and contributor adjacent? 
Embedding Core-type segment, minimal unit 

Trib-type segment, minimal unit 
Above / Below number of relations hierarchically 

above / below current relation 

Table 2: Features 

• /nten(tional)-structure indicates which contrib- 
utors in the segment bear the same intentional 
relations to the core. 

• Infor(mationalJ-structure. Similar to inten- 
tional structure, but applied to informational 
relations. 

C o r e : c o n t r i b u t o r  re la t ion .  These features more 
specifically characterize the current core:contributor 
relation. 

• lnten(tionalJ-rel(ation). One of concede, con- 
vince, enable. 

• Infor(maiional)-rel(ation). About 30 informa- 
tional relations have been coded for. However, 
as preliminary experiments showed that using 
them individually results in overfitting the data, 
we classify them according to the four classes 
proposed in (Moser, Moore, and Glendening, 
1996): causality, similarity, elaboration, tempo- 
ral. Temporal relations only appear in clusters, 
thus not in the data we discuss in this paper. 

• Syn(tactic)-rel(atiou). Captures whether the 
core and contributor are independent units (seg- 
ments or sentences); whether they are coordi- 
nated clauses; or which of the two is subordinate 
to the other. 

• Adjacency. Whether core and contributor are 
adjacent in linear order. 

E m b e d d i n g .  These features capture segment em- 
bedding, Core-type and Trib-type qualitatively, and 
A bore/Below quantitatively. 

• Core-type/(ConJTrib(utor)-type. Whether the 
core/the contributor is a segment, or a mini- 
mal unit (further subdivided into action, state, 
matriz). 

• Above//Belozo encode the number of relations hi- 
erarchically above and below the current rela- 
tion. 

4.3 T h e  e x p e r i m e n t s  

Initially, we performed learning on all 406 instances 
of core:contributor relations. We quickly determined 
that this approach would not lead to useful decision 
trees. First, the trees we obtained were extremely 
complex (at least 50 nodes). Second, some of the sub- 
trees corresponded to clearly identifiable subclasses 
of the data, such as relations with an implicit core, 
which suggested that we should apply learning to 
these independently identifiable subclasses. Thus, 
we subdivided the data into three subsets: 

• Core/: core:contributor relations with the core 
in first position 

• Core~: core:contributor relations with the core 
in second position 

• Impl(icit)-core: core:contributor relations with 
an implicit core 

While this has the disadvantage of smaller training 
sets, the trees we obtain are more manageable and 
more meaningful. Table 3 summarizes the cardinal- 
ity of these sets, and the frequencies of cue occur- 
rence. 
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11 O t set II # of Z tio s I # of c ed reZatio s II 
Corel  127 
Core2 155 

Impl-core 124 

52 
100 

(on Trib: 43) (on Core: 57) 
29 

II Total II 406 I 181 

Table 3: Distributions of relations and cue occurrences 

We ran four sets of experiments. In three of them 
we predict cue occurrence and in one cue placement. 4 

4 .3 .1  C u e  O c c u r r e n c e  

Table 4 summarizes our main results concerning 
cue occurrence, and includes the error rates asso- 
ciated with different feature sets. We adopt  Lit- 
man ' s  approach (1906) to determine whether two er- 
ror rates El and £2 are significantly different. We 
compute  05% confidence intervals for the two error 
rates using a t-test. £1 is significantly better than 
£~ if the upper bound of the 95% confidence inter- 
val for £1 is lower than the lower bound of the 95% 
confidence interval for g2-~ 
For each set of experiments, we report the following: 

1. A baseline measure obtained by choosing the 
majori ty class. E.g., for Corel 58.9% of the re- 
lations are not cued; thus, by deciding to never 
include a cue, one would be wrong 41.1% of the 
times. 

2. The best individual features whose predictive 
power is better than the baseline: as Table 4 
makes apparent,  individual features do not have 
much predictive power. For neither Gorcl nor 
Impl-core does any individual feature perform 
better than the baseline, and for Core~ only one 
feature is sufficiently predictive. 

3. (One of) the best induced tree(s). For each tree, 
we list the number of nodes, and up to six of the 
features that  appear highest in the tree, with 
their levels of embedding. 5 Figure 2 shows the 
tree for Core~ (space constraints prevent us from 
including figures for each tree). In the figure, 
the numbers in parentheses indicate the number 
of cases correctly covered by the leaf, and the 
number of expected errors at that  leaf. 

Learning turns out to be most useful for Corel, 
where the error reduction (as percentage) from base- 
line to the upper bound of the best result is 32%; 

~AII our experiments are run with groupin 9 turned on, 
so that C4.5 groups values together rather than creating 
a branch per value. The latter choice always results in 
trees overfitted to the data in our domain. Using classes 
of informational relations, rather than individual infor- 
mational relations, constitutes a sort of a priori grouping. 

SThe trees that C4.5 generates are right-branching, so 
this description is fairly adequate. 

error reduction is 19% for Core2 and only 3% for 
Impl- core. 

The best tree was obtained partly by informed 
choice, partly by trial and error. Automatically try- 
ing out all the 211 -- 2048 subsets of features would 
be possible, but it would require manual examina- 
tion of about 2,000 sets of results, a daunting task. 
Thus, for each dataset wc considered only the follow- 
ing subsets of features. 

1. All features. This always results in C4.5 select- 
ing a few features (from 3 to 7) for the final tree. 

2. Subsets built out of the 2 to 4 attributes appear- 
ing highest in the tree obtained by running C4.5 
on all features. 

3. In Table 2, three features -- Trib-pos, In~e~- 
struck, Infor-s~ruct- concern segment struc- 
ture, eight do not. We constructed three subsets 
by always including the eight features that do 
not concern segment structure, and adding one 
of those that does. The trees obtained by includ- 
ing Trib-pos, I~tert-struc~, Infor-struc~ at the 
same time are in general more complex, and not 
significantly better than other trees obtained by 
including only one of these three features. We 
at t r ibute this to the fact that  these features en- 
code partly overlapping information. 

Finally, the best tree was obtained as follows. We 
build the set of trees that  are statistically equivalent 
to the tree with the best error rate (i.e., with the 
lowest error rate upper bound).  Among these trees, 
we choose the one that  we deem the most  perspicuous 
in terms of features and of complexity. Namely, we 
pick the simplest tree with Trib-Pos as the root if 
one exists, otherwise the simplest tree. Trees tha t  
have Trib-Pos as the root are the most  useful for 
text generation, because, given a complex segment, 
Trib-Pos is the only at tr ibute that  unambiguously 
identifies a specific contributor. 

Our results make apparent that  the structure of 
segments plays a fundamental  role in determining 
cue occurrence. One of the three features concerning 
segment structure (Trib-Pos, Inten-Structure, Infor- 
StrucZure) appears as the root or just  below the root 
in all trees in Table 4; more importantly,  this same 
configuration occurs in all trees equivalent to the best 
tree (even if the specific feature encoding segment 
structure may change). The level of embedding in a 
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Core l Core2 Impl-core 

Baseline 41.1 35.4 23.5 

Best features 0 Info-rel: 33.44-0.94 O 

Best tree 25.64-1.24 (I5) 

O. Trlb-pos 
1. Tril>-type 
2. Syn-rel 
3. C0re-type 
4. Above 
5. Inten-rel 

27.44-1.28 (18) 

O. Tr ib -Pos  
I. Inten-rel 
2. Info-rel 
3. Above 
4. Core-type 
5. Below 

22.1+0.57 (10) 

O. Core-type 
1. In fo r - s t ruc t  
2. Inten-rel 

Table 4: Summary  of learning results 

T r i b  POS } { B 1A0- I prc .B l A 1-1 prc .B 1A2-1 pre.B 1A3- I pre.  
{B I A , - I  pre. / ~ _ 8 1 ) p ~  B 2 A 0 -  I p r e .B2A0-2pre .  
B2A2.2pr¢i ~ B 2 A  I- 1 p r e .B2A 1-2pr*2 
B 3 A 0 - 3 p r e  { B21A2. ~ N . ~ . ~  B 3 A 0 - 1 P  r c ' B 3 A 0 - 2 p r c  } 
(4/I.2) 

No-Cue C u e  [ Intcn Rcl J 

{causal .  e laborat ion} / 
/ 

[ ,,, ,o~o } 

Cue [ Core T y p e  ) 

{ ma t  . . { a c t i o n  ) 

[ ae~ow ) No-Cu~ 

C u e  [ T r i b  Pos  ] { B I A l - l p r e . B 1 A 2 - 1 p r c .  
{B IA0-1 p r e /  ~ B I A3-1pr¢ .  B 2 A 0 -  I pre.B2AO-2prc. 

B2A l - I prc.B2A 1-2pro 
\ B3A0-1  p r e .B3A0-2p re  } ( 1 6 / 5 ~ /  

(15/3.3) 
C u e  N o - C u e  

{cneb'c} / ~ { .... i .......... d} 
(70 / I  2.7) 

[ Int-o Re l  J C u e  
{ sioailarity } 

~ /I 2 ,  

N o - C u e  

{ s e g m e n t  } 

( T . b  Pos J 

{ B 1 A 0 - 1 p r e , / /  \ [ B I A l - l p r e . B l A 2 - 1 p r ¢ .  
B 2 A 0 - 2 p r e  } / B 1A3- I p r c . B 2 A 0 -  I pro. 

B2A 1 - I p r e .B2A 1-2pre 
(1915.8, ~Zr B3A0- I prc.B3A0=2prc } 

(713 3) 
N o - C u e  C u e  

Figure 2: Decision tree for Core2 - -  occurrence 

segment, as encoded by Core-type, Trib-type, Above 
and Below also figures prominently. 

InLen-rel appears in all trees, confirming the in- 
tui t ion that  the speaker's purpose affects cue occur- 
rence. More specifically, in Figure 2, Inten-reldistin- 
guishes two different speaker purposes, convince and 
enable. The same split occurs in some of the best 
trees induced on Core1, with the same outcome: i.e., 
convince directly correlates with the occurrence of a 
cue, whereas for enable other features must be taken 
into account. 6 Informational  relations do not appear 
as often as intentional  relations; their discriminatory 
power seems more relevant for clusters. Prel iminary 

ewe can't draw any conclusions concerning concede, 
as there are only 24 occurrences of concede out of 406 
core:contributor relations. 

experiments show that  cue occurrence in clusters de- 
pends only on informational and syntactic relations. 
Finally, Adjacency does not seem to play any sub- 
s tant ial  role. 

4 .3 .2  C u e  P l a c e m e n t  

While cue occurrence and placement are interre- 
lated problems, we performed learning on them sep- 
arately. First, the issue of placement arises only in 
the case of Core~; for Core1, cues only occur on the 
contributor.  Second, we at tempted experiments on 
Core2 tha t  discriminated between occurrence and 
placement at the same time, and the derived trees 
were complex and not perspicuous. Thus,  we ran an 
experiment on the 100 cued relations from Core~ to 
investigate which factors affect placing the cue on the 
contr ibutor  in first position or on the core in second; 
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Baseline 43% 
Best features Syn-reh 24.1:t:0.69 

Trib-pos: 40+0.88 
Best tree 20.6+0.97 (5) 

O. Syn-rcl 
1. Trib-pos 

Table 5: Cue placement on Core2 

12d: Ttab depends on Core i¢: Core and Tab  are independent clauses 
21d: Core depends on T ab  cc.cp.ct: Core and Tnb  are coordinaled 

phrases 

"N~d .: ,:c ,=p ,:, I { i z d }  . " . "  ." . 

,26,'2. V 

C u e - o n - T r i b  [ T r ib -Pos  

hB/AO71Pre.~'B. I A 1.~ I Pro' ~ { B2AO-Iofe B2AI-Iprc 

C u e - o n - C o r e  C u e ~ o n - T r i b  

Figure 3: Decision tree for C o r e ~ - -  placement 

see Table 5. 
We ran the same trials discussed above on this 

dataset. In this case, the best tree - -  see Figure 3 
- -  results from combining the two best individual 
features, and reduces the error rate by 50%. The 
most discriminant feature turns out to be the syn- 
tactic relation between the contributor and the core. 
However, segment structure still plays an important 
role, via Trib-pos. 

While the importance of S~ln-rel for placement 
seems clear, its role concerning occurrence requires 
further exploration. It is interesting to note that the 
tree induced on Gorel  - -  the only case in which Syn- 
rel is relevant for occurrence - -  indudes the same dis- 
tinction as in Figure 3: namely, if the contributor de- 
pends on the core, the contributor must be marked, 
otherwise other features have to be taken into ac- 
count. Scott and de Souza (1990) point out that 
"there is a strong correlation between the syntactic 
specification of a complex sentence and its perceived 
rhetorical structure." It seems that  certain syntactic 
structures function as a cue. 

5 D i s c u s s i o n  a n d  C o n c l u s i o n s  

We have presented the results of machine learning ex- 
periments concerning cue occurrence and placement. 
As (Litman, 1996) observes, this sort of empirical 
work supports the utility of machine learning tech- 
niques applied to coded corpora. As our study shows, 
individual features have no predictive power for cue 
occurrence. Moreover, it is hard to see how the best 
combination of individual features could be found by 
manual inspection. 

Our results also provide guidance for those build- 
ing text generation systems. This study clearly in- 

dicates that segment structure, most notably the 
ordering of core and contributor, is crucial for de- 
termining cuc occurrence. Recall that it was only 
by considering Corel and Core~ relations in distinct 
datasets that we were able to obtain perspicuous de- 
cision trees that signifcantly reduce the error rate. 

This indicates that the representations produced 
by discourse planners should distinguish those ele- 
ments that constitute the core of each discourse seg- 
ment, in addition to representing the hierarchical 
structure of segments. Note that the notion of core 
is related to the notions of nucleus in RST, intended 
effect in (Young and Moore, 1994), and of point of 
a move in (Elhadad and McKeown, 1990), and that 
text generators representing these notions exist. 

Moreover, in order to use the decision trees derived 
here, decisions about whether or not to make the core 
explicit and how to order the core and contributor(s) 
must be made before deciding cue occurrence, e.g., 
by exploiting other factors such as focus (McKeown, 
1985) and a discourse history. 

Once decisions about core:contributor ordering 
and cuc occurrence have been made, a generator 
must still determine where to place cues and se- 
lect appropriate Icxical items. A major focus of 
our future research is to explore the relationship be- 
tween the selection and placement decisions. Else- 
where, we have found that particular lexical items 
tend to have a preferred location, defined in terms of 
functional (i.e., core or contributor) and linear (i.e., 
first or second relatum) criteria (Moser and Moore, 
1997). Thus, if a generator uses decision trees such 
as the one shown in Figure 3 to determine where a 
cuc should bc placed, it can then select an appro- 
priate cue from those that can mark the given in- 
tentional / informational relations, and are usually 
placed in that functional-linear location. To evaluate 
this strategy, we must do further work to understand 
whether there are important distinctions among cues 
(e.g., so, because) apart  from their different preferred 
locations. The work of Elhadad (1990) and Knott 
(1996) will help in answering this question. 

Future work comprises further probing into ma- 
chine learning techniques, in particular investigating 
whether other learning algorithms are more appro- 
priate for our problem (Mooney, 1996), especially al- 
gorithms that take into account some a priori knowl- 
edge about features and their dependencies. 
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