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Abstract  
This paper describes a system that leads us to 
believe in the feasibility of constructing natural 
spoken dialogue systems in task-oriented domains. It 
specifically addresses the issue of robust interpre- 
tation of speech in the presence of recognition 
errors. Robustness is achieved by a combination of 
statistical error post-correction, syntactically- and 
semantically-driven robust parsing, and extensive 
use of  the dialogue context. We present an 
evaluation of the system using time-to-completion 
and the quality of the final solution that suggests 
that most native speakers of English can use the 
system successfully with virtually no training. 

1. Introduction 
While there has been much research on natural dialogue, 
there have been few working systems because of the 
difficulties in obtaining robust behavior. Given over 
twenty years of research in this area, if we can ' t  
construct a robust system even in a simple domain then 
that bodes ill for progress in the field. In particular, 
without some working systems, we are very limited in 
how we can evaluate the worth of different models. 

The prime goal of  the work reported here was to 
demonstrate that it is feasible to construct robust 
spoken natural dialogue systems. We were not seeking 
to develop new theories, but rather to develop tech- 
niques to enable existing theories to be applied in 
practice. We chose a domain and task that was as simple 
as possible yet couldn ' t  be solved without the 
collaboration of the human and system. In addition, 
there were three fundamental requirements: 

• the system must run in near real-time; 
• the user should need minimal training and not be 

constrained in what can be said; and 
• the dialogue should have a concrete result that can 

be independently evaluated. 

The second constraint means we must handle natural 
dialogue, namely dialogue as people use it rather than a 
constrained form of interaction determined by the 
system (which is often called a dialogue). We can only 
control the complexity of the dialogue by controlling 
the complexi ty of the task. Increasing the task 
complexity naturally increases the complexity of the 
dialogue. This paper reports on the first stage of this 
process, working with a highly simplified domain. 

At the start of this experiment in November 1994, we 
had no idea whether it was possible. While researchers 
were reporting good accuracy (upwards of 95%) for 
speech systems in simple question-answering tasks, our 
domain was considerably different with a much more 
spontaneous form of interaction. 

We also knew that it would not be possible to directly 
use general models of plan recognition to aid in speech 
act interpretation (as in Alien & Perrault, 1980, Litman 
& Allen 1987, Carberry 1990), as these models would 
not lend themselves to real-time processing. Similarly, 
it would not be feasible to use general planning models 
for the system back-end and for planning its responses. 
We could not, on the other hand, completely abandon the 
ideas underlying the plan-based approach, as we knew of 
no other theory that could provide an account for the 
interactions. Our approach was to try to retain the 
overall structure of plan-based systems, but to use 
domain-specific reasoning techniques to provide real-time 
performance. 

Dialogue systems are notoriously hard to evaluate as 
there is no well-defined "correct answer". So we cannot 
give end-to-end accuracy measures as is typically done to 
measure the performance of speech recognition systems 
and parsing systems. This is especially true when 
evaluating dialogue robustness, which results from many 
different sources: correcting speech recognition errors, 
using semantic knowledge to interpret fragments, and 
using dialogue strategies to keep the dialogue flowing 
efficiently despite recognition and interpretation errors. 

The approach we take is to use task-based evaluation. 
We measure how well the system does at helping the 
user solve the problem. The two most telling measures 
are time-to-completion and the quality of  the final 
solution. In the evaluation described later in this paper, 
we show that all our subjects were able to use TRAINS- 
95 to solve problems with only minimal training. We 
also evaluated the overall effectiveness of our robust 
processing techniques by comparing spoken dialogues 
with keyboard dialogues by the same subjects. Even 
with a 30% word error rate (including insertion errors), 
speech turned out to be considerably more efficient than 
keyboard input in this domain. 

2. T h e  Task and E x a m p l e  Sess ion 

The domain in TRAINS-95 is simple route planning. 
The user is given a map on a screen showing cities, 
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connections and the locations of a set of trains (see 
Figure 1), and a verbal specification of a set of 
destination cities where trains are needed. The task is to 
find the most efficient set of routes possible. The route 
planner used by the system is deliberately weak so that 
interaction is needed to find good plans. Specifically, 
the planner cannot find routes longer than four hops 
without an intermediate city, and when it can generate a 
route, it randomly selects among the possibilities. 

Typically, the examples in papers on dialogue systems 
are carefully hand-constructed and designed to show off 
specific system capabilities. Such examples, however, 
give little feeling for how robust a system is. Much 
more revealing is how a system responds to unplanned 
interactions with naive users, and how it deals with the 
interaction when things start to go wrong. Thus, we 
won't  present any examples in which everything went 
smoothly. Rather, we present a dialogue that stresses 
the system's  capabilities, better illuminating what 
works and what areas require further improvement. 

The dialogue below was with a non-computer person 
who had used the system a few times before. In the 
transcripts, we show the input as it was produced by the 
speech recognizer in ALL CAPS followed by what was 
actually said. I f  the recognition was perfect we just 
show the speech recognition output. The dialogue 
contains a significant number of errors and has a 29.5% 
word error rate. The system display is also shown at key 
points 1. In this problem, the engines start at Detroit, 
Montreal and Albany and the goal is to get trains to 
Milwaukee, Lexington and Washington. 

S: Ok. I think I'm ready to start. 
U" OKAY LET'S SEE CONTAIN FROM DETROIT TO WASHINGTON 

Okay. Let's take a train from Detroit to Washington. 
S: What route would you like to get from Detroit to 

Washington? 
U: LET'S GO VIA TOLEDO AND PITTSBURGH 
S: (displays Figure 2) The terminal at city Scranton is 

delaying traffic due to localized heavy winds. The 
terminal at city Baltimore is delaying traffic due to 
localized heavy winds. An additional five hours will 
be needed to travel through them due to decreased 
visibility. 

U: NOW LET'S TAKE THE TRAIN FROM DETROIT TO 
WASHINGTON D S_X ANY 
No. Let's take the train from Detroit to Washington 
via Cincinnati. 

S: (displays Figure 3) Okay. 
U: OKAY IT THAT'S OKAY NOW 

Okay that - that's okay now 
S: Pardon Me? 
U; UP OKAY NOW LET'S TAKE THE TRAIN FROM MONTREAL TO 

LEXINGTON 
Okay. Now let's take the train from Montreal to 
Lexington. 

' We apologize for the figures. The actual system uses color 
displays. The best way to present examples is by video. A 
quicktime movie can be found in 

http://www.cs.rochester.edu/research/trains/ACL96. 

Figure 1: The initial scenario 

Figure 2: The proposed route 

Figure 3: The corrected route 
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S: I need help choosing a route from Montreal to 
Lexington. 

U- LET'S GO P_M TO TRY 
Let's go via Detroit 

S: (displays a route to Detroit but not on to Lexington) 
Is this OK? 

U: YES NOW LET'S GO TO LEXINGTON 
S: Yep. 
U: OKAY NOW ADD STATE THE LAST TRAIN AND GO FROM 

ALBANY TO O O'S 
Okay Now let's take the last train and go from 
Albany to Milwaukee. 

S: No. What city are you trying to have the engine at 
Montreal arrive at, if I caught your drift. I don't 
understand where we are sending the engine at 
Albany to. 

U: ME A JET ADD ALBANY NEEDS TO GO TO MILWAUKEE 
The engine at Albany needs to go to Milwaukee. 

S: Tell me a route to use to get from Albany to 
Milwaukee, please. 

U" I'D GO VIA BUFFALO 
Uh - Go via Buffalo. 

S: (displays a route through Toronto and Buffalo) Yes. 
U: GO B_X SYRACUSE AT BUFFALO 

Go via Syracuse and Buffalo. 
S: (displays Figure 4) yeah. 
U; THAT'S COULD I CAN 

That's good. I'm done. 
S: Hey, itsthe programming. 
U: I_NEED DONE 

I 'm done. 

3. The System 
The TRAINS-95 system is organized as shown in 
Figure 5. At the top are the I/O facilities. The speech 
recognition system is the Sphinx-II system from CMU 
(Huang et al, 1993). The speech synthesizer is a 
commercial product: the TRUETALK system from 
Entropies. The rest of the system was built at 
Rochester. The display supports a communication 
language that allows other modules to control the 
content of the display. It also handles keyboard input. 
The speech recognition output is passed through the 
post-processor described in section 4. The parser, 
described in section 5, accepts input either from the 
post-processor (for speech) or the display manager (for 
keyboard), and produces a set of speech act 
interpretations that are passed to the discourse manager, 
described in section 6. The discourse manager breaks 
into a range of subcomponents handling reference, 
speech act interpretation and planning (the verbal 
reasoner), and the back-end of the system: the problem 
solver and domain reasoner. When a speech act is 
planned for output, it is passed to the generator, which 
constructs a sentence and passes this to both the speech 
synthesizer and the display. 

The generator is a simple template-based system. It uses 
templates associated with different speech act forms that 
are instantiated with descriptions of the particular 
objects involved. The form of these descriptions is 
defined for each class of objects in the domain. 

Figure 4: The final routes 
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Figure 5 : The TRAINS-95 System Architecture 

In order to stress the system in our robustness 
evaluation, we used the ATIS language model provided 
from CMU. This system yields an overall word error rate 
of 30% on TRAINS-95 dialogues, as opposed to a 20% 
error rate that we can currently obtain by using language 
models trained on our TRAINS corpus. While this 
accuracy rate is significantly lower than often reported in 
the literature, remember that most speech recognition 
results are reported for read speech, or for constrained 
dialogue applications such as ATIS. Natural dialogue 
involves a more spontaneous form of interaction that is 
much more difficult to interpret. 

4. S t a t i s t i c a l  E r r o r  P o s t - C o r r e c t i o n  

The following are examples of speech recognition (SR) 
errors that occurred in the sample dialogue. In each, the 
words tagged REF indicate what was actually said, while 
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those tagged with HYP indicate what the speech 
recognition system proposed, and HYP' indicates the 
output of SPEECHPP, our post-processor. While the 
corrected transcriptions are not perfect, they are typically 
a better approximation of the actual utterance. As the 
first example shows, some recognition errors are simple 
word-for-word confusions: 

HYP: GO B_X SYRACUSE AT BUFFALO 
HYP': GO VIA SYRACUSE VIA BUFFALO 
REF: GO VIA SYRACUSE AND BUFFALO 

In the next example, a single word was replaced by 
more than one smaller word: 

HYP: LET'S GO P_M TO TRY 
HYP': LET'S GO P_M TO DETROIT 
REF: LET'S GO VIA DETROIT 

The post-processor yields fewer errors by effectively 
refining and tuning the vocabulary used by the speech 
recognizer. To achieve this, we adapted some techniques 
from statistical machine translation (such as Brown et 
al., 1990) in order to model the errors that Sphinx-II 
makes in our domain. Briefly, the model consists of 
two parts: a channel model, which accounts for errors 
made by the SR, and the language model, which 
accounts for the likelihood of a sequence of words being 
uttered in the first place. 

More precisely, given an observed word sequence o 
from the speech recognizer, SPEECHPP finds the most 
likely original word sequence by finding the sequence s 
that maximizes Prob(ols) * Prob(s), where 

• Prob(s) is the probability that the user would utter 
sequence s, and 

• Prob(ols) is the probability that the SR produces 
the sequence o when s was actually spoken. 

For efficiency, it is necessary to estimate these 
distributions with relatively simple models by making 
independence assumptions. For Prob(s), we train a 
word-bigram "back-offf language model (Katz, 87) from 
hand-transcribed dialogues previously collected with the 
TRAINS-95 system. For P(ols),  we build a channel 
model that assumes independent word-for-word 
substitutions; i.e., 

Prob(o I s) = 1-I i Prob(oi I si) 

The channel model is trained by automatically aligning 
the hand transcriptions with the output of Sphinx-II on 
the utterances in the (SPEECHPP) training set and by 
tabulating the confusions that occurred. We use a 
Viterbi beam-search to find the s that maximizes the 
expression. This technique is widely known so is not 
described here (see Forney (1973) and Lowerre (1986)). 

Having a relatively small number of TRAINS-95 
dialogues for training, we wanted to investigate how 
well the data could be employed in models for both the 
SR and the SPEECHPP. We ran several experiments to 
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Figure 6: Post-processing Evaluation 

weigh our options. For a baseline, we built a class-based 
back-off language model for Sphinx-II using only 
transcriptions of ATIS spoken utterances. Using this 
model, the performance of Sphinx-II alone on TRAINS- 
95 data was 58.7%. Note that this figure is lower than 
our previously mentioned average of 70%, since we were 
unable to exactly replicate the ATIS model from CMU. 

First, we used varying amounts of training data 
exclusively for building models for the SPEECHPP; 
this scenario would be most relevant if the speech 
recognizer were a black-box and we did not know how to 
train its model(s). Second, we used varying amounts of 
the training data exclusively for augmenting the ATIS 
data to build language models for Sphinx-II. Third, we 
combined the methods, using the training data both to 
extend the language models for Sphinx-II and to then 
train SPEECHPP on the newly trained SR. 

The results of the first experiment are shown by the 
bottom curve of Figure 6, which indicates the 
performance of the SPEECHPP with the baseline 
Sphinx-II. The first point comes from using approx. 
25% of the available training data in the SPEECHPP 
models. The second and third points come from using 
approx. 50% and 75%, respectively, of the available 
training data. The curve clearly indicates that the 
SPEECHPP does a reasonable job of boosting our word 
recognition rates over baseline Sphinx-II  and 
performance improves with additional training data. We 
did not train with all of our available data, since the 
remainder was used for testing to determine the results 
via repeated leave-one-out cross-validation. The error bars 
in the figure indicate 95% confidence intervals. 

Similarly, the results of the second experiment are 
shown by the middle curve. The points reflect the 
performance of Sphinx-II (without SPEECHPP) when 
using 25%, 50%, and 75% of the available training data 
in its LM. These results indicate that equivalent amounts 
of training data can be used with greater impact in the 
language model of the SR than in the post-processor. 

Finally, the outcome of the third experiment is reflected 
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in the uppermost curve. Each point indicates the 
performance of the SPEECHPP using a set of models 
trained on the behavior  of  Sphinx-II  for the 
corresponding point from the second experiment. The 
results from this experiment indicate that even if the 
language model of the SR can be modified, then the 
post-processor trained on the same new data can still 
significantly improve word recognition accuracy on a 
separate test set. Hence, whether the SR's models are 
tunable or not, the post-processor is in neither case 
redundant. 

Since these experiments were performed, we have 
enhanced the channel model by relaxing the constraint 
that replacement errors be aligned on a word-by-word 
basis. We employ a fertility model (Brown et al, 1990) 
that indicates how likely each word is to map to 
multiple words or to a partial word in the SR output. 
This extension allows us to better handle the second 
example above, replacing TO TRY with DETROIT. For 
more details, see Ringger and Allen (1996). 

5. Robust Parsing 
Given that speech recognition errors are inevitable, 
robust parsing techniques are essential. We use a pure 
bottom-up parser (using the system described in (Allen, 
1995)) in order to identify the possible constituents at 
any point in the utterance based on syntactic and 
semantic restrictions. Every constituent in each 
grammar rule specifies both a syntactic category and a 
semantic category, plus other features to encode co- 
occurance restrictions as found in many grammars. The 
semantic features encode selectional restrictions, most 
of which are domain-independent. For example, there is 
no general rule for PP attachment in the grammar. 
Rather there are rules for temporal  adverbial  
modificat ion (e.g., at eight o'clock),  locational 
modification (e.g., in Chicago), and so on. 

The end result of parsing is a sequence of speech acts 
rather than a syntactic analysis. Viewing the output as a 
sequence of speech acts has significant impact on the 
form and style of the grammar. It forces an emphasis on 
encoding semantic and pragmatic features in the 
grammar. There are, for instance, numerous rules that 
encode specific conventional speech acts (e.g., That's 
g o o d is a C O N F I R M ,  O k a y is a 
CONFIRM/ACKNOWLEDGE, Let's go to Chicago is 
a SUGGEST, and so on). Simply classifying such 
utterances as sentences would miss the point. Thus the 
parser  computes  a set of plausible speech act 
interpretation based on the surface form, similar to the 
model described in Hinkelman & Allen (1989). 

We use a hierarchy of speech acts that encode different 
levels of vagueness, including a TELL act that indicates 
content without an identifiable illocutionary force. This 
allows us to always have an illocutionary force that can 
be refined as more of the utterance is processed. The 
final interpretation of an utterance is the sequence of 

speech acts that provides the "minimal covering" of the 
input - i.e., the shortest sequence that accounts for the 
input. Even if an ut terance was comple te ly  
uninterpretable, the parser would still produce output - a 
TELL act with no content. 

For example, consider an utterance from the sample 
dialogue that was garbled: OKAY NOW ! TAKE THE LAST TRAIN 

IN GO FROM ALBANY TO IS. T h e  best sequence of speech a c t s  

to cover this input consists of three acts: 
1. a CONFIRM/ACKNOWLEDGE (OKAY) 
2. a TELL, with content to take the last train (NOW I 

TAKE THE LAST TRAIN) 

3. a REQUEST to go from Albany (Go FROM ALBANY) 

Note that the to is at the end of the utterance is simply 
ignored as it is uninterpretable. While not present in the 
output, the presence of unaccounted words will lower the 
parser ' s  confidence score that it assigns to the 
interpretation. 

The actual utterance was Okay now let's take the last 
train and go from Albany to Milwaukee. Note that while 
the parser is not able to reconstruct the complete 
intentions of the user, it has extracted enough to 
continue the dialogue in a reasonable fashion by 
invoking a clarification subdialogue. Specifically, it has 
correctly recognized the confirmation of the previous 
exchange (act 1), and recognized a request to move a train 
from Albany (act 3). Act 2 is an incorrect analysis, and 
results in the system generating a clarification question 
that the user ends up ignoring. Thus, as far as furthering 
the dialogue, the system has done reasonably well. 

6. Robust Speech Act Processing 
The dialogue manager is responsible for interpreting the 
speech acts in context, formulating responses, and 
maintaining the sys tem's  idea of the state of the 
discourse. It maintains a discourse state that consists of a 
goal stack with similarities to the plan stack of Litman 
& Allen (1987) and the attentional state of Grosz & 
Sidner (1986). Each element of the stack captures 
1. the domain or discourse goal motivating the segment 
2. the object focus and history list for the segment 
3. information on the status of  problem solving 

activity (e.g., has the goal been achieved yet or not). 

A fundamental principle in the design of TRAINS-95 
was a decision that, when faced with ambiguity it is 
better to choose a specific interpretation and run the risk 
of making a mistake as opposed to generating a 
clarification subdialogue. Of course, the success of this 
strategy depends on the system's ability to recognize and 
interpret subsequent corrections if they arise. Significant 
effort was made in the system to detect and handle a wide 
range of corrections, both in the grammar, the discourse 
processing and the domain reasoning. In later systems, 
we plan to specifically evaluate the effectiveness of this 
strategy. 
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The discourse processing is divided into reference 
resolution, verbal reasoning, problem solving and 
domain reasoning. 

Reference resolution, other than having the obvious job 
of identifying the referents of noun phrases, also may 
reinterpret the parser's assignment of illocutionary force 
if it has additional information to draw upon. One way 
we attain robustness is by having overlapping realms of 
responsibility: one module may be able to do a better 
job resolving a problem because it has an alternative 
view of it. On the other hand, i t 's  important to 
recognize another module's expertise as well. It could be 
disastrous to combine two speech acts that arise from I 
really <garbled> think that's good. for instance, since 
the garbled part may include don't. Since speech 
recognition may substitute important words one for the 
other, it 's important to keep in mind that speech acts 
that have no firm illocutionary force due to grammatical 
problems may have little to do with what the speaker 
actually said. 

The verbal reasoner is organized as a set of prioritized 
rules that match patterns in the input speech acts and 
the discourse state. These rules allow robust processing 
in the face of partial or ill-formed input as they match at 
varying levels of  specificity, including rules that 
interpret fragments that have no identified illocutionary 
force. For instance, one rule would allow a fragment 
such as to Avon to be interpreted as a suggestion to 
extend a route, or an identification of a new goal. The 
prioritized rules are used in turn until an acceptable 
result is obtained. 

The problem solver handles all speech acts that appear 
to be requests to constrain, extend or change the current 
plan. It is also based on a set of prioritized rules, this 
time dealing with plan corrections and extensions. 
These rules match against the speech act, the problem 
solving state, and the current state of the domain. I f  
fragmentary information is supplied, the problem solver 
attempts to incorporate the fragment into what it knows 
about the current state of the plan. 

As example of the discourse processing, consider how 
the system handles the user 's first utterance in the 
dialogue, OKAY LET'S SEND CONTAIN FROM DETROIT TO 

WASHINGTOn. From the parser we get three acts: 
I. a CONFIRM/ACKNOWLEDGE (OKAY) 
2. a TELL involving mostly uninterpretable words 

(LET'S SEND CONTAIN) 
3. a TELL act that mentions a route (FROM DETROIT TO 

WASHINGTON) 

The discourse manager sets up its init ial conversation 
state and passes the act to reference for identification of 
particular objects, and then hands the acts to the verbal 
reasoner. Because there is nothing on the discourse 
stack, the initial confirm has no effect. (Had there been 
something on the stack, e.g. a question of a plan, the 

initial confirm might have been taken as an answer to 
the question, or a confirm of the plan, respectively). The 
following empty TELL act is uninterpretable and hence 
ignored. While it is possible to claim the "send" could 
be used to indicate the illocutionary force of  the 
following fragment, and that a "container" might even be 
involved, the fact that the parser separated out the speech 
act indicates there may have been other fragments lost. 
The last speech act could be a suggestion of a new goal 
to move from Detroit to Washington. After checking 
that there is an engine at Detroit, this interpretation is 
accepted. The planner is unable to generate a path 
between these points (since it is greater than four hops). 
It returns two items: 
1. an identification of the speech act as a suggestion of 

a goal to take a train from Detroit to Washington 
2. a signal that it couldn't find a path to satisfy the goal 

The discourse context is updated and the verbal reasoner 
generates a response to clarify the route desired, which is 
realized in the system's response What route would you 
like to get from Detroit to Washington? 

As another example of robust processing, consider an 
interaction later in the dialogue in which the user 's 
response no is misheard as now:Now let's take the train 
from Detroit to Washington do S_X Albany (instead of 
No let's take the train from Detroit to Washington via 
Cincinnati). Since no explicit rejection is identified due 
to the recognition error, this utterance looks like a 
confirm and continuation of the plan. Thus the problem 
solver is called to extend the path with the currently 
focused engine (enginel) from Detroit to Washington. 

The problem solver realizes that enginel isn't  currently 
in Detroit, so this can't be a route extension. In addition, 
there is no other engine at Detroit, so this is not 
plausible as a focus shift to a different engine. Since 
engine l originated in Detroit, it then decides to 
reinterpret the utterance as a correction. Since the 
utterance adds no new constraints, but there are the cities 
that were just mentioned as having delays, it presumes 
the user is attempting to avoid them, and invokes the 
domain reasoner to plan a new route avoiding the 
congested cities. The new path is returned and presented 
to the user. 

While the response does not address the user's intention 
to go through Cincinnati due to the speech recognition 
errors, it is a reasonable response to the problem the user 
is trying to solve. In fact, the user decides to accept the 
proposed route and forget about going through 
Cincinnati. In other cases, the user might persevere and 
continue with another correction such as No, through 
Cincinnati. Robustness arises in the example because 
the system uses its knowledge of the domain to produce 
a reasonable response. Note these examples both 
illustrate the "strong commitment" model. We believe it 
is easier to correct a poor plan, than having to keep 
trying to explain a perfect one, particularly in the face of 
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recognition problems. For further detail on the problem 
solver, see Ferguson et al (1996). 

7. Evaluating the System 
While examples can be illuminating, they don't address 
the issue of how well the system works overall. To 
explore how well the system robustly handles spoken 
dialogue, we designed an experiment to contrast speech 
input with keyboard input. The experiment uses the 
different input media to manipulate the word error rate 
and the degree of spontaneity. Task performance was 
evaluated in terms of two metrics: the amount of time 
taken to arrive at a solution and the quality of the 
solution. Solution quality for our domain is determined 
by the amount of time needed to travel the routes. 

Sixteen subjects for the experiment were recruited from 
undergraduate computer science courses. None of the 
subjects had ever used the system before. The procedure 
was as follows: 

• The subject viewed an online tutorial lasting 2.4 
minutes. 

• The subject was then allowed a few minutes to 
practice both speech and keyboard input. 

• All subjects were given identical sets of 5 tasks to 
perform, in the same order. Half of the subjects were 
asked to use speech first, keyboard second, speech 
third and keyboard fourth. The other half used 
keyboard first and then alternated. All subjects were 
given a choice of whether to use speech or keyboard 
input to accomplish the final task. 

• After performing the final task, the subject 
completed a questionnaire. 

An analysis of the experiment results shows that the 
plans generated when speech input was used are of 
similar quality to those generated when keyboard input 
was used. However, the time needed to develop plans 
was significantly lower when speech input was used. 

Overall, problems were solved using speech in 68% of 
the time needed to solve them using the keyboard. 
Figure 7 shows the task completion time results, and 
Figure 8 gives the solution quality results, each broken 
out by task. 

Of  the 16 subjects, 12 selected speech as the input 
medium for the final task and 4 selected keyboard input. 
Three of the four selecting keyboard input had actually 
experienced better or similar performance using 
keyboard input during the first four tasks. The fourth 
subject indicated on his questionnaire that he believed he 
could solve the problem more quickly using the 
keyboard; however, that subject had solved the two 
tasks using speech input 19% faster than the two tasks 
he solved using keyboard input. 

Figure 7: Time to Completion by Task 
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Figure 8 : Length of Solution by Task 

Of the 80 tasks attempted, there were 7 in which the 
stated goals were not met. In each unsuccessful attempt, 
the subject was using speech input. There was no 
particular task that was troublesome and no particular 
subject that had difficulty. Seven different subjects had a 
task where the goals were not met, and each of the five 
tasks was left unaccomplished at least once. 

A review of the transcripts for the unsuccessful attempts 
revealed that in three cases, the subject misinterpreted the 
system's actions, and ended the dialogue believing the 
goals were met. Each of the other four unsuccessful 
attempts resulted from a common sequence of events: 
after the system proposed an inefficient route, word 
recognition errors caused the system to misinterpret 
rejection of the proposed route as acceptance. The 
subsequent subdialogues intended to improve the route 
were interpreted to be extensions to the route, causing 
the route to "overshoot" the intended destination. 

This suggests that, while our robustness techniques were 
effective on average, the errors do create a higher variance 
in the effectiveness of the interaction. These problems 
reveal a need for better handling of corrections, especially 
as resumptions of previous topics. More details on the 
evaluation can be found in (Sikorski & Allen, 
forthcoming). 

8. D i s c u s s i o n  

There are few systems that at tempt to handle 
unconstrained natural dialogue. In most current speech 
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systems, the interaction is driven by a template filling 
mechanism (e.g., the ATIS systems (ARPA, 1995), 
BeRP (Jurafsky et al, 1994), Pegasus (Seneff et al, 
1995)). Some of these systems support system-initiated 
questions to elicit missing information in the template, 
but that is the extent of the mixed initiative interaction. 
Specifically, there is no need for goal management 
because the goal is fixed throughout the dialogue. In 
addition, there is little support for clarification and 
correction subdialogues. The Duke system (Smith and 
Hipp, 1994) uses a more general model based on a 
reasoning system, but allows only a limited vocabulary 
and grammar and requires extensive training to use. 

Our approach here is clearly bottom-up. We have 
attempted to build a fully functional system in the 
simplest domain possible and focused on the problems 
that most significantly degraded overall performance. 
This leaves us open to the criticism that we are not 
using the most sophisticated models available. For 
instance, consider our generation strategy. Template- 
based generation is clearly inadequate for many 
generation tasks. In fact, when starting the project we 
thought generation would be a major problem. 
However, the problems we expected have not arisen. 
While we could clearly improve the output of the 
system even in this small domain, the current generator 
does not appear to drag the system's performance down. 
We approached other problems similarly. We tried the 
simplest approaches first and then only generalized 
those algorithms whose inadequacies clearly degrade the 
performance of the system. 

Likewise, we view the evaluation as only a very 
preliminary first step. While our evaluation appears 
similar to HCI experiments on whether speech or 
keyboard is a more effective interface in general (cf. 
Oviatt and Cohen, 1991), this comparison was not our 
goal. Rather, we used the modality switch as a way of 
manipulating the error rate and the degree of 
spontaneity. While keyboard performance is not perfect 
because of typos (we had a 5% word error rate on 
keyboard), it is considerably less error prone than 
speech. All we conclude from this experiment is that 
our robust processing techniques are sufficiently good 
that speech is a viable interface in such tasks even with 
high word error rates. In fact, it appears to be more 
efficient in this application than keyboard. In contrast to 
the results of Rudnicky (1993), who found users 
preferred speech even when less efficient, our subjects 
generally preferred the most efficient modality for them 
(which in a majority of cases was speech). 

Despite the limitations of the current evaluation, we are 
encouraged by this first step. It seems obvious to us 
that progress in dialogue systems is intimately tied to 
finding suitable evaluation measures. And task-based 
evaluation seems one of the most promising candidates. 
It measures the impact of proposed techniques directly 
rather than indirectly with an abstract accuracy figure. 

Another area where we are open to criticism is that we 
used algorithms specific to the domain in order to 
produce effective intention recognition, disambiguation, 
and domain planning. Thus, the success of the system 
may be a result of the domain and say little about the 
plan-based approach to dialogue. To be honest, with the 
current system, it is hard to defend ourselves against 
this. This is is a first step in what we see as a long 
ongoing process. To look at it another way: if we 
couldn't  build a successful system by employing 
whatever means available, then there is little hope for 
finding more effective general solutions. 

We are addressing this problem in our current research: 
we are developing a domain-independent plan reasoning 
"shell" that manages the plan recognition, evaluation and 
construction around which the dialogue system is 
structured. This shell provides the abstract model of 
problem solving upon which the dialogue manager is 
built. It is then instantiated by domain specific reasoning 
algorithms to perform the actual searches, constraint 
checking and intention recognition for a specific 
application. The structure of the model remains constant 
across domains, but the actual details of constructing 
plans remain domain specific. 

Our next iteration of this process, TRAINS-96, involves 
adding complexity to the dialogues by increasing the 
complexity of the task. Specifically, we are adding 
distances and travel times between cities, several new 
modes of transportation (trucks and planes) with 
associated costs, and simple cargoes to be transported and 
possibly transferred between different vehicles. The 
expanded domain will require a much more sophisticated 
ability to answer questions, to display complex 
information concisely, and will stress our abilities to 
track plans and identify focus shifts. 

While there are clearly many places in which our current 
system requires further work, it does set a new standard 
for spoken dialogue systems. More importantly, it 
allows us to address new research issues in a much more 
systematic way, supported by empirical evaluation. 
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Appendix A: Transcript of post- 
processor repairs in the dialogue. 
HYP: OKAY LET'S SEE CONTAIN FROM DETROIT TO WASHINGTON 
HYP': OKAY LET'S SEND CONTAIN FROM DETROIT TO 

WASHINGTON 
REF: OKAY LET'S TAKE THE TRAIN FROM DETROIT TO 

WASHINGTON 

HYP: LET'S GO VIA TOLEDO AND PITTSBURGH 
HYP': LET'S GO VIA TOLEDO AND PITTSBURGH 
REF: LET'S GO VIA TOLEDO AND PII-rSBURGH 

HYP: NOW LET'S TAKE THE TRAIN FROM DETROIT TO 
WASHINGTON D S_X ANY 

HYP': NOW LET'S TAKE THE TRAIN FROM DETROIT TO 
WASHINGTON DO S_X ALBANY) 

REF: NO LET'S TAKE THE TRAIN FROM DETROIT TO WASHINGTON 
VIA CINCINNATI 

HYP: OKAY IT THAT'S OKAY NOW 
HYP': OKAY IT THAT'S OKAY NOW 
REF: OKAY THAT- THAT'S OKAY NOW 

HYP: UP OKAY NOW LET'S TAKE THE TRAIN FROM MONTREAL TO 
LEXINGTON 

HYP': UP OKAY NOW LET'S TAKE THE TRAIN FROM MONTREAL TO 
LEXINGTON 

REF: OKAY NOW LET'S TAKE THE TRAIN FROM MONTREAL TO 

LEXINGTON 

HYP: LET'S GO P_M TO TRY 
HYP': LET'S GO P_M TO DETROIT 
REF: LET'S GO VIA DETROIT 

HYP: YES NOW LET'S GO TO LEXINGTON 
HYP': YES NOW LET'S GO TO LEXINGTON 
REF: YES NOW LET'S GO TO LEXINGTON 

HYP: OKAY NOW ADD STATE THE LAST TRAIN AND GO FROM 
ALBANY TO O_O'S 

HYP': OKAY NOW I TAKE THE LAST TRAIN IN GO FROM ALBANY TO 
IS 

REF: OKAY NOW LET'S TAKE THE LAST TRAIN AND GO FROM 
ALBANY TO MILWAUKEE 

HYP: ME A JET ADD ALBANY NEEDS TO GO TO MILWAUKEE 
HYP': ME THE JET AT ALBANY INSTEAD TO GO TO MILWAUKEE 
REF: THE ENGINE AT ALBANY NEEDS TO GO TO MILWAUKEE 

HYP: I'D GO VIA BUFFALO 
HYP': UH GO VIA BUFFALO 
REF: UH GO VIA BUFFALO 

HYP: GO B X SYRACUSE AT BUFFALO 
HYP': GO VIA SYRACUSE VIA BUFFALO 
REF: GO VIA SYRACUSE AND BUFFALO 

HYP: THAT'S COULD I CAN 
HYP': THAT'S GREAT UH CAN 
REF: THAT'S GOOD I'M DONE 

HYP: I_NEED DONE 
HYP': I'M DONE 
REF: I'M DONE 
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