
An Empirical Study of Smoothing Techniques for Language
Modeling

S t a n l e y F . C h e n

H a r v a r d U n i v e r s i t y

A i k e n C o m p u t a t i o n L a b o r a t o r y

33 O x f o r d St .

C a m b r i d g e , M A 02138

sfc©eecs, harvard, edu

Joshua G o o d m a n
H a r v a r d U n i v e r s i t y

A i k e n C o m p u t a t i o n L a b o r a t o r y

33 O x f o r d St .

C a m b r i d g e , M A 02138

goodma.n~eecs, harvard, edu

A b s t r a c t

We present an extensive empirical com-
parison of several smoothing techniques in
the domain of language modeling, includ-
ing those described by Jelinek and Mer-
cer (1980), Katz (1987), and Church and
Gale (1991). We investigate for the first
t ime how factors such as training data
size, corpus (e.g., Brown versus Wall Street
Journal), and n-gram order (bigram versus
trigram) affect the relative performance of
these methods, which we measure through
the cross-entropy of test data. In addition,
we introduce two novel smoothing tech-
niques, one a variation of Jelinek-Mercer
smoothing and one a very simple linear in-
terpolation technique, both of which out-
perform existing methods.

1 I n t r o d u c t i o n

Smoothing is a technique essential in the construc-
tion of n-gram language models, a staple in speech
recognition (Bahl, Jelinek, and Mercer, 1983) as well
as many other domains (Church, 1988; Brown et al.,
1990; Kernighan, Church, and Gale, 1990). A lan-
guage model is a probability distribution over strings
P(s) that at tempts to reflect the frequency with
which each string s occurs as a sentence in natu-
ral text. Language models are used in speech recog-
nition to resolve acoustically ambiguous utterances.
For example, if we have that P(it takes two) >>
P(it takes too), then we know ceteris paribus to pre-
fer the former transcription over the latter.

While smoothing is a central issue in language
modeling, the literature lacks a definitive compar-
ison between the many existing techniques. Previ-
ous studies (Nadas, 1984; Katz, 1987; Church and
Gale, 1991; MacKay and Peto, 1995) only compare
a small number of methods (typically two) on a sin-
gle corpus and using a single training data size. As
a result, it is currently difficult for a researcher to
intelligently choose between smoothing schemes.

In this work, we carry out an extensive
empirical comparison of the most widely used
smoothing techniques, including those described
by 3elinek and Mercer (1980), Katz (1987), and
Church and Gale (1991). We carry out experiments
over many training data sizes on varied corpora us-
ing both bigram and trigram models. We demon-
strate that the relative performance of techniques
depends greatly on training data size and n-gram
order. For example, for bigram models produced
from large training sets Church-Gale smoothing has
superior performance, while Katz smoothing per-
forms best on bigram models produced from smaller
data. For the methods with parameters that can
be tuned to improve performance, we perform an
automated search for optimal values and show that
sub-optimal parameter selection can significantly de-
crease performance. To our knowledge, this is the
first smoothing work that systematically investigates
any of these issues.

In addition, we introduce two novel smooth-
ing techniques: the first belonging to the class of
smoothing models described by 3elinek and Mer-
cer, the second a very simple linear interpolation
method. While being relatively simple to imple-
ment, we show that these methods yield good perfor-
mance in bigram models and superior performance
in trigram models.

We take the performance of a method m to be its
cross-entropy on test data

1 IT

IvT - log Pro(t,)
i = 1

where Pm(ti) denotes the language model produced
with method m and where the test data T is com-
posed of sentences (t l , . . . , t z r) and contains a total
of NT words. The entropy is inversely related to
the average probability a model assigns to sentences
in the test data, and it is generally assumed that
lower entropy correlates with better performance in
applications.

310

1.1 S m o o t h i n g n - g r a m M o d e l s

In n-gram language modeling, the probabili ty of a
string P(s) is expressed as the product of the prob-
abilities of the words that compose the string, with
each word probabil i ty conditional on the identity of
the last n - 1 words, i.e., i f s = w l - . . w t we have

l 1

P(s) = H P(wi[w{-1) ~ 1-~ P i-1 (1)
i=1 i=1

where w i j denotes the words wi • •. wj. Typically, n is
taken to be two or three, corresponding to a bigram
or trigram model, respectively. 1

Consider the case n = 2. To est imate the proba-
bilities P (w i l w i - ,) in equation (1), one can acquire
a large corpus of text, which we refer to as training
data, and take

P(Wi-lWi)
PML(Wil i-1) -- P(wi-1)

c(wi-lWi)/Ns
e(wi-1)/Ns

c(wi_ w)

where c(c 0 denotes the number of times the string
c~ occurs in the text and Ns denotes the total num-
ber of words. This is called the maximum likelihood
(ML) est imate for P(wi lwi_l) .

While intuitive, the m a x i m u m likelihood est imate
is a poor one when the amount of training data is
small compared to the size of the model being built,
as is generally the case in language modeling. For ex-
ample, consider the situation where a pair of words,
or bigram, say burnish the, doesn't occur in the
training data. Then, we have PML(the Iburnish) = O,
which is clearly inaccurate as this probabili ty should
be larger than zero. A zero bigram probabili ty can
lead to errors in speech recognition, as it disallows
the bigram regardless of how informative the acous-
tic signal is. The term smoothing describes tech-
niques for adjusting the m ax i m um likelihood esti-
mate to hopefully produce more accurate probabili-
ties.

As an example, one simple smoothing technique is
to pretend each bigram occurs once more than it ac-
tually did (Lidstone, 1920; Johnson, 1932; Jeffreys,
1948), yielding

C(Wi-lWi) "[- 1
= + IVl

where V is the vocabulary, the set of all words be-
ing considered. This has the desirable quality of

1To m a k e t h e t e r m P(wdw[Z~,,+~) m e a n i n g f u l for
i < n , one c a n p a d t h e b e g i n n i n g of t h e s t r i n g w i t h
a d i s t i n g u i s h e d t o k e n . In t h i s work , we a s s u m e t h e r e a re
n - 1 s u c h d i s t i n g u i s h e d t o k e n s p r e c e d i n g each s e n t e n c e .

preventing zero bigram probabilities. However, this
scheme has the flaw of assigning the same probabil-
ity to say, burnish the and burnish thou (assuming
neither occurred in the training data), even though
intuitively the former seems more likely because the
word the is much more common than thou.

To address this, another smoothing technique is to
interpolate the bigram model with a unigram model
PML(Wi) = c(wi) /Ns , a model that reflects how of-
ten each word occurs in the training data. For ex-
ample, we can take

Pinto p(i J i-1) = APM (w pW _l) + (1 -

getting the behavior that bigrams involving common
words are assigned higher probabilities (Jelinek and
Mercer, 1980).

2 P r e v i o u s W o r k

The simplest type of smoothing used in practice is
additive smoothing (Lidstone, 1920; Johnson, 1932;
aeffreys, 1948), where we take

i
w i-1 e(wi_ , ,+ l) + =

+ elVl (2)

and where Lidstone and Jeffreys advocate /i = 1.
Gale and Church (1990; 1994) have argued that this
method generally performs poorly.

The Good-Turing est imate (Good, 1953) is cen-
tral to many smoothing techniques. It is not used
directly for n-gram smoothing because, like additive
smoothing, it does not perform the interpolation of
lower- and higher-order models essential for good
performance. Good-Turing states that an n-gram
that occurs r times should be treated as if it had
occurred r* times, where

r* = (r + 1)n~+l

and where n~ is the number of n-grams that. occur
exactly r times in the training data.

Katz smoothing (1987) extends the intuitions of
Good-Turing by adding the interpolation of higher-
order models with lower-order models. It is perhaps
the most widely used smoothing technique in speech
recognition.

Church and Gale (1991) describe a smoothing
method that combines the Good-Turing est imate
with bucketing, the technique of parti t ioning a set,
of n-grams into disjoint groups, where each group
is characterized independently through a set of pa-
rameters. Like Katz, models are defined recursively
in terms of lower-order models. Each n-gram is as-
signed to one of several buckets based on its fre-
quency predicted from lower-order models. Each
bucket is treated as a separate distribution and
Good-Turing est imation is performed within each,
giving corrected counts that are normalized to yield
probabilities.

311

N d b u c k e t i n g

2
° * ~ ° % °

o °$ o • .
° . ~ °e o * ° * ° * °

• ** o ~ , ~ L . s °o . • o
oO o ~ o ° *b

; . ° * ~ a - : . . • . °
• % a t

...,~;e.T¢: ° . . . : °
° % o % * * ° ~ - °

~ ° ~ ° o o

° ° • ° ~ °
o*

° o

o
o

, , , i , , , i , , , i , " 0
l o 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 . o 0 1

r~rn~¢ o f c o u n t s i n d i s t N ~ t] o n

n e w b u c k e t i n g
. , . . . ,

oeW~ o

. 6 'V,

* ° N a ,
o

* * I * , , I , , * I , , * I , *

0 . 0 1 0 . 1 1 1 0
a v e r a g e r ~ n - z e m c o u n t i n d i s ~ b u t i o n r ~ n u s O n e

Figure 1:)~ values for old and new bucketing schemes for Jelinek-Mercer smoothing; each point represents a
single bucket

The other smoothing technique besides Katz
smoothing widely used in speech recognition is due
to Jelinek and Mercer (1980). They present a class
of smoothing models that involve linear interpola-
tion, e.g., Brown et al. (1992) take

i - - 1

PML(Wi IWi-n+l) "Iv ~ W i _ _ 1 i - - 1

i - - n -] - I

P~ / W i - 1 , (1 - -)~to~-~) inte~pt i wi_n+2) (3)
i - - u-I-1

Tha t is, the m a x i m u m likelihood est imate is inter-
polated with the smoothed lower-order distribution,
which is defined analogously. Training a distinct
I ~-1 for each wi_,~+li-1 is not generally felicitous;

W i - - n - { - 1

Bahl, Jelinek, and Mercer (1983) suggest partit ion-
i - 1 ing the 1~,~-~ into buckets according to c(wi_~+l),

i - - n-l-1

where all)~w~-~ in the same bucket are constrained
i - - n-l-1

to have the same value.
To yield meaningful results, the data used to esti-

ma te the A~!-, need to be disjoint from the data
~-- n"l-1

used to calculate PML .2 In held-out interpolation,
one reserves a section of the training data for this
purpose. Alternatively, aelinek and Mercer describe
a technique called deleted interpolation where differ-
ent parts of the training data rotate in training either
PML or the A,o!-' ; the results are then averaged.

z-- n - [- I

Several smoothing techniques are motivated
within a Bayesian framework, including work by
Nadas (1984) and MacKay and Peto (1995).

3 Novel Smoothing Techniques
Of the great many novel methods that we have tried,
two techniques have performed especially well.

2When the same data is used to estimate both, setting
all)~ ~-~ to one yields the optimal result.

W l - - n-l-1

3.1 M e t h o d average-count

This scheme is an instance of Jelinek-Mercer
smoothing. Referring to equation (3), recall that
Bahl et al. suggest bucketing the A~!-I according

i - -1 to c(Wi_n+l). We have found that part i t ioning the
~ ! - ~ according to the average number of counts

* - - ~ + 1

per non-zero element ~(~--~"+1) yields bet ter I w i : ~ (~ : _ . + ~) > 0 1
results.

Intuitively, the less sparse the data for es t imat-
ing i-1 PML(WilWi_n+l), the larger A~,~-~ should be.

*-- ~-t-1

While larger i-1 c(wi_n+l) generally correspond to less
sparse distributions, this quanti ty ignores the allo-
cation of counts between words. For example, we
would consider a distribution with ten counts dis-
tr ibuted evenly among ten words to be much more
sparse than a distribution with ten counts all on a
single word. The average number of counts per word
seems to more directly express the concept of sparse-
ness,

In Figure 1, we graph the value of ~ assigned to
each bucket under the original and new bucketing
schemes on identical data. Notice that the new buck-
eting scheme results in a much tighter plot, indicat-
ing that it is bet ter at grouping together distribu-
tions with similar behavior.

3.2 M e t h o d one-count
This technique combines two intuitions. First,
MacKay and Peto (1995) argue that a reasonable
form for a smoothed distribution is

• i - 1
Pone(W i i-1 c(wL, +l) + Po,,e(wilw _ +9

IWi - -nq -1) = i - -1 c(wi_n+l) +

The parameter a can be thought of as the num-
ber of counts being added to the given distribution,

312

where the new counts are distributed as in the lower-
order distribution. Secondly, the Good-Turing esti-
mate can be interpreted as stating that the number
of these extra counts should be proportional to the
number of words with exactly one count in the given
distribution. We have found that taking

i - 1
O~ = "y [n l (W i _ n + l) -~- ~] (4)

works well, where
i-i i

is the number of words with one count, and where/3
and 7 are constants.

4 E x p e r i m e n t a l M e t h o d o l o g y

4.1 D a t a

We used the Penn treebauk and T I P S T E R cor-
pora distributed by the Linguistic Data Consor-
tium. From the treebank, we extracted text from
the tagged Brown corpus, yielding about one mil-
lion words. From TIP S TER , we used the Associ-
ated Press (AP), Wall Street Journal (WSJ), and
San Jose Mercury News (SJM) data, yielding 123,
84, and 43 million words respectively. We created
two distinct vocabularies, one for the Brown corpus
and one for the T I P S T E R data. The former vocab-
ulary contains all 53,850 words occurring in Brown;
the latter vocabulary consists of the 65,173 words
occurring at least 70 times in T IPSTER.

For each experiment, we selected three segments
of held-out data along with the segment of train-
ing data. One held-out segment was used as the
test data for performance evaluation, and the other
two were used as development test data for opti-
mizing the parameters of each smoothing method.
Each piece of held-out data was chosen to be roughly
50,000 words. This decision does not reflect practice
very well, as when the training data size is less than
50,000 words it is not realistic to have so much devel-
opment test data available. However, we made this
decision to prevent us having to optimize the train-
ing versus held-out data tradeoff for each data size.
In addition, the development test data is used to op-
timize typically very few parameters, so in practice
small held-out sets are generally adequate, and per-
haps can be avoided altogether with techniques such
as deleted estimation.

4.2 S m o o t h i n g I m p l e m e n t a t i o n s

In this section, we discuss the details of our imple-
mentat ions of various smoothing techniques. Due
to space limitations, these descriptions are not com-
prehensive; a more complete discussion is presented
in Chen (1996). The titles of the following sections
include the mnemonic we use to refer to the imple-
mentat ions in later sections. Unless otherwise speci-
fied, for those smoothing models defined recursively
in terms of lower-order models, we end the recursion

by taking the n = 0 distribution to be the uniform
distribution Punif(wi) = l / IV[. For each method, we
highlight the parameters (e.g., Am and 5 below) that
can be tuned to optimize performance. Parameter
values are determined through training on held-out
data.

4.2.1 B a s e l i n e S m o o t h i n g (i n t e r p - b a s e l i n e)

For our baseline smoothing method, we use an
instance of Jelinek-Mercer smoothing where we con-
strain all A,~!-I to be equal to a single value A,~ for

, - n-hi
each n, i.e.,

i--1 i - 1
Pb so(wilw _ +i) = A,, +

(I Am) -- Pbase(WilWi_n+2)

4.2.2 A d d i t i v e S m o o t h i n g (p l u s - o n e a n d
plus-delta)

We consider two versions of additive smoothing.
Referring to equation (2), we fix 5 = 1 in p l u s - o n e
smoothing. In p l u s - d e l t a , we consider any 6.

4.2.3 K a t z S m o o t h i n g (k a t z)
While the original paper (Katz, 1987) uses a single

parameter k, we instead use a different k for each
n > 1, k,~. We smooth the unigram distribution
using additive smoothing with parameter 5.

4.2.4 C h u r c h - G a l e S m o o t h i n g
(church-gale)

To smooth the counts n~ needed for the Good-
Turing estimate, we use the technique described by
Gale and Sampson (1995). We smooth the unigram
distribution using Good-t ier ing without any bucket-
ing.

Instead of the bucketing scheme described in the
original paper, we use a scheme analogous to the
one described by Bahl, Jelinek, and Mercer (1983).
We make the assumption that whether a bucket is
large enough for accurate Good-Turing estimation
depends on how many n-grams with non-zero counts
occur in it. Thus, instead of partit ioning the space
of P(wi - JP(w i) values in some uniform way as was
done by Church and Gale, we parti t ion the space
so that at least Cmi n non-zero n-grams fall in each
bucket.

Finally, the original paper describes only bigram
smoothing in detail; extending this method to tri-
gram smoothing is ambiguous. In particular, it is
unclear whether to bucket t r igrams according to

i - 1 i--1 P (w i _ J P (w d or P(wi_JP(wilwi-1) . We chose the
former; while the latter may yield better perfor-
mance, our belief is that it is much more difficult
to implement and that it requires a great deal more
computat ion.

4.2.5 J e l i n e k - M e r c e r S m o o t h i n g
(interp-held-out and interp-del-int)

We implemented two versions of Jelinek-Mercer
smoothing differing only in what da ta is used to

313

train the A's. We bucket the A ~-1 according to
Wi--n-bl

i-1 C(Wi_~+I) as suggested by Bahl et al. Similar to our
Church-Gale implementation, we choose buckets to
ensure that at least Cmi n words in the data used to
train the A's fall in each bucket.

In i n t e r p - h e l d - o u t , the A's are trained using
held-out interpolation on one of the development
test sets. In i n t e r p - d e l - i n t , the A's are trained
using the relaxed deleted interpolation technique de-
scribed by Jelinek and Mercer, where one word is
deleted at a time. In i n t e r p - d e l - i n t , we bucket
an n-gram according to its count before deletion, as
this turned out to significantly improve performance.

4.2.6 Novel Smooth ing Methods
(new-avg-count and new-one-count)

The implementation new-avg-count , correspond-
ing to smoothing method average-count, is identical
to i n t e r p - h e l d - o u t except that we use the novel
bucketing scheme described in section 3.1. In the
implementation new-one-count , we have different
parameters j3~ and 7~ in equation (4) for each n.

5 R e s u l t s

In Figure 2, we display the performance of the
i n t e r p - b a s e l i n e method for bigram and trigram
models on TIPSTER, Brown, and the WSJ subset
of TIPSTER. In Figures 3-6, we display the relative
performance of various smoothing techniques with
respect to the baseline method on these corpora, as
measured by difference in entropy. In the graphs
on the left of Figures 2-4, each point represents an
average over ten runs; the error bars represent the
empirical standard deviation over these runs. Due
to resource limitations, we only performed multiple
runs for data sets of 50,000 sentences or less. Each
point on the graphs on the right represents a sin-
gle run, but we consider sizes up to the amount of
data available. The graphs on the bot tom of Fig-
ures 3-4 are close-ups of the graphs above, focusing
on those algorithms that perform better than the
baseline. To give an idea of how these cross-entropy
differences translate to perplexity, each 0.014 bits
correspond roughly to a 1% change in perplexity.

In each run except as noted below, optimal val-
ues for the parameters of the given technique were
searched for using Powell's search algorithm as real-
ized in Numerical Recipes in C (Press et al., 1988,
pp. 309-317). Parameters were chosen to optimize
the cross-entropy of one of the development test sets
associated with the given training set. To constrain
the search, we searched only those parameters that
were found to affect performance significantly, as
verified through preliminary experiments over sev-
eral data sizes. For k a t z and c h u r c h - g a l e , we did
not perform the parameter search for training sets
over 50,000 sentences due to resource constraints,
and instead manually extrapolated parameter val-

Method Lines
interp-baseline ~ 400
plus-one 40
p l u s - d e l t a 40
k a t z 300
church-gale i000
±nterp-held-out 400
interp-del-int 400
new-avg-count 400
new-one-count 50

Table 1: Implementation difficulty of various meth-
ods in terms of lines of C + + code

ues from optimal values found on smaller data sizes.
We ran i n t e r p - d e l - i n t only on sizes up to 50,000
sentences due to time constraints.

From these graphs, we see that additive smooth-
ing performs poorly and that methods k a t z and
i n t e r p - h e l d - o u t consistently perform well. Our
implementation c h u r c h - g a l e performs poorly ex-
cept on large bigram training sets, where it performs
the best. The novel methods new-avg-coun t and
new-one-count perform well uniformly across train-
ing data sizes, and are superior for tr igram models.
Notice that while performance is relatively consis-
tent across corpora, it varies widely with respect to
training set size and n-gram order.

The method interp-del-int performs signifi-
cantly worse than i n t e r p - h e l d - o u t , though they
differ only in the data used to train the A's. However,
we delete one word at a time in i n t e r p - d e l - i n t ; we
hypothesize that deleting larger chunks would lead
to more similar performance.

In Figure 7, we show how the values of the pa-
rameters 6 and Cmin affect the performance of meth-
ods k a t z and new-avg-count , respectively, over sev-
eral training data sizes. Notice that poor parameter
setting can lead to very significant losses in perfor-
mance, and that optimal parameter settings depend
on training set size.

To give an informal estimate of the difficulty of
implementation of each method, in Table 1 we dis-
play the number of lines of C + + code in each imple-
mentation excluding the core code common across
techniques.

6 D i s c u s s i o n

To our knowledge, this is the first empirical compari-
son of smoothing techniques in language modeling of
such scope: no other study has used multiple train-
ing data sizes, corpora, or has performed parameter
optimization. We show that in order to completely

3To implement the baseline method, we just used the
in terp-held-out code as it is a special case. Written
anew, it probably would have been about 50 lines.

314

11.5

10.5

10

9.5

0

a.5

average over ten runs at each size, up to 50,0OO sentences

" -~ : : : . TIPSTER bigram
"- . "'~:-WS.J bigrarn

1000 10000
sentences of training data (-25 words~sentence)

t l . 5

11

10.5

tO

9.5

0

8.5

8

7.5

7

6.5
tOO

single run at each size

",..

~io~n t rigrarn

-.~ ~. . .

" ' , . , " ' " ~ ' . : " - ~ . TIPSTER bigram
. , . . : = : : : : ;

V~SJ b~gram
. TIPSTER tdgra~

tO00 1O000 100000 le+06)e+07
sentences of training data (-25 words/sentence)

Figure 2: Baseline cross-entropy on test data; graph on left displays averages over ten runs for training sets
up to 50,000 sentences, graph on right displays single runs for training sets up to 10,000,000 sentences

average over ten runs at each size, up to 50,000 sentences
7 ,) • . .

l~Us-one ~ ~ =
6 ~

c~ plu s=dsita I

4

!

._c

- t ~ ~
1000 10000

sentences of training data (-25 wordS/sentence)

single run at each size, up to 10,000,000 sentences
. . , . . , . . . , . . . , . .

+ +....--~ plus~ne

..... ..~...y~ " ' " ' ~ " -..+.,..,,.,

.,-" o.-..-~'""~.......~ ' - . . .

--.. ~,

2=,j

1 J .church-gata " " *

ks/z, interp-held-out, ~nterpdel-int, new-avg-count, new-one-count (see below)

- 1 , • ' ' ' " ' "

100 1000 10000 100000 le+06 le+07
sentences of training data (-25 words~sentence)

average over ten runs at each size, up to 50,000 sentences single run at each size, Up to 10,000,000 sentences
0.04 . . , • - - , • - , - - , •

0 ...

-0,02 "~ " - . . i n t e r p - d e l q n t

-0.00

~.1 n
..... ~t 1 ~ ~

.............. ~ ::
- 0 . 1 6 J

too 1000 10000
sentences of training data (-25 words~sentence}

o.02 o .,';'~o~o,-~nt t

-0.02

-0.04 ~.-..._Z .~ ~ . - . katz d

I
" / : * " - ' - " (" '" " 'm.

. . . ~ . ,] [F ,.a a " " ~ ' ,

JO.O8 " inteq)qle)d-out . . o ' " "

~3.1 .~" . ~ - - - - ~ . new-one-count c / " x . . . - ~

-0.12 " t~ " " " " ~ - - " . / new-svg-count

- 0 . 1 4 k x _ ~ _ . . _ ~ . . . i " "~"~

"0.1610 o lO0O 1OOOO 10oooo le+06 le+07
sentences of training data (-25 words/sentonce)

Figure 3: Trigram model on T I P S T E R data; relative performance of various methods with respect to baseline;
graphs on left display averages over ten runs for training sets up to 50,000 sentences, graphs on right display
single runs for training sets up to 10,000,000 sentences; top graphs show all algorithms, bot tom graphs zoom
in on those methods that perform better than the baseline method

315

E =o

average over ten runs at each size, up to 50,000 senlences
5 , , • • -

4 .6 ~- "~'" plus-o'n~ ~

4

3.S "

3 t~.,, " " - ~ ~ p l u s 4 e l ~

2.5 *

1. I
church*gale '

0.5

0

- 05
100 1000 10000

sentences of training data (-26 words/sentence)

average over t ~ runs at each size, up to 50,000 sentences
0.02 , , . . •

-0 .02 " " "~... humh*gale

~-~ {.
-0 .00

. ~ - ' ~ - ' ~ " :=L::~" T n : w : n 2 o u n t / ~ 1

.0 .14

100 1000 10000
sentences of training data (-26 words/sentence)

single run at each size, up to 10,000,000 sentences
5 , • . , . • . . . , . • . , . •

4 " ..

3.5 "~" '~" . . . I~US*one

2.5 t ' ' ° ' " " ' ~ ' " " ' o " " " o . " * .

1 f - - , ~ " "~" " p us-de ta church-gale " '~ . . .
O.5 "~ - . .

- - . _o .

~3.6 T , ,k~tz, taterp-he~-out., interp~, el~tat, ,~ew,~zvg~ou ' ~ne .~oun t ! ,ow), l

100 1000 10000 100000 l e+06 l e+07
sentences of training data (-26 words/sentence)

stagle r~n at each size, up to 10,OCO,O00 sentences
0.02 • • • , . , • . , . , . . .

o I -0.02 church*gale

...~:,'~
-0 .04 ~ " " ,¢ " ..

" . n erp-he d-out . " ~,~
- ~ Interprdel-mt . . - .* ~ ' " ~ . . ~ .~ . / . -

~ 0 ~

-0.1 new-one-count . .~D - . . .B'" .~ . .

• . - . .~ j . ~ .~ . . : . : : ; $. ,
~Om 1 2

ew-avg-count

.0 .14 ' , , I , , , i , , , m , . , I , ,
10o 10oo 1ooo0 1oo000 l e+06 l e+07

sentences of training data (-25 wo~ds/sentence)

Figure 4: Bigram model on TIPSTER data; relative performance of various methods with respect to baseline;
graphs on left display averages over ten runs for training sets up to 50,000 sentences, graphs on right display
single runs for training sets up to 10,000,000 sentences; top graphs show all algorithms, bottom graphs zoom
in on those methods that perform better than the baseline method

b igram model
0 .02 , ,

0

i -0 .02 church-gale

interprdel- int
.0 ,04 ..-~, ~ .

.0 .00

.0.o8 . . . z " ~*..

-0 .12 "= . ~ inte~p~held-out

l ew -a -~n~ t . . . ~ - -~272~ : : ' z - - . . " n~ :o rpe -~ t a D

-0 .16

-0 .18 i i
100 1000 IOQO0

sentences of training data (-21 words~sentence)

tz igram model

0 ...

.0.02

-0.06 katz . - - ~ " " ' ~ ' " ' " " ' "

• . . - : : :,,<.:..-"

-0.06 .-" i r ~ t e t p..<1 el-~ip_t

.0.12 : : : . - . . " ' ~ = ~ Q.. interp*held-out
. 7~.=: =-P~:: " e o e ~

.0.14 - ~ - = ' : : : = * ~ - ~ _ . _ _ _ ~ new-one-count

- 0 . 1600 1000 10000
sentences of traJelng data (-21 words/sentence)

Figure 5: Bigram and trigram models on Brown corpus; relative performance of various methods with respect
to baseline

316

bigram m o d e l tdgram model

"(, ~ .
o 0 i ~ 0 .02

-0.02 hurch-gale

~ ' - -nt erp~J el-int "~ -0.04 ~ -0.02
inte rp-d el-int " . . ~ inte rpheld~out . . . ~ " " ~ " ' - ~

E -0.06 • " . , ~ ,~ .] ~ - . - ~,. " 'A .
-- -0.06 . - ' - ' k a t z " " - ~ " - . = . .

-0°3 ' : i : , ::.>~,.- .~. ~ " ' - - : : : : . . ,

y -oo i -.
-0.14 • " " " "~ " • " -k-atz

-0.13 ~ -018 = ' ' ,
1oo 1000 10oo0 100000 le+06 10o 1000 10000 100000 le+0o

sentences of training data (-25 words/sentence) sentences of t relelr~g data (-25 words/sentence)

Figure 6: Bigram and trigram models on Wall Street Journal corpus; relative performance of various methods
with respect to baseline

z

~C

==

.=_

performance el katz with respect to delta
1.6 , • . . , . . , . . . , • . . , . .

10O senl
1.4

1.2

1

10,0O0 sent
0.8 1,0O0 sent ..a

0.6 / ' .,.~/"

0.4 / .-" .ED,O00 sent)<

0 .2
" ' " ' d : . / . ." ~ ' "

e I , , , i , , , r , , , I , , , i , , ,
0.0Ol o.01 0.1 1 lO 10o 1000

delta

-0.0O

-0.07

==-
-O.08

2 -0.O3

-0.1

-0.11

-0.12

-0.13

performance of new-avg-c~nt with respect to c-min
. . . , . . . , . .

x\

\ /

~'\ lO.000,000 sent / "
/

/ "
x \ , , .o

" , \ / / ,,,"

. . . . /

'"6. ..'"' 2 l
" " " ' u , 1 OO3,0OO s e n t " /

j / 10 ,0O0 sent

10 100 tO00 10(00 100000
minimum number of counts per bucket

Figure 7: Performance of katz and new-avg-count with respect to parameters ~ and Cmin, respectively

characterize the relative performance of two tech-
niques, it is necessary to consider multiple training
set sizes and to try both bigram and trigram mod-
els. Multiple runs should be performed whenever
possible to discover whether any calculated differ-
ences are statistically significant. Furthermore, we
show that sub-optimM parameter selection can also
significantly affect relative performance.

We find that the two most widely used techniques,
Katz smoothing and Jelinek-Mercer smoothing, per-
form consistently well across training set sizes for
both bigram and trigram models, with Katz smooth-
ing performing better on trigram models produced
from large training sets and on bigram models in
general. These results question the generality of the
previous reference result concerning Katz smooth-
ing: Katz (1987) reported that his method slightly
outperforms an unspecified version of Jelinek-Mercer
smoothing on a single training set of 750,000 words.
Furthermore, we show that Church-Gale smooth-

ing, which previously had not been compared with
common smoothing techniques, outperforms all ex-
isting methods on bigram models produced from
large training sets. Finally, we find that our novel
methods average-count and one-count are superior
to existing methods for trigram models and perform
well on bigram models; method one-count yields
marginally worse performance but is extremely easy
to implement.

In this study, we measure performance solely
through the cross-entropy of test data; it would
be interesting to see how these cross-entropy differ-
ences correlate with performance in end applications
such as speech recognition. In addition, it would be
interesting to see whether these results extend to
fields other than language modeling where smooth-
ing is used, such as prepositional phrase attachment
(Collins and Brooks, 1995), part-of-speech tagging
(Church, 1988), and stochastic parsing (Magerman,
1994).

317

Acknowledgements

The authors would like to thank Stuart Shieber and
the anonymous reviewers for their comments on pre-
vious versions of this paper. We would also like to
thank William Gale and Geoffrey Sampson for sup-
plying us with code for "Good-Turing frequency esti-
mation without tears." This research was supported
by the National Science Foundation under Grant No.
IRI-93-50192 and Grant No. CDA-94-01024. The
second author was also supported by a National Sci-
ence Foundation Graduate Student Fellowship.

References

Bahl, Lalit R., Frederick Jelinek, and Robert L.
Mercer. 1983. A maximum likelihood approach
to continuous speech recognition. IEEE Trans-
actions on Pattern Analysis and Machine Intelli-
gence, PAMI-5(2):179-190, March.

Brown, Peter F., John Cocke, Stephen A. DellaPi-
etra, Vincent J. DellaPietra, Frederick Jelinek,
John D. Lafferty, Robert L. Mercer, and Paul S.
Roossin. 1990. A statistical approach to machine
translation. Computational Linguistics, 16(2):79-
85, June.

Brown, Peter F., Stephen A. DellaPietra, Vincent J.
DellaPietra, Jennifer C. Lai, and Robert L. Mer-
cer. 1992. An estimate of an upper bound for
the entropy of English. Computational Linguis-
tics, 18(1):31-40, March.

Chen, Stanley F. 1996. Building Probabilistic Mod-
els for Natural Language. Ph.D. thesis, Harvard
University. In preparation.

Church, Kenneth. 1988. A stochastic parts program
and noun phrase parser for unrestricted text. In
Proceedings of the Second Conference on Applied
Natural Language Processing, pages 136-143.

Church, Kenneth W. and William A. Gale. 1991.
A comparison of the enhanced Good-Turing and
deleted estimation methods for estimating proba-
bilities of English bigrams. Computer Speech and
Language, 5:19-54.

Collins, Michael and James Brooks. 1995. Prepo-
sitional phrase attachment through a backed-off
model. In David Yarowsky and Kenneth Church,
editors, Proceedings of the Third Workshop on
Very Large Corpora, pages 27-38, Cambridge,
MA, June.

Gale, William A. and Kenneth W. Church. 1990.
Estimation procedures for language context: poor
estimates are worse than none. In COMP-
STAT, Proceedings in Computational Statistics,
9th Symposium, pages 69-74, Dubrovnik, Yu-
goslavia, September.

Gale, William A. and Kenneth W. Church. 1994.
What's wrong with adding one? In N. Oostdijk
and P. de Haan, editors, Corpus-Based Research
into Language. Rodolpi, Amsterdam.

Gale, William A. and Geoffrey Sampson. 1995.
Good-Turing frequency estimation without tears.
Journal of Quantitative Linguistics, 2(3). To ap-
pear.

Good, I.J. 1953. The population frequencies of
species and the estimation of population parame-
ters. Biometrika, 40(3 and 4):237-264.

Jeffreys, H. 1948. Theory of Probability. Clarendon
Press, Oxford, second edition.

Jelinek, Frederick and Robert L. Mercer. 1980. In-
terpolated estimation of Markov source parame-
ters from sparse data. In Proceedings of the Work-
shop on Pattern Recognition in Practice, Amster-
dam, The Netherlands: North-Holland, May.

Johnson, W.E. 1932. Probability: deductive and
inductive problems. Mind, 41:421-423.

Katz, Slava M. 1987. Estimation of probabilities
from sparse data for the language model com-
ponent of a speech recognizer. IEEE Transac-
tions on Acoustics, Speech and Signal Processing,
ASSP-35(3):400-401, March.

Kernighan, M.D., K.W. Church, and W.A. Gale.
1990. A spelling correction program based on
a noisy channel model. In Proceedings of the
Thirteenth International Conference on Compu-
tational Linguistics, pages 205-210.

Lidstone, G.J. 1920. Note on the general case of the
Bayes-Laplace formula for inductive or a posteri-
ori probabilities. Transactions of the Faculty of
Actuaries, 8:182-192.

MacKay, David J. C. and Linda C. Peto. 1995. A hi-
erarchical Dirichlet language model. Natural Lan-
guage Engineering, 1(3):1-19.

Magerman, David M. 1994. Natural Language Pars-
ing as Statistical Pattern Recognition. Ph.D. the-
sis, Stanford University, February.

Nadas, Arthur. 1984. Estimation of probabilities in
the language model of the IBM speech recognition
system. IEEE Transactions on Acoustics, Speech
and Signal Processing, ASSP-32(4):859-861, Au-
gust.

Press, W.H., B.P. Flannery, S.A. Teukolsky, and
W.T. Vetterling. 1988. Numerical Recipes in C.
Cambridge University Press, Cambridge.

318

