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Abstract  

Off-line compilation of logic grammars us- 
ing Magic allows an incorporation of fil- 
tering into the logic underlying the gram- 
mar. The explicit definite clause charac- 
terization of filtering resulting from Magic 
compilation allows processor independent 
and logically clean optimizations of dy- 
namic bottom-up processing with respect to 
goal-directedness. Two filter optimizations 
based on the program transformation tech- 
nique of Unfolding are discussed which are 
of practical and theoretical interest. 

1 I n t r o d u c t i o n  

In natural language processing filtering is used to 
weed out those search paths that are redundant, i.e., 
are not going to be used in the proof tree corre- 
sponding to the natural language expression to be 
generated or parsed. Filter optimization often com- 
prises an extension of a specific processing strategy 
such that it exploits specific knowledge about gram- 
mars and/or the computational task(s) that one is 
using them for. At the same time it often remains 
unclear how these optimizations relate to each other 
and what they actually mean. In this paper I show 
how starting from a definite clause characterization 
of filtering derived automatically from a logic gram- 
mar using Magic compilation, filter optimizations 
can be performed in a processor independent and 
logically clean fashion. 

Magic (templates) is a general compilation tech- 
nique for efficient bottom-up evaluation of logic pro- 
grams developed in the deductive database commu- 
nity (Ramakrishnan et al., 1992). Given a logic pro- 
gram, Magic produces a new program in which the 
filtering as normally resulting from top-down eval- 
uation is explicitly characterized through, so-called, 
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magic predicates, which produce variable bindings 
for filtering when evaluated bottom-up. The origi- 
nal rules of the program are extended such that these 
bindings can be made effective. 

As a result of the definite clause characterization 
of filtering, Magic brings filtering into the logic un- 
derlying the grammar. I discuss two filter optimiza- 
tions. These optimizations are direction indepen- 
dent in the sense that they are useful for both gen- 
eration and parsing. For expository reasons, though, 
they are presented merely on the basis of examples 
of generation. 

Magic compilation does not limit the informa- 
tion that can be used for filtering. This can lead 
to nontermination as the tree fragments enumer- 
ated in bottom-up evaluation of magic compiled 
grammars are connected (Johnson, forthcoming). 
More specifically, 'magic generation' falls prey to 
non-termination in the face of head recursion, i.e., 
the generation analog of left recursion in parsing. 
This necessitates a dynamic processing strategy, i.e., 
memoization, extended with an abstraction function 
like, e.g., restriction (Shieber, 1985), to weaken fil- 
tering and a subsumption check to discard redun- 
dant results. It is shown that for a large class of 
grammars the subsumption check which often influ- 
ences processing efficiency rather dramatically can 
be eliminated through fine-tuning of the magic pred- 
icates derived for a particular grammar after apply- 
ing an abstraction function in an off-line fashion. 

Unfolding can be used to eliminate superfluous fil- 
tering steps. Given an off-line optimization of the 
order in which the right-hand side categories in the 
rules of a logic grammar are processed (Minnen et 
al., 1996) the resulting processing behavior can be 
considered a generalization of the head corner gen- 
eration approach (Shieber et al., 1990): Without the 
need to rely on notions such as semantic head and 
chain rule, a head corner behavior can be mimicked 
in a strict bottom-up fashion. 

247 



2 Definite Clause Characterization 
of Filtering 

Many approaches focus on exploiting specific knowl- 
edge about grammars and/or  the computational 
task(s) that  one is using them for by making filter- 
ing explicit and extending the processing strategy 
such that  this information can be made effective. 
In generation, examples of such extended process- 
ing strategies are head corner generation with its 
semantic linking (Shieber et al., 1990) or bottom-up 
(Earley) generation with a semantic filter (Shieber, 
1988). Even though these approaches often accom- 
plish considerable improvements with respect to ef- 
ficiency or termination behavior, it remains unclear 
how these optimizations relate to each other and 
w h a t  comprises the logic behind these specialized 
forms of filtering. By bringing filtering into the logic 
underlying the grammar it is possible to show in a 
perspicuous and logically clean way how and why fil- 
tering can be optimized in a particular fashion and 
how various approaches relate to each other. 

2.1 Magic Compilation 
Magic makes filtering explicit through characterizing 
it as definite clauses. Intuitively understood, filter- 
ing is reversed as binding information that  normally 
becomes available as a result of top-down evaluation 
is derived by bottom-up evaluation of the definite 
clause characterization of filtering. The following is 
the basic Magic algorithm taken from Ramakrishnan 
et al. (1992). 

Let P be a program and q(E) a query on 
the program. We construct a new program 
ping. Initially ping is empty. 

1. Create a new predicate magic_p for 
each predicate p in P. The arity is that  
of p. 

2. For each rule in P, add the modified 
version of the rule to p-~9. If rule r 
has head, say, p({), the modified ver- 
sion is obtained by adding the literal 
magic_p(t) to the body. 

3. For each rule r in P with head, say, 
p({), and for each literal q~(~) in its 
body, add a magic rule to ping. The 
head is magic_qi(~). The body con- 
tains the literal magic_p(t), and all the 
literals that precede qi in the rule. 

4. Create a seed fact magic_q(5) from the 
query. 

To illustrate the algorithm I zoom in on the applica- 
tion of the above algorithm to one particular gram- 

mar rule. Suppose the original grammar rule looks 
as follows: 

s (P0, P, VForm, SSem) : - 
vp(Pl ,P,VForm, [CSem] ,SSem), 
np (P0,PI, CSem). 

Step 2 of the algorithm results in the following mod- 
ified version of the original grammar rule: 

s (P0, P , V F o r m ,  SSem) : - 
magic_s (P0,P,VForm, SSem) , 
vp(Pl ,P ,VForm, [CSem] , SSem) , 
np (P0, PI, CSem). 

A magic literal is added to the right-hand side of 
the rule which 'guards' the application of the rule. 
This does not change the semantics of the original 
grammar as it merely serves as a way to incorpo- 
rate the relevant bindings derived with the magic 
predicates to avoid redundant applications of a rule. 
Corresponding to the first right-hand side literal in 
the original rule step 3 derives the following magic 
rule: 

magic_vp (Pl, P, VForm, [CSem] , SSem) : - 
magic_s (P0, P, VForm, SSem) . 

It is used to derive from the guard for the original 
rule a guard for the rules defining the first right-hand 
side literal. The second right-hand side literal in the 
original rule leads to the following magic rule: 

magic_up (P0, P1, CSem) : - 
magi c_s (P0, P, VForm, SSem) , 
vp(Pl,P,VForm, [CSem] ,SSem) . 

Finally, step 4 of the algorithm ensures that  a seed is 
created. Assuming that  the original rule is defining 
the start category, the query corresponding to the 
generation of the s "John buys Mary a book" leads 
to the following seed: 

magic_s (P0 ,P, finite ,buys (john, a (book) ,mary) ). 

The seed constitutes a representation of the initial 
bindings provided by the query that is used by the 
magic predicates to derive guards. Note that the 
creation of the seed can be delayed until run-time, 
i.e., the grammar does not need to be recompiled for 
every possible query. 

2.2 Example 

Magic compilation is illustrated on the basis of the 
simple logic grammar extract in figure 1. This gram- 
mar has been optimized automatically for generation 
(Minnen et al., 1996): The right-hand sides of the 
rules are reordered such that  a simple left-to-right 
evaluation order constitutes the optimal evaluation 
order. With this grammar a simple top-down gen- 
eration strategy does not terminate as a result of 
the head recursion in rule 3. It is necessary to use 

248 



(1) sentence(P0,P,decl(SSem)):- 
s(P0,P,finite,SSem). 

(2) s(P0,P,VForm,SSem):- 
vp(P1,P,VForm,[CSem],SSem). 
np(P0,PI,CSem), 

(3) vp(P0,P,VForm,Args,SSem):- 
vp(PO,Pl,VForm,[CSemIArgs],SSem), 
np(Pl,P,CSem). 

(4) vp(PO,P,VForm,Args,SSem):- 
v(PO,P,VForm,Args,SSem). 

(5) np(P0,P,NPSem) :- 
pn (P0, P, NPSem) 

(6) np(P0,P,NPSem) :- 
det (P0 ,PI ,NSem, NPSem), 
n(Pl ,P, NSem). 

(7) det ( [alP], P,NSem, a (NSem)). 
(8) v( [buyslP] ,P, finite, [I ,D,S] ,buys (S ,D, I) ). 
(9) pn([mary[P] ,P,mary) 
(10)n ( [bookIP] ,P,book). 

Figure 1: Simple head-recursive grammar. 

memoization extended with an abstraction function 
and a subsumption check. Strict bottom-up gener- 
ation is not attractive either as it is extremely in- 
efficient: One is forced to generate all possible nat- 
ural language expressions licensed b y  the grammar 
and subsequently check them against the start  cate- 
gory. It is possible to make the process more efficient 
through excluding specific lexical entries with a se- 
mantic filter. The use of such a semantic filter in 
bottom-up evaluation requires the grammar to obey 
the semantic monotonicity constraint in order to en- 
sure completeness(Shieber, 1988) (see below). 

The 'magic-compiled grammar '  in figure 2 is the 
result of applying the algorithm in the previous sec- 
tion to the head-recursive example grammar and 
subsequently performing two optimizations (Beeri 
and Ramakrishnan, 1991): All (calls to) magic pred- 
icates corresponding to lexical entries are removed. 
Furthermore, data-flow analysis is used to fine-tune 
the magic predicates for the specific processing task 
at hand, i.e., generation3 Given a user-specified 
abstract query, i.e., a specification of the intended 
input (Beeri and Ramakrishnan, 1991) those argu- 
ments which are not bound and which therefore 
serve no filtering purpose are removed. The modi- 
fied versions of the original rules in the grammar are 
adapted accordingly. The effect of taking data-flow 
into account can be observed by comparing the rules 
for mag±c_vp and mag±c_np in the previous section 
with rule 12 and 14 in figure 2, respectively. 

Figure 3 shows the results from generation of the 
s e n t e n c e  "John buys Mary a book". In the case of 
this example the seed looks as follows: 

magic_sentence (decl (buys (john, a (book) ,mary) ) ). 

The ]acts, i.e., passive edges/items, in figure 3 re- 
sulted from semi-naive bottom-up evaluation (Ra- 

IFor expository reasons some data-flow information 
that does restrict processing is not taken into account. 
E.g., the fact that the vp literal in rule 2 is always 
called with a one-element list is ignored here, but see 
section 3.1. 

makrishnan et al., 1992) which constitutes a dy- 
namic bottom-up evaluation, where repeated deriva- 
tion of facts from the same earlier derived facts (as in 
naive evaluation; Bancilhon, 1985) is blocked. (Ac- 
tive edges are not memoized.) The figure 2 consist of 
two tree structures (connected through dotted lines) 
of which the left one corresponds to the filtering 
part  of the derivation. The filtering tree is reversed 
and derives magic facts starting from the seed in a 
bottom-up fashion. The tree on the right is the proof 
tree for the example sentence which is built up as a 
result of unifying in the derived magic facts when 
applying a particular rule. E.g., in order to derive 
fact 13, magic fact 2 is unified with the magic literal 
in the modified version of rule 2 (in addition to the 
facts 12 and 10). This, however, is not represented 
in order to keep the figure clear. Dotted lines are 
used to represent when 'normal' facts are combined 
with magic facts to derive new magic facts. 

As can be reconstructed from the numbering of 
the facts in figure 3 the resulting processing behav- 
ior is identical to the behavior that  would result 
from Earley generation as in Gerdemann (1991) ex- 
cept that  the different filtering steps are performed 
in a bottom-up fashion. In order to obtain a gen- 
erator similar to the bottom-up generator as de- 
scribed in Shieber (1988) the compilation process 
can be modified such that  only lexical entries are 
extended with magic literals. Just  like in case of 
Shieber's bot tom-up generator, bottom-up evalua- 
tion of magic-compiled grammars produced with this 
Magic variant is only guaranteed to be complete in 
case the original grammar obeys the semantic mono- 
tonicity constraint. 

~The numbering of the facts corresponds to the order 
in which they are derived. A number of lexical entries 
have been added to the example grammar. The facts cor- 
responding to lexical entries are ignored. For expository 
reasons the phonology and semantics of lexical entries 
(except for vs) are abbreviated by the first letter. Fur- 
thermore the fact corresponding to the vp "buys Mary a 
book John" is not included. 
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(1) sentence (P0 ,P ,decl (SSem)) : - 
magic_sentence (decl (SSem)), 
s (P0, P, finite, SSem). 

(2) s(P0,P,VForm,SSem) :- 
magic_s (VForm, SSem), 
vp(P1 ,P,VForm, [CSem] ,SSem), 
np (P0 ,PI, CSem). 

(3) vp(P0,P,VForm,hrgs,SSem) :- 
magic_vp (VForm, SSem), 
vp(P0,PI ,VForm, [CSem]hrgs] ,SSem), 
np (Pl, P, CSem). 

(4) vp(PO,P,VForm,Args,SSem) :- 
magic_vp (VForm, SSem), 
v (P0,P,VForm, Args, SSem) . 

(5) np(P0,P,NPSem) :- 
magic_np (NPSem) , 
pn (P0, P, NPSem). 

(6) np(P0,P,NPSem) :- 
magic_np (NPSem), 
det (P0 ,PI ,NSem,NPSem), 
n (PI,P,NSem). 

(7) det ( [aiP] , P, NSem, a (NSem)) . 
(8) v ([buyslP] ,P,finite, [I,D,S] ,buys (S,D,I)). 
(9) pn([mary[P] ,P,mary) 
(i0) n( [booklP] ,P,book). 
(I I) magic_s (finite, SSem) : - 

magic_sentence (decl (SSem)) . 
(12) magic_vp(VForm,SSem) :- 

magic_s (VForm, SSem) . 
(13) magic_vp(VForm,SSem) :- 

magic_vp (VForm, SSem). 
(14) magic_np(CSem) :- 

magic_s (VForm, SSem) , 
vp(Pl ,P,VForm, [CSem] ,SSem). 

(15) magic_np(CSem) :- 
magic_vp (VForm, SSem) , 
vp (P0,Pl,VForm, [CSemlArgs] , SSem) . 

Figure 2: Magic compiled version 1 of the grammar in figure 1. 

'FILTERING TREE' 'PROOF TREE' 

11 magic.rip(j) 
\ • 
" ~  " " . • • • • • 

8.magic-n~" " • li.sentence(~,buys,m,a,b[A],A,decl(buys(j,a(b),m))). 

~-m~'magic-vp(fir*it~,buys(j,a(b),mi)." " " • , 13.s(~,buys,m,a,blA],A,finite,buys(j,a(b),m)). 

\ 3.maglc-*vp(finite,buys (j,a(b),ml)."" " ~ ] , A , f i n i t e , [ j l , b u y s ( j , a ( b ) , m ) ) .  

2 rn gic (finite,b~s (j,a(b),rn)).. / / "  • "~.vi(,buy.s:m,Ai,A tinct , [ . ~ . ~ a ( b ) , m ) ) .  

I 12 np([jlA ] Aj) 4 vp([buyslA ] A finlte,[m,a(b) 3] buys(j a(b) m)) 6 np([mIA],A m) 9 np([a blA ] A a(b)) 

1.magic-sentence(decl(buys(j,a(b),m))). 

Figure 3: 'Connecting up' facts resulting from semi-naive generation of the sentence "John buys Mary a 
book" with the magic-compiled grammar from figure 2. 
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3 Filter Optimization through 
Program Transformation 

As a result of characterizing filtering by a definite 
clause representation Magic brings filtering inside of 
the logic underlying the grammar. This allows it to 
be optimized in a processor independent and logi- 
cally clean fashion. I discuss two possible filter opti- 
mizations based on a program transformation tech- 
nique called unfolding (Tamaki and Sato, 1984) also 
referred to as partial execution, e.g., in Pereira and 
Shieber (1987). 

3.1 Subsumption Checking 

Just like top-down evaluation of the original gram- 
mar bottom-up evaluation of its magic compiled ver- 
sion falls prey to non-termination in the face of head 
recursion. It is however possible to eliminate the 
subsumption check through fine-tuning the magic 
predicates derived for a particular grammar in an 
off-line fashion. In order to illustrate how the magic 
predicates can be adapted such that the subsump- 
tion check can be eliminated it is necessary to take a 
closer look at the relation between the magic pred- 
icates and the facts they derive. In figure 4 the re- 
lation between the magic predicates for the example 
grammar is represented by an unfolding tree (Pet- 
torossi and Proietti, 1994). This, however, is not an 
ordinary unfolding tree as it is constructed on the 
basis of an abstract seed, i.e., a seed adorned with 
a specification of which arguments are to be con- 
sidered bound. Note that an abstract seed can be 
derived from the user-specified abstract query. Only 
the magic part of the abstract unfolding tree is rep- 
resented. 

ABSTRACT SEED 

L 
. . .4 -  mag ie_sen tenee (SSem) , . . .  

...4-- magic_s  f in i t e ,SSem) , . . .  

- .4 -  magic_vp (VForm,SSem),.. .  

...+-- m a g i c _ n p ( C S e m ) , . . .  

Figure 4: Abstract unfolding tree representing the 
relation between the magic predicates in the compiled 
grammar. 

The abstract unfolding tree in figure 4 clearly 
shows why there exists the need for subsumption 
checking: Rule 13 in figure 2 produces infinitely 

many magic_vp facts. This 'cyclic' magic rule is de- 
rived from the head-recursive vp rule in the example 
grammar. There is however no reason to keep this 
rule in the magic-compiled grammar. It influences 
neither the efficiency of processing with the gram- 
mar nor the completeness of the evaluation process. 

3.1.1 Off-line Abstraction 
Finding these types of cycles in the magic part of 
the compiled grammar is in general undecidable. It 
is possible though to 'trim' the magic predicates by 
applying an abstraction function. As a result of the 
explicit representation of filtering we do not need to 
postpone abstraction until run-time, but can trim 
the magic predicates off-line. One can consider this 
as bringing abstraction into the logic as the definite 
clause representation of filtering is weakened such 
that only a mild form of connectedness results which 
does not affect completeness (Shieber, 1985). Con- 
sider the following magic rule: 

magic_vp(VForm, [CgemlArgs] , SSem) :- 
magic_vp (VForm, Args, SSem) . 

This is the rule that is derived from the head- 
recursive vp rule when the partially specified sub- 
categorization list is considered as filtering informa- 
tion (cf., fn. 1). The rule builds up infinitely large 
subcategorization lists of which eventually only one 
is to be matched against the subcategorization list 
of, e.g., the lexical entry for "buys". Though this 
rule is not cyclic, it becomes cyclic upon off-line ab- 
straction: 

magic_vp (VForm, [CSem I_3 , SSem) : - 
magic_vp (VForm, [CSem2l_] , SSem) . 

Through trimming this magic rule, e.g., given a 
bounded term depth (Sato and Tamaki, 1984) or a 
restrictor (Shieber, 1985), constructing an abstract 
unfolding tree reveals the fact that a cycle results 
from the magic rule. This information can then be 
used to discard the culprit. 

3.1.2 Indexing 
Removing the direct or indirect cycles from the 
magic part of the compiled grammar does eliminate 
the necessity of subsumption checking in many cases. 
However, consider the magic rules 14 and 15 in fig- 
ure 2. Rule 15 is more general than rule 14. Without 
subsumption checking this leads to spurious ambigu- 
ity: Both rules produce a magic fact with which a 
subject np can be built. A possible solution to this 
problem is to couple magic rules with the modified 
version of the original grammar rule that instigated 
it. To accomplish this I propose a technique that 
can be considered the off-line variant of an index- 
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ing technique described in Gerdemann (1991). 3 The 
indexing technique is illustrated on the basis of the 
running example: Rule 14 in figure 1 is coupled to 
the modified version of the original s rule that insti- 
gated it, i.e., rule 2. Both rules receive an index: 

s (PO, P, VForm, SSem) : - 
magic _s (P0, P, VForm, SSem), 
vp(P1 ,P,VForm, [CSem], SSem), 
np (P0,P1 ,CSem, index_l). 

magic_rip (CSem, index_l)  : - 
magi c_s (P0, P, VForm, SSem), 
vp (P1, P, VForm, [CSem], SSem). 

The modified versions of the rules defining nps are 
adapted such that they percolate up the index of 
the guarding magic fact that licensed its application. 
This is illustrated on the basis of the adapted version 
of rule 14: 

np (P0, P, NPSem, INDEX) : - 
magic_rip (NPSem, INDEX), 
pn (P0, P, NPSem). 

As is illustrated in section 3.3 this allows the avoid- 
ance of spurious ambiguities in the absence of sub- 
sumption check in case of the example grammar. 

3.2 R e d u n d a n t  F i l t e r i n g  Steps 

Unfolding can also be used to collapse filtering steps. 
As becomes apparent upon closer investigation of the 
abstract unfolding tree in figure 4 the magic predi- 
cates magic_sentence, magic_s and magic_vp pro- 
vide virtually identical variable bindings to guard 
bottom-up application of the modified versions of 
the original grammar rules. Unfolding can be used to 
reduce the number of magic facts that are produced 
during processing. E.g., in figure 2 the magic_s rule: 

magic_s (finite, SSem) : - 

magic_sentence (decl (SSem)) . 

can be eliminated by unfolding the magic_s literal 
in the modified s rule: 

s(PO,P,VFOP~,SSem):- 
magic_s(VFORM,SSem), 
vp(P1,P,VF01~,,[CSem],SSem), 
np(P0,P1,CSem). 

This results in the following new rule which uses the 
seed for filtering directly without the need for an 
intermediate filtering step: 

3This technique resembles an extension of Magic 
called Counting (Beeri and Ramakrishnan, 1991). How- 
ever, Counting is more refined as it allows to distinguish 
between different levels of recursion and serves entirely 
different purposes. 

s(P0,P,finite,SSem):- 
magic_sentence(decl(SSem)), 
vp(P1,P,finite,[CSem],SSem), 
np(P0,P1,CSem). 

Note that the unfolding of the magic_s literal 
leads to the instantiation of the argument VFORM 
to f i n i t e .  As a result of the fact that there are 
no other magic_s literals in the remainder of the 
magic-compiled grammar the magic_s rule can be 
discarded. 

This filter optimization is reminiscent of comput- 
ing the deterministic closure over the magic part of 
a compiled grammar (DSrre, 1993) at compile time. 
Performing this optimization throughout the magic 
part of the grammar in figure 2 not only leads to a 
more succinct grammar, but brings about a different 
processing behavior. Generation with the resulting 
grammar can be compared best with head corner 
generation (Shieber et al., 1990) (see next section). 

3.3 E x a m p l e  

After cycle removal, incorporating relevant indexing 
and the collapsing of redundant magic predicates the 
magic-compiled grammar from figure 2 looks as dis- 
played in figure 5. Figure 6 shows the chart resulting 
from generation of the sentence "John buys Mary a 
book" .4 The seed is identical to the one used for the 
example in the previous section. The facts in the 
chart resulted from not-so-naive bottom-up evalu- 
ation: semi-naive evaluation without subsumption 
checking (Ramakrishnan et al., 1992). The result- 
ing processing behavior is similar to the behavior 
that would result from head corner generation ex- 
cept that the different filtering steps are performed 
in a bottom-up fashion. The head corner approach 
jumps top-down from pivot to pivot in order to sat- 
isfy its assumptions concerning the flow of seman- 
tic information, i.e., semantic chaining, and subse- 
quently generates starting from the semantic head 
in a bottom-up fashion. In the example, the seed is 
used without any delay to apply the base case of the 
vp-procedure, thereby jumping over all intermediate 
chain and non-chain rules. In this respect the initial 
reordering of rule 2 which led to rule 2 in the final 
grammar in figure 5 is crucial (see section 4). 

4 D e p e n d e n c y  C o n s t r a i n t  o n  

G r a m m a r  

To which extent it is useful to collapse magic predi- 
cates using unfolding depends on whether the gram- 
mar has been optimized through reordering the 

4In addition to the conventions already described re- 
garding figure 3, indices are abbreviated. 
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(i) sentence(P0,P,decl(SSem)):- 
magic_sentence(dec1(SSem)), 
s(P0,P,finite,SSem). 

(2) s(P0,P,finite,SSem):- 
magic_sentence(decl(SSem)), 
vp(Pl,P,finite,[CSem],SSem), 
np(P0,PI,CSem, index_l). 

(3) vp(P0,P,finite,Args,SSem):- 
magic_sentence(decl(SSem)), 
vp(P0,Pl,finite,[CSem)Args],SSem), 
np(Pi,P,CSem,index_2), 

(4) vp(P0,P,finite,Args,SSem):- 
magic_sentence(decl(SSem)), 
v(P0,P,finite,Args,SSem). 

(5) np(P0,P,NPSem, INDEX):- 
magic_np(NPSem, INDEX), 
pn(P0,P,NPSem). 

(6) np(P0,P,NPSem,INDEX) :- 
magic_up (NPSem, INDEX), 
det (P0,PI ,NSem,NPSem), 
n(Pl ,P,NSem). 

(7) det([aIP],P,NSem,a(NSem)). 
(8) v ( [ b u y s l P ] , P , f i n i t e ,  [I,D,S] , b u y s ( S , D , I ) ) .  
(9) pn ( [marylP], P ,mary) 
(10) n([booklP] ,P,book). 
(14) magic_np(CSem, index_l) :- 

magic_sentence (decl (SSem)), 
vp (PI,P, finite, [CSem], SSem). 

(15) magic_np (CSem, index_2) : - 
magic_sentence (decl (SSem)), 
vp (P0,PI, finite, [CSemlArgs], SSem). 

11.magic_np(j,i_l). 

° 

6.magic.np(a(b i ,i..2). " 

_2) 

Figure 5: Magic compiled version 2 of the grammar in figure 1. 

lS.sentence(~,buys,m,a,bIA],A,decl(buys(j,a(b),m))). 

I 
. . . .  13.s([j,buys,m,a,blA],A,finite,buys(j,a(b),m)). 

• . . , . . . " , . , . , , , 

• ~,A,finite,[j],buys(j,a(b),m)). 

ll.nP(~mA],Aj,iA). 2.vp([buyslA],A,finite,[m,a(b)j],buys(j,a(b),m)). 4.np([mlA],A,m,i-2). 7.np([a,bIA],A,a(b),i-2 ). 

1.magic_sentence(decl(buys(j,a(b),m))). 

Figure 6: 'Connecting up' facts resulting from not-so-naive generation of the sentence "John buys Mary a 
book" with the magic-compiled grammar from figure 5. 

right-hand sides of the rules in the grammar as dis- 
cussed in section 3.3. If the s rule in the running 
example is not optimized, the resulting processing 
behavior would not have fallen out so nicely: In this 
case it leads either to an intermediate filtering step 
for the non-chaining s e n t e n c e  rule or to the addi- 
tion of the literal corresponding to the subject np to 
all chain and non-chain rules along the path to the 
semantic head. 

Even when cycles are removed from the magic part  
of a compiled grammar and indexing is used to avoid 
spurious ambiguities as discussed in the previous sec- 
tion, subsumption checking can not always be elim- 
inated. The grammar must be finitely ambiguous, 
i.e., fulfill the off-line parsability constraint (Shieber, 
1989). Furthermore, the grammar is required to 
obey what I refer to as the dependency constraint: 
When a particular right-hand side literal can not be 

evaluated deterministically, the results of its evalu- 
ation must uniquely determine the remainder of the 
right-hand side of the rule in which it appears. Fig- 
ure 7 gives a schematic example of a grammar that  
does not obey the dependency constraint. Given 

(1) cat_l( . . . ) : -  
magic_cat_l(Filter), 
cat_2(Filter,Dependency .... ), 
cat_3(Dependency). 

(2) magic_cat_3(Filter):- 
magic_cat_l(Filter), 
cat_2(Filter,Dependency,...). 

(3) cat_2(property_l,property_2 .... ). 
(4) cat_2(property_l,property_2 .... ). 

Figure 7: Abstract example grammar not obeying the 
dependency constraint. 
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a derived fact or seed magic_cat_l(property_l) 
bottom-up evaluation of the abstract grammar in 
figure 7 leads to spurious ambiguity. There are two 
possible solutions for cat_2 as a result of the fact 
that the filtering resulting from the magic literal in 
rule 1 is too unspecific. This is not problematic as 
long as this nondeterminism will eventually disap- 
pear, e.g., by combining these solutions with the so- 
lutions to cat_3. The problem arises as a result of 
the fact that these solutions lead to identical filters 
for the evaluation of the cat_~ literal, i.e., the solu- 
tions to cat_2 do not uniquely determine cat_3. 

Also with respect to the dependency constraint an 
optimization of the rules in the grammar is impor- 
tant. Through reordering the right-hand sides of the 
rules in the grammar the amount of nondeterminism 
can be drastically reduced as shown in Minnen et al. 
(1996). This way of following the intended semantic 
dependencies the dependency constraint is satisfied 
automatically for a large class of grammars. 

5 C o n c l u d i n g  R e m a r k s  

Magic evaluation constitutes an interesting combi- 
nation of the advantages of top-down and bottom- 
up evaluation. It allows bottom-up filtering that 
achieves a goai-directedness which corresponds to 
dynamic top-down evaluation with abstraction and 
subsumption checking. For a large class of grammars 
in effect identical operations can be performed off- 
line thereby allowing for more efficient processing. 
Furthermore, it enables a reduction of the number 
of edges that need to be stored through unfolding 
magic predicates. 

6 A c k n o w l e d g m e n t s  

The presented research was sponsored by Teilprojekt 
B4 "From Constraints to Rules: Efficient Compila- 
tion of HPSG Grammars" of the Sonderforschungs- 
bereich 340 of the Deutsche Forschungsgemeinschaft. 
The author wishes to thank Dale Gerdemann, Mark 
Johnson, Thilo G6tz and the anonymous reviewers 
for valuable comments and discussion. Of course, 
the author is responsible for all remaining errors. 

R e f e r e n c e s  

Francois Bancilhon. 1985. Naive Evaluation of Re- 
cursively Defined Relations. In Brodie and My- 
lopoulos, editors, On Knowledge Base Manage- 
ment Systems - Integrating Database and AI Sys- 
tems. Springer-Verlag. 

Catriel Beeri and Raghu Ramakrishnan. 1991. On 
the Power of Magic. Journal of Logic Program- 
ming 10. 

Jochen DSrre. 1993 .  Generalizing Earley De- 
duction for Constraint-based Grammars. DSrre 
and Dorna, editors, Computational Aspects 
of Constraint-Based Linguistic Description I, 
DYANA-2, Deliverable R1.2.A. 

Dale Gerdemann. 1991. Parsing and Generation of 
Unification Grammars. Ph.D. thesis, University 
of Illinois, USA. 

Mark Johnson. forthcoming. Constraint-based Nat- 
ural Language Parsing. Brown University, Rich- 
mond, USA. Draft of 6 August 1995. 

Guido Minnen, Dale Gerdemann, and Erhard Hin- 
richs. 1996. Direct Automated Inversion of Logic 
Grammars. New Generation Computing 14. 

Fernando Pereira and Stuart Shieber. 1987. Pro- 
log and Natui'al Language Analysis. CSLI Lecture 
Notes, No. 10. Center for the Study of Language 
and Information, Chicago, USA. 

Alberto Pettorossi and Maurizio Proietti. 1994. 
Transformations of Logic Programs: Foundations 
and Techniques. Journal of Logic Programming 
19/2o. 

Raghu Ramakrishnan, Divesh Srivastava, and S. Su- 
darshan. 1992. Efficient Bottom-up Evaluation of 
Logic Programs. In Vandewalle, editor, The State 
of the Art in Computer Systems and Software En- 
gineering. Kluwer Academic Publishers. 

Taisuke Sato and Hisao Tamaki. 1984. Enumeration 
of Success Patterns in Logic Programs. Theoreti- 
cal Computer Sience 34. 

Stuart Shieber, Gertjan van Noord, Robert Moore, 
and Fernando Pereira. 1990. Semantic Head- 
driven Generation. Computational Linguistics 16. 

Stuart Shieber. 1985. Using Restriction to Extend 
Parsing Algorithms for Complex Feature-based 
Formalisms. In Proceedings of the 23rd Annual 
Meeting Association for Computational Linguis- 
tics, Chicago, USA. 

Stuart Shieber. 1988. A Uniform Architecture 
for Parsing and Generation. In Proceedings of 
the 12th Conference on Computational Linguis- 
tics, Budapest, Hungary. 

Stuart Shieber. 1989. Parsing and Type Inference 
for Natural and Computer Languages. Ph.D. the- 
sis, Stanford University, USA. 

Hisao Tamaki and Taisuke Sato. 1984. Unfold/Fold 
Transformation of Logic Programs. In Proceed- 
ings of the 2nd International Conference on Logic 
Programming, Uppsala, Sweden. 

254  


