
A n o t h e r F a c e t o f L I G P a r s i n g

Pierre Boullier
INRIA-Rocquencourt

BP 105
78153 Le Chesnay Cedex, France
Pierre. Boullier@inria. fr

Abstract

In this paper 1 we present a new pars-
ing algorithm for linear indexed grammars
(LIGs) in the same spirit as the one de-
scribed in (Vijay-Shanker and Weir, 1993)
for tree adjoining grammars. For a LIG L
and an input string x of length n, we build
a non ambiguous context-free grammar
whose sentences are all (and exclusively)
valid derivation sequences in L which lead
to x. We show that this grammar can
be built in (9(n 6) t ime and that individ-
ual parses can be extracted in linear time
with the size of the extracted parse tree.
Though this O(n 6) upper bound does not
improve over previous results, the average
case behaves much better. Moreover, prac-
tical parsing times can be decreased by
some statically performed computations.

1 Introduction

The class of mildly context-sensitive languages can
be described by several equivalent grammar types.
Among these types we can notably cite tree adjoin-
ing grammars (TAGs) and linear indexed grammars
(LIGs). In (Vijay-Shanker and Weir, 1994) TAGs
are transformed into equivalent LIGs. Though
context-sensitive linguistic phenomena seem to be
more naturally expressed in TAG formalism, from
a computational point of view, many authors think
that LIGs play a central role and therefore the un-
derstanding of LIGs and LIG parsing is of impor-
tance. For example, quoted from (Schabes and
Shieber, 1994) "The LIG version of TAG can be used
for recognition and parsing. Because the LIG for-
malism is based on augmented rewriting, the pars-
ing algorithms can be much simpler to understand

1See (Boullier, 1996) for an extended version.

87

and easier to modify, and no loss of generality is in-
curred". In (Vijay-Shanker and Weir, 1993) LIGs
are used to express the derivations of a sentence in
TAGs. In (Vijay-Shanker, Weir and Rainbow, 1995)
the approach used for parsing a new formalism, the
D-Tree Grammars (DTG), is to translate a DTG
into a Linear Prioritized Multiset Grammar which
is similar to a LIG but uses multisets in place of
stacks.

LIGs can be seen as usual context-free grammars
(CFGs) upon which constraints are imposed. These
constraints are expressed by stacks of symbols as-
sociated with non-terminals. We study parsing of
LIGs, our goal being to define a structure that ver-
ifies the LIG constraints and codes all (and exclu-
sively) parse trees deriving sentences.

Since derivations in LIGs are constrained CF
derivations, we can think of a scheme where the
CF derivations for a given input are expressed by
a shared forest from which individual parse trees
which do not satisfied the LIG constraints are
erased. Unhappily this view is too simplistic, since
the erasing of individual trees whose parts can be
shared with other valid trees can only be performed
after some unfolding (unsharing) that can produced
a forest whose size is exponential or even unbounded.

In (Vijay-Shanker and Weir, 1993), the context-
freeness of adjunction in TAGs is captured by giving
a CFG to represent the set of all possible derivation
sequences. In this paper we study a new parsing
scheme for LIGs based upon similar principles and
which, on the other side, emphasizes as (Lang, 1991)
and (Lang, 1994), the use of grammars (shared for-
est) to represent parse trees and is an extension of
our previous work (Boullier, 1995).

This previous paper describes a recognition algo-
ri thm for LIGs, but not a parser. For a LIG and an
input string, all valid parse trees are actually coded
into the CF shared parse forest used by this recog-
nizer, but, on some parse trees of this forest, the

checking of the LIG constraints can possibly failed.
At first sight, there are two conceivable ways to ex-
tend this recognizer into a parser:

1. only "good" trees are kept;

2. the LIG constraints are Ire-]checked while the
extraction of valid trees is performed.

As explained above, the first solution can produce
an unbounded number of trees. The second solution
is also uncomfortable since it necessitates the reeval-
uation on each tree of the LIG conditions and, doing
so, we move away from the usual idea tha t individ-
ual parse trees can be extracted by a simple walk
through a structure.

In this paper, we advocate a third way which will
use (see section 4), the same basic material as the
one used in (Boullier, 1995). For a given LIG L and
an input string x, we exhibit a non ambiguous CFG
whose sentences are all possible valid derivation se-
quences in L which lead to x. We show tha t this
CFG can be constructed in (.9(n 6) t ime and tha t in-
dividual parses can be extracted in t ime linear with
the size of the extracted tree.

2 D e r i v a t i o n G r a m m a r a n d C F
P a r s e Fores t

In a CFG G = (VN, VT, P, S), the derives relation
is the set {(aBa' ,aj3a') I B --~ j3 e P A V =

G
VN U VT A a, a ~ E V*}. A derivation is a sequence
of strings in V* s.t. the relation derives holds be-
tween any two consecutive strings. In a r ightmost
derivation, at each step, the r ightmost non-terminal
say B is replaced by the right-hand side (RHS) of

a B-production. Equivalently if a0 ~ . . . ~ an is
G G

a rightmost derivation where the relation symbol is
overlined by the production used at each step, we
say that r l . . . rn is a r ightmost ao/a~-derivation.

For a CFG G, the set of its r ightmost S/x-
derivations, where x E E(G), can itself be defined
by a grammar.

Def in i t ion 1 Let G = (VN,VT,P ,S) be a CFG,
its rightmost derivation g r a m m a r is the CFG D =
(VN, P, pD, S) where pD _~ {A0 --~ A 1 . . . Aqr I r ---
Ao --+ w o A l w l . . , wq_lAqwq E P Awi E V~ A Aj E

LFrom the natural bijection between P and pD,
we can easily prove tha t

L:(D) = { r ~ . . . r l I
rl . . . rn is a r ightmost S/x-derivation in G~

This shows tha t the r ightmost derivation language
of a CFG is also CF. We will show in section 4 tha t
a similar result holds for LIGs.

Following (Lang, 1994), CF parsing is the inter-
section of a CFG and a finite-state au tomaton (FSA)
which models the input string x 2. The result of this
intersection is a CFG G x -- (V~, V~, p x , ISIS) called
a shared parse forest which is a specialization of the
initial CFG G = (V~, VT, P, S) to x. Each produc-

J E px , is the product ion ri E P up to some tion r i
non-terminal renaming. The non-terminal symbols
in V~ are triples denoted [A]~ where A E VN, and
p and q are states. When such a non-terminal is

productive, [A] q :~ w, we have q E 5(p, w).
G ~

If we build the r ightmost derivation g rammar as-
sociated with a shared parse forest, and we remove
all its useless symbols, we get a reduced CFG say D ~ .
The CF recognition problem for (G, x) is equivalent
to the existence of an [S]~-production in D x. More-
over, each r ightmost S/x-derivation in G is (the re-
verse of) a sentence in E(D*) . However, this result
is not very interesting since individual parse trees
can be as easily extracted directly from the parse
forest. This is due to the fact tha t in the CF case, a
tree tha t is derived (a parse tree) contains all the
information about its derivation (the sequence of
rewritings used) and therefore there is no need to
distinguish between these two notions. Though this
is not always the case with non CF formalisms, we
will see in the next sections tha t a similar approach,
when applied to LIGs, leads to a shared parse for-
est which is a LIG while it is possible to define a
derivation g r ammar which is CF.

3 Linear I n d e x e d G r a m m a r s

An indexed g rammar is a CFG in which stack of
symbols are associated with non-terminals. LIGs are
a restricted form of indexed g rammars in which the
dependence between stacks is such tha t at most one
stack in the RHS of a product ion is related with the
stack in its LHS. Other non-terminals are associated
with independant stacks of bounded size.

Following (Vijay-Shanker and Weir, 1994)

Def in i t ion 2 L = (VN,VT ,VI ,PL ,S) denotes a
LIG where VN, VT, VI and PL are respectively fi-
nite sets of non-terminals, terminals, stack symbols
and productions, and S is the start symbol.

In the sequel we will only consider a restricted

2if x = a l . . . as, the states can be the integers 0 . . . n,
0 is the initial state, n the unique final state, and the
transition function 5 is s.t. i E 5(i-- 1, a~) and i E 5(i, ~).

88

form of LIGs with productions of the form

PL = {A0 --+ w} U {A(..a) --+ P lB(. . a ') r 2}

where A , B • VN, W • V~A0 < [w[< 2, aa' • V ; A
0 < [aa'[< 1 and r , r 2 • v u(}u(c01 c •

An element like A(..a) is a primary constituent
while C 0 is a secondary constituent. The stack
schema (..a) of a primary constituent matches all
the stacks whose prefix (bottom) part is left unspec-
ified and whose suffix (top) part is a; the stack of a
secondary constituent is always empty.

Such a form has been chosen both for complexity
reasons and to decrease the number of cases we have
to deal with. However, it is easy to see that this form
of LIG constitutes a normal form.

We use r 0 to denote a production in PL, where
the parentheses remind us that we are in a LIG!

The CF-backbone of a LIG is the underlying CFG
in which each production is a LIG production where
the stack part of each constituent has been deleted,
leaving only the non-terminal part. We will only
consider LIGs such there is a bijection between its
production set and the production set of its CF-
backbone 3.

We call object the pair denoted A(a) where A
is a non-terminal and (a) a stack of symbols. Let
Vo = {A(a) [A • VN A a • V;} be the set of
objects. We define on (Vo LJ VT)* the binary relation
derives denoted =~ (the relation symbol is sometimes

L
overlined by a production):

r A(a"a)r
L

I i A()=~w
r l A () r 2 ' ' FlWF2

L

In the first above element we say that the object
B(a"a ~) is the distinguished child of A(a"a), and if
F1F2 = C 0 , C 0 is the secondary object. A deriva-
tion F~ , . . . , Fi, F i+x , . . . , Ft is a sequence of strings
where the relation derives holds between any two
consecutive strings

The language defined by a LIG L is the set:

£(L) = {x [S 0 :=~ x A x • V~ }
L

As in the CF case we can talk of rightmost deriva-
tions when the rightmost object is derived at each
step. Of course, many other derivation strategies
may be thought of. For our parsing algorithm, we
need such a particular derives relation. Assume that
at one step an object derives both a distinguished

3rp and rp0 with the same index p designate associ-
ated productions.

child and a secondary object. Our particular deriva-
tion strategy is such that this distinguished child will
always be derived after the secondary object (and its
descendants), whether this secondary object lays to
its left or to its right. This derives relation is denoted
=~ and is called linear 4.
l , L

A spine is the sequence of objects Al(al)
• .. Ai(ai) Ai+l (~i+1)... Ap(ap) if, there is a deriva-
tion in which each object Ai+l (ai+l) is the distin-
guished child of Ai(ai) (and therefore the distin-
guished descendant of Aj(aj), 1 <_ j <_ i).

4 L i n e a r D e r i v a t i o n G r a m m a r

For a given LIG L, consider a linear SO~x-derivation

so =

t ,L t ,L l ,L

The sequence of productions r l 0 . . . r i O . . . r n O
(considered in reverse order) is a string in P~. The
purpose of this section is to define the set of such
strings as the language defined by some CFG.

Associated with a LIG L = (VN, VT, VI, PL, S),
we first define a bunch of binary relations which are
borrowed from (Boullier , 1995)

-4,- = {(A,B) [A(..) ~ r , B (. .) r ~ e PL}
1
"r

-~ = {(A,B) I A(..) -~ r l B (. . ~) r 2 e PL}
1
7
>- = {(A,B) I 4 rxB(..)r2 e PL}
I

- ~ = {(A1,Ap) [A10 =~ r l A , () r ~ and A , 0
q- L

is a distinguished descendant of A1 O}

The l-level relations simply indicate, for each pro-
duction, which operation can be apply to the stack
associated with the LHS non-terminal to get the
stack associated with its distinguished child; ~ in-

1

dicates equality, -~ the pushing of 3", and ~- the pop-
1 1

ping of 3'-
If we look at the evolution of a stack along

a spine A1 (a x) . . . Ai (ai)Ai+x (a i+x) . . . Ap (ap), be-
tween any two objects one of the following holds:
OL i ~ O~i+1, Ol i3 , ~ OLi+I, or ai = a i + l ~ .

The -O- relation select pairs of non-terminals
+

(A1, Ap) s.t. a l = ap = e along non trivial spines.

4linear reminds us that we are in a LIG and relies
upon a linear (total) order over object occurrences in
a derivation. See (Boullier, 1996) for a more formal
definition.

89

7 7 7
If the relations >- and ~ are defined as >-=>-

+ + 1
7 "/7

U ~-~- and ~---- UTev~ "<>', we can see that the
+ 1 1 +

following identity holds

Property 1

--¢,- = -¢.-U~U-K>--~,-Uw.,--~-
+ 1 1 + +

In (Boullier, 1995) we can found an algorithm s

which computes the - ~ , >- and ~ relations as the
+ +

composition of -,¢,-, -~ and ~- in O(IVNI 3) time.
1 1 1

D e f i n i t i o n 3 For a LIG L = (VN, VT, Vz, PL, S),
we call linear derivation grammar (LDG) the
CFG DL (or D when L is understood) D =
(VND, V D, pD, S D) where

• V D = { [A] I A • V N } U { [A p B] I A , B • V N A

p • 7~}, and ~ is the set of relations {~,-¢,-,'Y
1 1

• VTD = pL

• S ° = [S]

• Below, [F1F2]
symbol [X] when FIF2 =
string e when F1F2 • V~.
being

denotes either the non-terminal
X 0 or the empty

p o is defined as

{[A] -+ r 0 I rO = AO -~ w • PL} (1)

U{[A] -+ r0 [A +-~ B]I

r 0 = B 0 -+ w • PL} (2)

UI[A +~- C] ~ [rlr~]r0 I

r 0 = A(..) ~ r , c (. .) r : • PL} (3)

u{[A +-~ C] --+ [A ~ C]} (4)

u{[A c] [B c][r l r : l r0 I

r0 = AC) rls(. .)r2 • PL} (5)
(6) U{[A +-~ C] -> [B ~ C][A ~ B]}

U{[A ~ C] ~ [B ~- c] [r l r 2] r 0 I
+

r 0 = A(..) ~ r l B (. . ~) r 2 • PL} (7)

5Though in the referred paper, these relations are de-
fined on constituents, the algorithm also applies to non-
terminals.

6In fact we will only use valid non-terminals [ApB]
for which the relation p holds between A and B.

U{[A ~ C] ~ [r l r ~] r 0 I
-I-

r 0 = A(..7) ~ r l c (. .) r ~ • PL} (8)

U{[A ~-+ C] --~ [F1F2]r0[A ~ S] l

r 0 = B(..-y) r l c (. .) r , • (9)

The productions in pD define all the ways lin-
ear derivations can be composed from linear sub-
derivations. This compositions rely on one side upon
property 1 (recall tha t the productions in PL, must
be produced in reverse order) and, on the other side,
upon the order in which secondary spines (the r lF2-
spines) are processed to get the linear derivation or-
der.

In (Boullier, 1996), we prove tha t LDGs are not
ambiguous (in fact they are SLR(1)) and define

£(D) = { n O . - . r - O I S O r ~) . . . r_~)x
l , L f.,L

Ax 6 £(L)}

If, by some classical algorithm, we remove from D
all its useless symbols, we get a reduced CFG say
D' = (VN D' , VT D' , pD', SO'). In this grammar, all its
terminal symbols, which are productions in L, are
useful. By the way, the construction of D' solve the
emptiness problem for LIGs: L specify the empty
set iff the set VT D' is empty 7.

5 L I G p a r s i n g

Given a LIG L : (VN, VT, Vz, PL, S) we want to find
all the syntactic structures associated with an input
string x 6 V~. In section 2 we used a CFG (the
shared parse forest) for representing all parses in a
CFG. In this section we will see how to build a CFG
which represents all parses in a LIG.

In (Boullier, 1995) we give a recognizer for LIGs
with the following scheme: in a first phase a general
CF parsing algorithm, working on the CF-backbone
builds a shared parse forest for a given input string x.
In a second phase, the LIG conditions are checked on
this forest. This checking can result in some subtree
(production) deletions, namely the ones for which
there is no valid symbol stack evaluation. If the re-
sulting grammar is not empty, then x is a sentence.
However, in the general case, this resulting gram-
mar is not a shared parse forest for the initial LIG
in the sense that the computation of stack of sym-
bols along spines are not guaranteed to be consis-
tent. Such invalid spines are not deleted during the
check of the LIG conditions because they could be

7In (Vijay-Shanker and Weir, 1993) the emptiness
problem for LIGs is solved by constructing an FSA.

90

composed of sub-spines which are themselves parts
of other valid spines. One way to solve this problem
is to unfold the shared parse forest and to extract
individual parse trees. A parse tree is then kept iff
the LIG conditions are valid on that tree. But such
a method is not practical since the number of parse
trees can be unbounded when the CF-backbone is
cyclic. Even for non cyclic grammars, the number
of parse trees can be exponential in the size of the
input. Moreover, it is problematic that a worst case
polynomial size structure could be reached by some
sharing compatible both with the syntactic and the
%emantic" features.

However, we know that derivations in TAGs are
context-free (see (Vijay-Shanker, 1987)) and (Vijay-
Shanker and Weir, 1993) exhibits a CFG which rep-
resents all possible derivation sequences in a TAG.
We will show that the analogous holds for LIGs and
leads to an O(n 6) t ime parsing algorithm.

De f in i t i on 4 Let L = (VN, VT, VI, PL, S) be a LIG,
G = (VN,VT,PG, S) its CF-backbone, x a string
in E(G), and G ~ = (V ~ , V ~ , P ~ , S ~) its shared
parse]orest for x. We define the LIGed forest
for x as being the LIG L ~ = (V~r, V~, VI, P~, S ~)
s.t. G z is its CF-backbone and its productions are
the productions o] P~ in which the corresponding
stack-schemas o] L have been added. For exam-
ple rg 0 = [AI~(..~) -4 [BI{(..~')[C]~0 e P~ iff

J k r q = [A] k -4 [B]i[C]j e P ~ A r p = A -4 B C e
G A rpO = A(..~) -4 B(. .~')C 0 e n.

Between a LIG L and its LIGed forest L ~ for x,
we have:

x ~ £ (L) ¢==~ x C f ~ (L ~)

If we follow(Lang, 1994), the previous definition
which produces a LIGed forest from any L and x
is a (LIG) parserS: given a LIG L and a string x,
we have constructed a new LIG L ~ for the intersec-
tion Z;(L) C) {x}, which is the shared forest for all
parses of the sentences in the intersection. However,
we wish to go one step further since the parsing (or
even recognition) problem for LIGs cannot be triv-
ially extracted from the LIGed forests.

Our vision for the parsing of a string x with a LIG
L can be summarized in few lines. Let G be the CF-
backbone of L, we first build G ~ the CFG shared
parse forest by any classical general CF parsing al-
gorithm and then L x its LIGed forest. Afterwards,
we build the reduced LDG DL~ associated with L ~
as shown in section 4.

Sof course, instead of x, we can consider any FSA.

91

The recognition problem for (L, x) (i.e. is x an
element of £(L)) is equivalent to the non-emptiness
of the production set of OLd.

Moreover, each linear SO~x-derivation in L is (the
reverse of) a string in ff.(DL*)9. So the extraction of
individual parses in a LIG is merely reduced to the
derivation of strings in a CFG.

An important issue is about the complexity, in
time and space, of DL~. Let n be the length of
the input string x. Since G is in binary form we
know that the shared parse forest G x can be build
in O(n 3) time and the number of its productions
is also in O(n3). Moreover, the cardinality of V~
is O(n 2) and, for any given non-terminal, say [A] q,
there are at most O(n) [A]g-productions. Of course,
these complexities extend to the LIGed forest L z.

We now look at the LDG complexity when the
input LIG is a LIGed forest. In fact, we mainly have
to check two forms of productions (see definition 3).
The first form is production (6) ([A +-~ C] -+ [B

+
C][A ~-0 B]), where three different non-terminals in

VN are implied (i.e. A, B and C), so the number of
productions of that form is cubic in the number of
non-terminals and therefore is O(n6).

In the second form (productions (5), (7) and (9)),

exemplified by [A ~ C] -4 [B ~ c][rlr2]r(), there ÷
are four non-terminals in VN (i.e. A, B, C, and X
if FIF2 = X 0) and a production r 0 (the number

of relation symbols ~ is a constant), therefore, the
÷

number of such productions seems to be of fourth
degree in the number of non-terminals and linear in
the number of productions. However, these variables
are not independant. For a given A, the number of
triples (B ,X , r 0) is the number of A-productions
hence O(n). So, at the end, the number of produc-
tions of that form is O(nh).

We can easily check that the other form of pro-
ductions have a lesser degree.

Therefore, the number of productions is domi-
nated by the first form and the size (and in fact
the construction time) of this grammar is 59(n6).

This (once again) shows that the recognition and
parsing problem for a LIG can be solved in 59(n 6)
time.

For a LDG D = (V D, V D, pD SD), we note that
for any given non-terminal A E VN D and string a E
£:(A) with [a[>_ 2, a single production A -4 X1X2
or A -4 X1X2X3 in pD is needed to "cut" a into two
or three non-empty pieces a l , 0"2, and 0-3, such that

°In fact, the terminal symbols in DL~ axe produc-
tions in L ~ (say Rq()), which trivially can be mapped to
productions in L (here rp()).

Xi ~ a{, except when the production form num-
D

bet (4) is used. In such a case, this cutting needs
two productions (namely (4) and (7)). This shows
that the cutting out of any string of length l, into
elementary pieces of length 1, is performed in using
O(l) productions. Therefore, the extraction of a lin-
ear so~x-derivation in L is performed in time linear
with the length of that derivation. If we assume that
the CF-backbone G is non cyclic, the extraction of
a parse is linear in n. Moreover, during an extrac-
tion, since DL= is not ambiguous, at some place, the
choice of another A-production will result in a dif-
ferent linear derivation.

Of course, practical generations of LDGs must im-
prove over a blind application of definition 3. One
way is to consider a top-down strategy: the X-
productions in a LDG are generated iff X is the start
symbol or occurs in the RHS of an already generated
production. The examples in section 6 are produced
this way.

If the number of ambiguities in the initial LIG is
bounded, the size of DL=, for a given input string x
of length n, is linear in n.

The size and the time needed to compute DL. are

closely related to the actual sizes of the -<~-, >- and
+ +

relations. As pointed out in (Boullier, 1995), their

O(n 4) maximum sizes seem to be seldom reached in
practice. This means that the average parsing time
is much better than this (..9(n 6) worst case.

Moreover, our parsing schema allow to avoid some
useless computations. Assume that the symbol
[A ~ B] is useless in the LDG DL associated with

the initial LIG L, we know that any non-terminal
s.t. [[A]{ +-~ [B]~] is also useless in DL=. Therefore,

the static computation of a reduced LDG for the

initial LIG L (and the corresponding -¢-, >- and .~
+ +

relations) can be used to direct the parsing process
and decrease the parsing time (see section 6).

6 T w o E x a m p l e s

6.1 Firs t Example

In this section, we illustrate our algorithm with a
LIG L -- ({S, T], {a, b, c}, {7~, 75, O'c}, PL, S) where
PL contains the following productions:

~ 0 : s (. .) -+ s (. . e o) ~
r30 : s (. .) --+ S(..%)c
rhO : T(..7~) --+ aT(..)
rT0 = T(..%) -+ cT(..)

r20 = S(..) --+ S(..Tb)b
r40 = S(..) --+ T(..)
r60 = T(..%) -+ bT(..)
rs0 = T0 --+ c

It is easy to see that its CF-backbone G, whose

92

production set Pc is:

S-+ Sa S - ~ Sb S-+ S c S - ~ T
T - } a T T -+ bT T -~ cT T -+ c

defines the language £(G) = {wcw' I w,w' 6
{a, b, c]*}. We remark that the stacks of symbols in
L constrain the string w' to be equal to w and there-
fore the language £(L) is {wcw I w 6 {a, b, c]*}.

We note that in L the key part is played by the
middle c, introduced by production rs0, and that
this grammar is non ambiguous, while in G the sym-
bol c, introduced by the last production T ~ c, is
only a separator between w and w' and that this
grammar is ambiguous (any occurrence of c may be
this separator).

The computation of the relations gives:

+ = { (S , T) }
1

9% "{b 9"¢
= ~ = ~ = { (s , s) }

1 1 1
9% "Tb ~c
>- = >- = >- = ~(T,T]]
1 1 1

+ = {(S,T)}
+

= {(S,T)}
9'a 9'5 '7c
>.- = >- = >- = { (T ,T) , (S ,T) }
+ + +

The production set pD of the LDG D associated
with L is:

[S] --+ rs0[S -~+ T] (2)

IS T T] -+ ~ 0 (3)

[S +-~T] --+ [S ~ T] (4)

IS ~ T] --+ [S ~ T]rl 0 (7)

[S ~ T] --+ [S ,~ T]r20 (7)

[S ~ T] =-+ IS ~- T]ra 0 (7)
+

[S ~ T] -=+ rh()[S +-~ T] (9)

IS ~:+ T] + ~ () [S ~ T] (9)

[S ~ T] --+ rT0[S -~+ T] (9)

The numbers (i) refer to definition 3. We can
easily checked that this grammar is reduced.

Let x = ccc be an input string. Since x is an
element of £(G), its shared parse forest G x is not
empty. Its production set P~ is:

r l = [s]~ -+ [s]~c
r~ = [S]o ~ -+ [S]~c
r4 ~ = [s]~ --+ IT] 1
r~ = [T]I 3 --+ c[T] 3
r 9 = [T]~ =+ c[T] 2
~ 1 = [T]~ -+ c

r~ = [S]~ -+ [T]o ~
r44 = [S]~ --~ [T]o 2
r~ = [T]3o =-+ c[T]31
rs s = [T] 3 --+ c

r s 1° = [T]~ --+ c

We can observe that this shared parse forest denotes
in fact three different parse trees. Each one corre-
sponding to a different cutting out of x = wcw' (i.e.
w = ~ and w' = ce, or w : c and w' = c, or w = ec
and w' = g).

The corresponding LIGed forest whose start sym-
bol is S * = [S]~ and production set P~ is:

r~0 = [S]o%.) -~ [s]~(. .%)¢
~ 0 = IS]0%.) - , IT]o%.)
~ 0 = [S]o%.) ~ [S]o~(..%)c
~40 = [s]~(..) -~ IT]o%.)
~ 0 = ISIS(..) ~ [T]~(..)
r60 T 3 = [] 0 (. . %) -~ ~[T]~(..)
r~0 : [T]3(..%) ~ c[T]23(..)
rsS0 = [T]~ 0 --+ c
r~0 = [T]o%.%) -~ c[T]~(..)
r~°0 : [T]~ 0 -+ e
~ 0 = [T]~0 -~ c

For this LIGed forest the relations are:

1

1
")'c

1

+

>- __=_
+

(([S]o a, [T]oa), ([S]o 2, [T]o2), ([S]o 1, [T]ol) }

{(IsiS, [s]o~), ([S]o ~, IsiS)}

{ ([T]o 3, [T]~), ([T] 3 , [T]23), ([T]o 2 , [T]2) }

{([s]~0, [T]~)}

-¢.- (3 ~
1

U{ ([S]o 3, [T]13), ([S]o 2, [T]~) }

The start symbol of the LDG associated with the
LIGed forest L * is [[S]o3]. If we assume that an A-
production is generated iff it is an [[S]o3]-production
or A occurs in an already generated production, we
get:

[[S]o ~] ~ ~°()[[s]~ +~ [T]~] (2)

[[S]~ +~ [T]~] -+ [[S]o ~ ~ [Th'] (4)

[[S] a ~-. [TIll -+ [[S]o 2 ~2 [T]~]r~ () (7)
+

[[S]o ~ ~:+ [T]~] -~ ~()[[S]o ~ ~+ [T]o ~1 (9)
[[S]~ ~ [T]~] ~ ~ 0 (3)

This CFG is reduced. Since its production set is
non empty, we have ccc E ~(L). Its language is
{r~ ° 0 r9 0 r4 ()r~ 0 } which shows that the only linear

derivation in L is S() ~) S(%)c r~) T(Tc)C r=~)
t , L t , L l , L

eT()c ~) c c c .
g,L

9 3

In computing the relations for the initial LIG L,

we remark that though T ~2 T, T ~ T, and T ~ T,
+ + +

the non-terminals IT ~ T], [T ~ T], and IT ~: T] are
+ +

not used in p p . This means that for any LIGed for-
est L ~, the elements of the form ([Tip q, [T]~:) do not

")'a
need to be computed in the ~+, ~+ , and ~:+ relations

since they will never produce a useful non-terminal.

In this example, the subset ~: of ~: is useless.
1 -b

The next example shows the handling of a cyclic
grammar.

6.2 S e c o n d E x a m p l e

The following LIG L, where A is the start symbol:

r l () = A(..) ~ A(..%) r2() = A(..) ~ B(..)
r30 = B(. .%) -~ B(. .) r40 = B 0 ~ a

is cyclic (we have A =~ A and B =~ B in its CF-

backbone), and the stack schemas in production rl 0
indicate that an unbounded number of push % ac-
tions can take place, while production r3 0 indicates
an unbounded number of pops. Its CF-backbone is
unbounded ambiguous though its language contains
the single string a.

The computation of the relations gives:

-~- = {(A,B)}
1

-< = {(A,A)}
1

>- = { (B ,B)}
1

+ = {(A,B)}
+

= {(d, B)}

7a
~- = {(A, B), (B, B)}
+

The start symbol of the LDG associated with L is
[A] and its productions set pO is:

[A] -+ r40[A +-~ B] (2)

[A + ~ B] -+ r20 (3)

[A +~-B] ~ [A ~ B] (4)

[A ~ B] -~ [A ~ B]rl 0 (7)
+

[A ~2 B] -~ r3 0[A +~- B] (9)
+

We can easily checked that this grammar is re-
duced.

We want to parse the input string x -- a (i.e. find
all the linear SO/a-derivations).

Its LIGed forest, whose start

=

= [A f t (. .)
=

= [B]o 0

For this LIGed

1

7a ..<
1

1

.<,-
+

"t,*

+

symbol is [A]~ is:

- , [Aft(..%)
[B]~(..)

--+ [B]~(..)
a

forest L x, the relations are:

{(JAIL

= {([Aft, [Aft)}

=

= { ([A f t ,

-= { ([A f t , [B]o l) }

= {([A]~, [B]~), (IBIS, [B]~)}

The start symbol of the LDG associated with L x
is [[A]~]. If we assume that an A-production is gen-
erated iff it is an [[A]~]-production or A occurs in an
already generated production, its production set is:

[[AI~] -+ r~()[[A]~ +-~ [S] 11 (2)

[[A]~ -~+ [B]~] -+ r220 (3)

[[A]~ +-~ [B]01] ~ [[A]o 1 ~ [B]o 1] (4)

[[A]~ ~. [B]01] -+ [[A]~ ~: [B]~]r I 0 (7)
+

[[A]~ ~+ [B]~] --4 r3()[[A]l o ~ [S]10] (9)

This CFG is reduced. Since its production set
is non empty, we have a 6 £(L). Its language is
{r4(){r]())kr~O{r~O} k]0 < k) which shows that
the only valid linear derivations w.r.t. L must con-
tain an identical number k of productions which
push 7a (i.e. the production r l0) and productions
which pop 7a (i.e. the production r3()).

As in the previous example, we can see that the

element [S]~ ~ [B]~ is useless.
+

7 C o n c l u s i o n

We have shown that the parses of a LIG can be rep-
resented by a non ambiguous CFG. This represen-
tation captures the fact that the values of a stack of
symbols is well parenthesized. When a symbol 3' is
pushed on a stack at a given index at some place, this
very symbol must be popped some place else, and we
know that such (recursive) pairing is the essence of
context-freeness.

In this approach, the number of productions and
the construction time of this CFG is at worst O(n6),

9 4

though much better results occur in practical situa-
tions. Moreover, static computations on the initial
LIG may decrease this practical complexity in avoid-
ing useless computations. Each sentence in this CFG
is a derivation of the given input string by the LIG,
and is extracted in linear time.

References

Pierre Boullier. 1995. Yet another (_O(n 6) recog-
nition algorithm for mildly context-sensitive lan-
guages. In Proceedings of the fourth international
workshop on parsing technologies (IWPT'95),
Prague and Karlovy Vary, Czech Republic, pages
34-47. See also Research Report No 2730
at http: I/www. inria, fr/R2~T/R~-2730.html,
INRIA-Rocquencourt, France, Nov. 1995, 22
pages.

Pierre Boullier. 1996. Another Facet of LIG Parsing
(extended version). In Research Report No P858
at http://www, inria, fr/RRKT/KK-2858.html,
INRIA-Rocquencourt, France, Apr. 1996, 22
pages.

Bernard Lang. 1991. Towards a uniform formal
framework for parsing. In Current Issues in Pars-
ing Technology, edited by M. Tomita, Kluwer Aca-
demic Publishers, pages 153-171.

Bernard Lang. 1994. Recognition can be harder
than parsing. In Computational Intelligence, Vol.
10, No. 4, pages 486-494.

Yves Schabes, Stuart M. Shieber. 1994. An Alter-
native Conception of Tree-Adjoining Derivation.
In ACL Computational Linguistics, Vol. 20, No.
1, pages 91-124.

K. Vijay-Shanker. 1987. A study of tree adjoining
grammars. PhD thesis, University of Pennsylva-
nia.

K. Vijay-Shanker, David J. Weir. 1993. The Used of
Shared Forests in Tree Adjoining Grammar Pars-
ing. In Proceedings of the 6th Conference of the
European Chapter of the Association for Com-
putational Linguistics (EACL'93), Utrecht, The
Netherlands, pages 384-393.

K. Vijay-Shanker, David J. Weir. 1994. Parsing
some constrained grammar formalisms. In A CL
Computational Linguistics, Vol. 19, No. 4, pages
591-636.

K. Vijay-Shanker, David J. Weir, Owen Rambow.
1995. Parsing D-Tree Grammars. In Proceed-
ings of the fourth international workshop on pars-
ing technologies (IWPT'95), Prague and Karlovy
Vary, Czech Republic, pages 252-259.

