
An Efficient Compiler for Weighted Rewrite Rules

M e h r y a r M o h r i
A T & T Research

600 M o u n t a i n Avenue

M u r r a y Hill, 07974 NJ
mohri@research, att. com

R i c h a r d S p r o a t
Bell Labora tor ies

700 M o u n t a i n Avenue

M u r r a y Hill, 07974 NJ
rws@bell-labs, com

A b s t r a c t

Context-dependent rewrite rules are used
in many areas of natural language and
speech processing. Work in computa-
tional phonology has demonstrated that,
given certain conditions, such rewrite
rules can be represented as finite-state
transducers (FSTs). We describe a new
algorithm for compiling rewrite rules into
FSTs. We show the algorithm to be sim-
pler and more efficient than existing al-
gorithms. Further, many of our appli-
cations demand the ability to compile
weighted rules into weighted FSTs, trans-
ducers generalized by providing transi-
tions with weights. We have extended
the algorithm to allow for this.

1. M o t i v a t i o n

Rewrite rules are used in many areas of natural
language and speech processing, including syntax,
morphology, and phonology 1. In interesting ap-
plications, the number of rules can be very large.
It is then crucial to give a representation of these
rules that leads to efficient programs.

Finite-state transducers provide just such a
compact representation (Mohri, 1994). They are
used in various areas of natural language and
speech processing because their increased compu-
tational power enables one to build very large ma-
chines to model interestingly complex linguistic
phenomena. They also allow algebraic operations
such as union, composition, and projection which
are very useful in practice (Berstel, 1979; Eilen-
berg, 1974 1976). And, as originally shown by
Johnson (1972), rewrite rules can be modeled as

1 Parallel rewrite rules also have interesting applica-
tions in biology. In addition to their formal language
theory interest, systems such as those of Aristid Lin-
denmayer provide rich mathematical models for bio-
logical development (Rozenberg and Sa]omaa, 1980).

231

finite-state transducers, under the condition that
no rule be allowed to apply any more than a finite
number of times to its own output.

Kaplan and Kay (1994), or equivalently Kart-
tunen (1995), provide an algorithm for compiling
rewrite rules into finite-state transducers, under
the condition that they do not rewrite their non-
contextual part 2. We here present a new algorithm
for compiling such rewrite rules which is both sim-
pler to understand and implement, and computa-
tionally more efficient. Clarity is important since,
as pointed out by Kaplan and Kay (1994), the rep-
resentation of rewrite rules by finite-state trans-
ducers involves many subtleties. Time and space
efficiency of the compilation are also crucial. Us-
ing naive algorithms can be very time consuming
and lead to very large machines (Liberman, 1994).

In some applications such as those related
to speech processing, one needs to use weighted
rewrite rules, namely rewrite rules to which
weights are associated. These weights are then
used at the final stage of applications to output the
most probable analysis. Weighted rewrite rules
can be compiled into weighted finite-state trans-
ducers, namely transducers generalized by pro-
viding transitions with a weighted output, under
the same context condition. These transducers
are very useful in speech processing (Pereira et
al., 1994). We briefly describe how we have aug-
mented our algorithm to handle the compilation
of weighted rules into weighted finite-state trans-
ducers.

In order to set the stage for our own contribu-
tion, we start by reviewing salient aspects of the
Kaplan and Kay algorithm.

2The genera] question of the decidability of the
halting problem even for one-rule semi-Thue systems
is still open. Robert McNaughton (1994) has recently
made a positive conjecture about the class of the rules
without self overlap.

Prologue o

I d(Obligatory(¢ , <i , >))

Id(Rightcontezt(p, <, >))

Replace

Id(Leftcontezt(A, <, >))

Prologue - i

= Id(Z~< 0 <i ¢°< > B~,< 0) o

= Id((0 > p>0Z 0- > > p>0 0- > o

= [Id(~*<,>, o)Opt(Id(<a)¢°<c>c × ¢°c>cId(>a))]* o

-" I d ((~ 0 A < 0 - ~ 0 < < Z~0 f] ~ 0 A < 0 - ~ 0 < < ~ 0) >) o

Figure 1: Compilation of obligatory left-to-right rules, using the KK algorithm.

(1)

2. The KK Algorithm

The rewrite rules we consider here have the fol-
lowing general form:

¢ --, p (2)

Such rules can be interpreted in the following way:
¢ is to be replaced by ¢ whenever it is preceded
by A and followed by p. Thus, A and p represent
the left and right contexts of application of the
rules. In general, ¢, ¢, A and p are all regular
expressions over the alphabet of the rules. Several
types of rules can be considered depending on their
being obligatory or optional, and on their direction
of application, from left to right, right to left or
simultaneous application.

Consider an obligatory rewrite rule of the form
¢ --+ ¢/A p, which we will assume applies left to
right across the input string. Compilation of this
rule in the algorithm of Kaplan and Kay (1994)
(KK for short) involves composing together six
transducers, see Figure 1.

We use the notations of KK. In particular,
denotes the alphabet, < denotes the set of context
labeled brackets {<a, <i, <c}, > the set {>a, >i,
>c}, and 0 an additional character representing
deleted material. Subscript symbols of an expres-
sion are symbols which are allowed to freely ap-
pear anywhere in the strings represented by that
expression. Given a regular expression r, Id(r) is
the identity transducer obtained from an automa-
ton A representing r by adding output labels to A
identical to its input labels.

The first transducer, Prologue, freely intro-
duces labeled brackets from the set {<a, <i,
<~, >a, >i, >~} which are used by left and
right context transducers. The last transducer,
Prologue - i , erases all such brackets.

In such a short space, we can of course not
hope to do justice to the KK algorithm, and the
reader who is not familiar with it is urged to con-
sult their paper. However, one point that we do
need to stress is the following: while the con-
struction of Prologue, Prologue - i and Replace

232

is fairly direct, construction of the other transduc-
ers is more complex, with each being derived via
the application of several levels of regular oper-
ations from the original expressions in the rules.
This clearly appears from the explicit expressions
we have indicated for the transducers. The con-
struction of the three other transducers involves
many operations including: two intersections of
automata, two distinct subtractions, and nine
complementations. Each subtraction involves an
intersection and a complementation algorithm 3.
So, in the whole, four intersections and eleven
complementations need to be performed.

Intersection and complementation are classi-
cal au tomata algorithms (Aho et al., 1974; Aho
et al., 1986). The complexity of intersection is
quadratic. But the classical complementation al-
gorithm requires the input automaton to be de-
terministic. Thus, each of these 11 operations re-
quires first the determinization of the input. Such
operations can be very costly in the case of the
automata involved in the KK algorithm 4.

In the following section we briefly describe a
new algorithm for compiling rewrite rules. For rea-
sons of space, we concentrate here on the com-
pilation of left-to-right obligatory rewrite rules.
However, our methods extend straightforwardly to
other modes of application (optional, right-to-left,
simultaneous, batch), or kinds of rules (two-level
rules) discussed by Kaplan and Kay (1994).

3A subtraction can of course also be performed di-
rectly by combining the two steps of intersection and
complementation, but the corresponding algorithm
has exactly the same cost as the total cost of the two
operations performed consecutively.

4 One could hope to find a more efficient way of de-
termining the complement of an automaton that would
not require determinization. However, this problem
is PSPACE-complete. Indeed, the regular expression
non-universality problem is a subproblem of comple-
mentation known to be PSPACE-complete (Garey and
Johnson, 1979, page 174), (Stockmeyer and Meyer,
1973). This problem also known as the emptiness
of complement problem has been extensively studied
(Aho et al., 1974, page 410-419).

3. N e w A l g o r i t h m

3.1. O v e r v i e w

In contrast to the KK algorithm which introduces
"brackets everywhere only to restrict their occur-
rence subsequently, our algorithm introduces con-
text symbols just when and where they are needed.
Furthermore, the number of intermediate trans-
ducers necessary in the construction of the rules
is smaller than in the KK algorithm, and each of
the transducers can be constructed more directly
and efficiently from the primitive expressions of
the rule, ~, ~, A, p.

A transducer corresponding to the left-to-
right obligatory rule ¢ --* ¢/A p can be ob-
tained by composition of five transducers:

r o f o replace o 11 o 12 (3)

1. The transducer r introduces in a string a
marker > before every instance of p. For rea-
sons that will become clear we will notate this
as Z* p --~ E* > p.

2. The transducer f introduces markers <1 and
<2 before each instance of ~ that is followed
by >: u u {>})'{<1, <2
}5 >. In other words, this t ransducer /harks
just those ~b that occur before p.

3. The replacement transducer replace replaces
~b with ~ in the context <1 ~b >, simultane-
ously deleting > in all positions (Figure 2).
Since >, <1, and <2 need to be ignored when
determining an occurrence of ~b, there are
loops over the transitions >: c, <1: ¢, <~: c
at all states of ¢, or equivalently of the states
of the cross product transducer ¢ × ~.

4. The transducer 11 admits only those strings
in which occurrences of <1 are preceded
by A and deletes < l at such occurrences:

5. The transducer 12 admits only those strings
in which occurrences of <2 are not preceded
by A and deletes <~ at such occurrences:
2*X <2-~ ~*~.

Clearly the composition of these transducers leads
to the desired result. The construction of the
transducer replace is straightforward. In the fol-
lowing, we show that the construction of the other
four transducers is also very simple, and that it
only requires the determinization of 3 automata
and additional work linear (time and space) in the
size of the determinized automata.

3.2. M a r k e r s

M a r k e r s o f T Y P E 1

Let us start by considering the problem of con-
structing what we shall call a T Y P E I transducer,

2 3 3

Figure 2: Replacement transducer replace in the
obligatory left-to-right case.

which inserts a marker after all prefixes of a string
that match a particular regular expression. Given
a regular expression fl defined on the alphabet E,
one can construct, using classical algorithms (Aho
et al., 1986), a deterministic automaton a repre-
senting E*fl. As with the KK algorithm, one can
obtain from a a transducer X = I d (a) simply by
assigning to each transition the same output label
as the input label. We can easily transform X into
a new transducer r such that it inserts an arbi-
trary marker ~ after each occurrence of a pattern
described by ~. To do so, we make final the non-
final states of X and for any final state q of X we
create a new state q~, a copy of q. Thus, q' has
the same transitions as q, and qP is a final state.
We then make q non-final, remove the transitions
leaving q and add a t ransi t ion from q to q' with
input label the empty word c, and output ~ . Fig-
ures 3 and 4 illustrate the transformation of X into
T .

a:a cic

Figure 3: Final state q of X with entering and
leaving transitions.

ata ctc

Figure 4: States and transitions of r obtained by
modifications of those of X.

P r o p o s i t i o n 1 Let ~ be a deterministic automa-
ton representing E*/3, then the transducer r ob-
tained as described above is a transducer post-
marking occurrences of fl in a string ofF* by # .

Proof. The proof is based on the observa-
tion tha t a deterministic au tomaton representing
E*/~ is necessarily complete 5. Notice that non-
deterministic au t om a t a representing ~*j3 are not
necessarily complete. Let q be a state of a and let
u E ~* be a string reaching q6. Let v be a string
described by the regular expression ft. Then, for
any a E ~, uav is in ~*~. Hence, uav is accepted
by the au tomaton a , and, since ~ is deterministic,
there exists a transit ion labeled with a leaving q.
Thus, one can read any string u E E* using the
au tomaton a . Since by definition of a , the state
reached when reading a prefix u ~ of u is final iff
u ~ E ~*~, by construction, the transducer r in-
serts the symbol # after the prefix u ~ iff u ~ ends
with a pat tern of ft. This ends the proof of the
proposition, t3

M a r k e r s o f TYPE 2

In some cases, one wishes to check tha t any
occurrence of # in a string s is preceded (or fol-
lowed) by an occurrence of a pa t tern of 8. We
shall say tha t the corresponding transducers are
of TYPE 2. They play the role of a filter. Here
again, they can be defined from a deterministic au-
tomaton representing E*B. Figure 5 illustrates the
modifications to make from the au tomaton of fig-
ure 3. The symbols # should only appear at final
states and must be erased. The loop # : e added
at final states of Id(c~) is enough for that purpose.
All states of the transducer are then made final
since any string conforming to this restriction is
acceptable: cf. the transducer !1 for A above.

#:E

Figure 5: Filter transducer, TYPE 2.

5An automaton A is complete iff at any state q and
for any element a of the alphabet ~ there exists at least
one transition leaving q labeled with a. In the case of
deterministic automata, the transition is unique.

6We assume all states of a accessible. This is true
if a is obtained by determinization.

234

M a r k e r s o f TYPE 3

In other cases, one wishes to check the reverse
constraint, tha t is tha t occurrences of # in the
string s are not preceded (or followed) by any oc-
currence of a pat tern of ft. The t ransformat ion
then simply consists of adding a loop at each non-
final s tate of Id(a), and of making all states final.
Thus, a state such as that of figure 6 is trans-

a : a c:c

Figure 6: Non-final s tate q of a .

formed into tha t of figure 5. We shall say tha t the
corresponding transducer is of TYPE 3: cf. the
transducer 12 for ~.

The construction of these transducers (TYPE
1-3) can be generalized in various ways. In par-
ticular:

• One can add several alternative markers
{ # 1 , ' " , #k} after each occurrence of a pat-
tern of 8 in a string. The result is then an
au tomaton with transitions labeled with, for
instance, ~ 1 , ' " ", ~k after each pa t te rn of fl:
cf. transducer f for ¢ above.

• Instead of inserting a symbol, one can delete
a symbol which would be necessarily present
after each occurrence of a pa t tern of 8.

For any regular expression a , de-
fine M arker(a, type, deletions, insertions) as the
transducer of type type constructed as previously
described from a deterministic au tomaton repre-
senting a , insertions and deletions being, respec-
tively, the set of insertions and deletions the trans-
ducer makes.

P r o p o s i t i o n 2 For any regular expression
a, Marker(a , type, deletions, insertions) can be
constructed from a deterministic automaton rep-
resenting a in linear time and space with respect
to the size of this automaton.

Proof. We proved in the previous proposit ion tha t
the modifications do indeed lead to the desired
transducer for TYPE 1. The proof for other cases
is similar. Tha t the construction is linear in space
is clear since at most one additional transit ion and
state is created for final or non-final states 7. The
overall t ime complexity of the construction is lin-
ear, since the construction of ld(a) is linear in the

~For TYPE 2 and TYPE 3, n o state is added but only
a transition per final or non-final state.

r = [reverse(Marker(E*reverse(p), 1, {>},0))]

f = [reverse(Marker((~ U {>})*reverse(C> >), 1, {<1, <u},0))]

11 = [Marker(N*)L 2,0, {<1})]<~:<2

12 = [Marker($*A,3,@, {<2})]

Figure 7: Expressions of the r, f , ll, and 12 using Marker.

(4)
(5)
(6)
(7)

number of transitions of a and that other modifi-
cations consisting of adding new states and transi-
tions and making states final or not are also linear.
D

We just showed that Marker(a , type , de-
letions, insertions) can be constructed in a very
efficient way. Figure 7 gives the expressions of the
four transducers r, f , ll, and 12 using Marker.

Thus, these transducers can be constructed
very efficiently from deterministic automata repre-
senting s ~*reverse(p) , (~ O {>})* reverse(t> >),
and E*,~. The construction of r and f requires
two reverse operations. This is because these two
transducers insert material before p or ¢.

4. Extension to Weighted Rules

In many applications, in particular in areas re-
lated to speech, one wishes not only to give all
possible analyses of some input, but also to give
some measure of how likely each of the analyses is.
One can then generalize replacements by consid-
ering extended regular expressions, namely, using
the terminology of formal language theory, ratio-
nal power series (Berstel and Reutenauer, 1988;
Salomaa and Soittola, 1978).

The rational power series we consider here are
functions mapping ~* to ~ + U {oo) which can be
described by regular expressions over the alphabet
(T~+ U {co}) x ~. S = (4a)(2b)*(3b) is an example
of rational power series. It defines a function in
the following way: it associates a non-null num-
ber only with the strings recognized by the regu-
lar expression ab*b. This number is obtained by
adding the coefficients involved in the recognition
of the string. The value associated with abbb, for
instance, is (S, abbb) = 4 + 2 + 2 + 3 = 11.

In general, such extended regular expressions
can be redundant. Some strings can be matched

SAs in the KK algorithm we denote by ¢> the set
of the strings described by ¢ containing possibly oc-
currences of > at any position. In the same way, sub-
scripts such as >:> for a transducer r indicate that
loops by >:> are added at all states of r. We de-
note by reverse(a) the regular expression describing
exactly the reverse strings of a if a is a regular expres-
sion, or the reverse transducer of a if a is a transducer.

235

in different ways with distinct coefficients. The
value associated with those strings is then the min-
imum of all possible results. S' = (2a)(3b)(4b) +
(5a)(3b*) matches abb with the different weights
2 + 3 + 4 -- 9 and 5 + 3 + 3 = 11. The mini-
mum of the two is the value associated with abb:
(S', abb) = 9. Non-negative numbers in the defi-
nition of these power series are often interpreted
as the negative logarithm of probabilities. This
explains our choice of the operations: addition of
the weights along the string recognition and min,
since we are only interested in that result which
has the highest probability 9.

Rewrite rules can be generalized by letting ¢
be a rational power series. The result of the ap-
plication of a generalized rule to a string is then
a set of weighted strings which can be represented
by a weighted automaton. Consider for instance
the following rule, which states that an abstract
nasal, denoted N, is rewritten as m in the context
of a following labial:

Y ---* m /__[+lab ia l] (8)
z

Now suppose that this is only probabilistically
true, and that while ninety percent of the time
N does indeed become m in this environment,
about ten percent of the time in real speech it be-
comes n. Converting from probabilities to weights,
one would say that N becomes m with weight
a = - log(0 .9) , and n with weight fl = - log(0 .1) ,
in the stated environment. One could represent
this by the following rule:

N --* am + f in /__[+labia l] (9)

We define Weighted finite-state transducers as
transducers such that in addition to input and out-
put labels, each transition is labeled with a weight.

The result of the application of a weighted
transducer to a string, or more generally to an
automaton is a weighted automaton. The corre-
sponding operation is similar to the unweighted
case. However, the weight of the transducer
and those of the string or automaton need to
be combined too, here added, during composition
(Pereira et al., 1994).

9Using the terminology of the theory of languages,
the functions we consider here are power series de-
fined on the tropical semiring (7~+U{oo}, min, +, (x), 0)
(Kuich and Salomaa, 1986).

\"_/Too
p:p/O

N:N/O~

N:m/a
N:n/l~

: 0 ~ N:N/O

Figure 8: Transducer representing the rule 9.

We have generalized the composition opera-
tion to the weighted case by introducing this com-
bination of weights. The algorithm we described
in the previous sections can then also be used to
compile weighted rewrite rules.

As an example, the obligatory rule 9 can be
represented by the weighted transducer of Fig-
ure 8 10. The following theorem extends to the
weighted case the assertion proved by Kaplan and
Kay (1994).

T h e o r e m 1 A weighted rewrite rule of the type
defined above that does not rewrite its non-
contextual part can be represented by a weighted
finite-state transducer.

Proof. The construction we described in the pre-
vious section also provides a constructive proof
of this theorem in the unweighted case. In case
¢ is a power series, one simply needs to use in
that construction a weighted finite-state trans-
ducer representing ¢. By definition of composition
of weighted transducers, or multiplication of power
series, the weights are then used in a way consis-
tent with the definition of the weighted context-
dependent rules, o

5. Exper iments

In order to compare the performance of the M-
gorithm presented here with KK, we timed both
algorithms on the compilation of individual rules
taken from the following set (k • [0, 10]):

a --* b~ c ~ (10)
a --* b~ c k (11)

1°We here use the symbol ~ to denote all letters
different from b, rn, n, p, and N.

236

In other words we tested twenty two rules where
the left context or the right context is varied in
length from zero to ten occurrences of c. For our
experiments, we used the alphabet of a realistic
application, the text analyzer for the Bell Labora-
tories German text-to-speech system consisting of
194 labels. All tests were run on a Silicon Graph-
ics IRIS Indigo 4000, 100 MhZ IP20 Processor,
128 Mbytes RAM, running IRIX 5.2. Figure 9
shows the relative performance of the two algo-
rithms for the left context: apparently the per-
formance of both algorithms is roughly linear in
the length of the left context, but KK has a worse
constant, due to the larger number of operations
involved. Figure 10 shows the equivalent data for
the right context. At first glance the data looks
similar to that for the left context, until one no-
tices that in Figure 10 we have plotted the time on
a log scale: the KK algorithm is hyperexponential.

What is the reason for this performance degra-
dation in the right context? The culprits turn
out to be the two intersectands in the expression
of Rightcontext(p, <, >) in Figure 1. Consider
for example the righthand intersectand, namely

~ 0 > P > 0 ~ 0 - > ~ 0 , which is the complement
of ~ 0 > P > 0 ~ 0 - > ~ 0 - As previously in-
dicated, the complementation Mgorithm. requires
determinization, and the determinization of au-
tomata representing expressions of the form ~*a,
where c~ is a regular expression, is often very ex-
pensive, specially when the expression a is already
complex, as in this case.

Figure 11 plots the behavior of determiniza-
tion on the expression Z~0 > P>0Z~0- > ~ 0
for each of the rules in the set a ~ b / _ _ c k,
(k e [0, 10]). On the horizontal axis is the num-
ber of arcs of the non-deterministic input machine,
and on the vertical axis the log of the number of
arcs of the deterministic machine, i.e. the ma-
chine result of the determinization algorithm with-
out using any minimization. The perfect linearity
indicates an exponential time and space behav-
ior, and this in turn explains the observed differ-
ence in performance. In contrast, the construction
of the right context machine in our algorithm in-
volves only the single determinization of the au-
tomaton representing ~*p, and thus is much less
expensive. The comparison just discussed involves
a rather artificiM ruleset, but the differences in
performance that we have highlighted show up in
real applications. Consider two sets of pronun-
ciation rules from the Bell Laboratories German
text-to-speech system: the size of the alphabet for
this ruleset is 194, as noted above. The first rule-
set, consisting of pronunciation rules for the ortho-
graphic vowel <5> contains twelve rules, and the
second ruleset, which deals with the orthographic

q ,

o

11

/"
-----nl /

.../'/"
/

m / ' =

i 1 ~ 1 1 j

0 0 0 `~'-" 0 / 0 ~ 0

0__0/0 0 0

I I I I
2 4 6 $

L=tr~lm 011.~t Comxt

Figure 9: Compilation times for rules of the form
a ~ b / c k , (k E [0, 10]).

9 "

o

o

. /
/

I: /
N , * a~,~t.vn I

/
o/" /./

i i / 1 1

~ 0 ~ 0 ~ 0 " . ' ' " 0

i J i i i
2 4 6 e 10

Figure 10: Compilation times for rules of the form
a ~ b / c k, (k E [0, 10]).

vowel < a > contains twenty five rules. In the ac-
tual application of the rule compiler to these rules,
one compiles the individual rules in each ruleset
one by one, and composes them together in the
order written, compacts them after each composi-
tion, and derives a single transducer for each set.
When done off-line, these operations of compo-

Table 1: Comparison in a real example.

I Rulesll KK II New I
time space time space
(s) states arcs (s) states arcs

<5> 62 412 50,475 47 394 47,491
<a> 284 1,939 215,721 240 1,927 213,408

sition and compaction dominate the time corre-
sponding to the construction of the transducer for
each individual rule. The difference between the
two algorithms appears still clearly for these two
sets of rules. Table 1 shows for each algorithm
the times in seconds for the overall construction,
and the number of states and arcs of the output
transducers.

6. C o n c l u s i o n

We briefly described a new algorithm for compiling
context-dependent rewrite rules into finite-state
transducers. Several additional methods can be
used to make this algorithm even more efficient.

The automata determinizations needed for
this algorithm are of a specific type. They repre-

2 3 7

sent expressions of the type ~*¢ where ¢ is a reg-
ular expression. Given a deterministic automaton
representing ¢, such determinizations can be per-
formed in a more efficient way using failure func-
tions (Mohri, 1995). Moreover, the corresponding
determinization is independent of ~ which can be
very large in some applications. It only depends
on the alphabet of the automaton representing ¢.

One can devise an on-the-fly implementation
of the composition algorithm leading to the final
transducer representing a rule. Only the neces-
sary part of the intermediate transducers is then
expanded for a given input (Pereira et al., 1994).

The resulting transducer representing a rule
is often subsequentiable or p-subsequentiable. It
can then be determinized and minimized (Mohri,
1994). This both makes the use of the transducer
time efficient and reduces its size.

We also indicated an extension of the theory
of rule-compilation to the case of weighted rules,
which compile into weighted finite-state transduc-
ers. Many algorithms used in the finite-state the-
ory and in their applications to natural language
processing can be extended in the same way.

To date the main serious application of this
compiler has been to developing text-analyzers
for text-to-speech systems at Bell Laboratories
(Sproat, 1996): partial to more-or-less complete
analyzers have been built for Spanish, Italian,
French, Romanian, German, Russian, Mandarin
and Japanese. However, we hope to also be able to
use the compiler in serious applications in speech

2 -

co

!

O /
/°

/°
/

/°
/

/
/

/
I I t

SOO 1;10 1120

II S~S in I:bsr S

Figure 11: Number of arcs in the non-
deterministic automaton r representing PS =

$ $ E~0 > P>0E>0- > E>0 versus the log of the num-
ber of arcs in the automaton obtained by deter-
minization of r.

recognition in the future.

Acknowledgements
We wish to thank several colleagues of AT&T/_Bell
Labs, in particular Fernando Pereira and Michael
Riley for stimulating discussions about this work
and Bernd MSbius for providing the German pro-
nunciation rules cited herein.

R e f e r e n c e s

Alfred V. Aho, John E. Hopcroft, and Jeffrey D.
Ullman. 1974. The design and analysis of
computer algorithms. Addison Wesley: Read-
ing, MA.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.
1986. Compilers, Principles, Techniques and
Tools. Addison Wesley: Reading, MA.

Jean Berstel and Christophe Reutenauer.
1988. Rational Series and Their Languages.
Springer-Verlag: Berlin-New York.

Jean Berstel. 1979. Transductions and Context-
Free Languages. Teubner Studienbucher:
Stuttgart.

Samuel Eilenberg. 1974-1976. Automata, Lan-
guages and Machines, volume A-B. Academic
Press.

238

Michael R. Garey and David S. Johnson. 1979.
Computers and Intractability. Freeman and
Company, New York.

C. Douglas Johnson. 1972. Formal Aspects of
Phonological Description. Mouton, Mouton,
The Hague.

Ronald M. Kaplan and Martin Kay. 1994. Regu-
lar models of phonological rule systems. Com-
putational Linguistics, 20(3).

Lauri Karttunen. 1995. The replace operator. In
33 rd Meeting of the Association for Compu-
tational Linguistics (ACL 95), Proceedings of
the Conference, MIT, Cambridge, Massachus-
setts. ACL.

Wener Kuich and Arto Salomaa. 1986. Semir-
ings, Automata, Languages. Springer-Verlag:
Berlin-New York.

Mark Liberman. 1994. Commentary on kaplan
and kay. Computational Linguistics, 20(3).

Robert McNaughton. 1994. The uniform halt-
ing problem for one-rule semi-thue systems.
Technical Report 94-18, Department of Com-
puter Science, Rensselaer Polytechnic Insti-
tute, Troy, New York.

Mehryar Mohri. 1994. Compact representations
by finite-state transducers. In 32 nd Meeting of
the Association for Computational Linguistics
(ACL 94), Proceedings of the Conference, Las
Cruces, New Mexico. ACL.

Mehryar Mohri. 1995. Matching patterns of an
automaton. Lecture Notes in Computer Sci-
ence, 937.

Fernando C. N. Pereira, Michael Riley, and
Richard Sproat. 1994. Weighted rational
transductions and their application to human
language processing. In ARPA Workshop on
Human Language Technology. Advanced Re-
search Projects Agency.

Grzegorz Rozenberg and Arto Salomaa. 1980.
The Mathematical Theory of L Systems. Aca-
demic Press, New York.

Arto Salomaa and Matti Soittola. 1978.
Automata- Theoretic Aspects of Formal Power
Series. Springer-Verlag: Berlin-New York.

Richard Sproat. 1996. Multilingual text analy-
sis for text-to-speech synthesis. In Proceed-
ings of the ECAI-96 Workshop on Extended
Finite State Models of Language, Budapest,
Hungary. European Conference on Artificial
Intelligence.

L. J. Stockmeyer and A. R. Meyer. 1973. Word
problems requiring exponential time. In Pro-
ceedings of the 5 th Annual ACM Sympo-
sium on Theory of Computing. Association for
Computing Machinery, New York, 1-9.

