
Conciseness through Aggregation in Text Generation

J a m e s S h a w

D e p t . of C o m p u t e r S c i e n c e

C o l u m b i a U n i v e r s i t y

N e w York , N Y 10027, U S A

shaw~cs, columbia, edu

A b s t r a c t

Aggregating different pieces of similar in-
formation is necessary to generate concise
and easy to understand reports in techni-
cal domains. This paper presents a general
algorithm that combines similar messages
in order to generate one or more coherent
sentences for them. The process is not as
trivial as might be expected. Problems en-
countered are briefly described.

1 M o t i v a t i o n
Aggregation is any syntactic process that allows the
expression of concise and tightly constructed text
such as coordination or subordination. By using the
parallelism of syntactic structure to express similar
information, writers can convey the same amount
of information in a shorter space. Coordination
has been the object of considerable research (for an
overview, see (van Oirsouw87)). In contrast to lin-
guistic approaches, which are generally analytic, the
t reatment of coordination in this paper is from a
synthetic point of view - - text generation. It raises
issues such as deciding when and how to coordinate.
An algorithm for generating coordinated sentences is
implemented in PLANDoc (Kukich et al.93; McKe-
own et ah94), an automated documentation system.

PLANDoc generates natural language reports
based on the interaction between telephone planning
engineers and LEIS-PLAN 1, a knowledge based sys-
tem. Input to PLANDoc is a series of messages, or
semantic functional descriptions (FD, Fig. 1). Each
FD is an atomic decision about telephone equipment
installation chosen by a planning engineer. The do-
main of discourse is currently limited to 31 mes-
sage types, but user interactions include many vari-
ations and combinations of these messages. Instead
of generating four separate messages as in Fig. 2,
PLANDoc combines them and generates the follow-
ing two sentences: "This refinement activated DLC
for CSAs 3122 and 3130 in the first quarter of 1994

1LEIS is a registered trademark of Bell Communica-
tions Research, Piscataway, NJ.

and ALL-DLC for CSA 3134 in 1994 Q3. It also
activated DSS-DLC for CSA 3208 in 1994 Q3."

2 S y s t e m A r c h i t e c t u r e
Fig. 3 is an overview of PLANDoc's architecture.
Input to the message generator comes from LEIS-
PLAN tracking files which record user's actions dur-
ing a planning session. The ontologizer adds hier-
archical structure to messages to facilitate further
processing. The content planner organizes the over-
all narrative and determines the linear order of the
messages. This includes combining atomic messages
into aggregated messages, choosing cue words, and
determining paraphrases that maintain focus and
ensure coherence. Finally the F U F / S U R G E pack-
age (Elhadad91; Robin94) lexicalizes the messages
and maps case roles into syntactic roles, builds the
constituent structure of the sentence, ensures agree-
ment, and generates the surface sentences.

3 C o m b i n i n g S t r a t e g y
Because PLANDoc can produce many paraphrases
for a single message, aggregation during the syntac-
tic phase of generation would be difficult; semanti-
cally similar messages would already have different
surface forms. As a result, aggregation in PLANDoc
is carried out at the content planning level using se-
mantic FDs. Three main criteria were used to design
the combining strategy:

1. d o m a i n i n d e p e n d e n c e : the algorithm should
be applicable in other domains.

2. g e n e r a t i n g t h e m o s t co n c i s e t e x t : it should
avoid repetition of phrases to generate shortest
text.

((ca t message)
(admin ((PLANDoc-message-name RDA)

(runid r - r e g l)))
(c lass refinement)
(ac t ion ac t iva t ion)
(equipment-type a l l - d l c)
(c s a - s i t e 3134)
(date ((year 1994) (quar ter 3))))

Figure h Output of the Message Generator

329

This ref inement a c t i v a t e d ALL-DLC fo r CSA 3134 in 1994 Q3.
This ref inement a c t i v a t e d DLC fo r CSA 3130 in 1994 Q1.
This ref inement a c t i v a t e d DSS-DLC for CSA 3208 in 1994 Q3.
This ref inement a c t i v a t e d DLC fo r CSA 3122 in 1994 Q1.
Equipment: El= ALL-DLC, E2= DLC, E3= DSS-DLC

Site: SI= CSA 3122, $2= CSA 3130, $3= CSA 3134, $4= CSA 3208
Date: DI= 1994 Q1, D2= 1994 Q3

Figure 2: Unaggregated Text Output

(El $3 D2)
(E2 $2 D1)
(E3 S4 D2)
(E2 S1D1)

LEIS- [Message
PLAN , Generator

(C) (C)
Ontologizer(FUF) ~ Contentplanner(Lisp) , Lexica/izer(FUF)

Figure 3: PLANDoc System Architecture

Surface
Generator
(SURGE)

PLANDoc
Narrative

(text)

3. a v o i d a n c e o f o v e r l y - c o m p l e x s e n t e n c e s : it
should not generate sentences tha t are too com-
plex or ambiguous for readers.

The first aggregation step is to identify semantically
related messages. This is done by grouping messages
with the same action at tr ibute. Then the system at-
t empts to generate concise and unambiguous text
for each action group separately. This reduces the
problem size from tens of messages into much smaller
sizes. Though this heuristic disallows the combina-
tion of messages with different actions, the messages
in each action group already contain enough infor-
mat ion to produce quite complex sentences.

The system combines the m a x i m u m number of re-
lated messages to meet the second design cri terion-
generating the most concise text. But such combi-
nation is blocked when a sentence becomes too com-
plex. A bo t tom-up 4-step algori thm was developed:

1. S o r t i n g : put t ing similar messages right next to
each other.

2. M e r g i n g S a m e A t t r i b u t e : combining adja-
cent messages tha t only have one distinct at-
tribute.

3. I d e n t i t y D e l e t i o n : deletion of identical com-
ponents across messages.

4. S e n t e n c e B r e a k i n g : determining sentence
breaks.

3.1 S t e p h S o r t i n g

The system first ranks the at tr ibutes to determine
which are most similar across messages with the
same action. For each potential distinct at tr ibute,
the system calculates its rank using the formula
m - d, where m is the number of messages and d
is the number of distinct a t t r ibutes for that par-
ticular at tr ibute. The rank is an indicator of how
similar an a t t r ibute is across the messages. Com-
bining messages according to the highest ranking
a t t r ibute ensures tha t min imum text will be gen-
erated for these messages. Based on the ranking,
the system reorders the messages by sorting, which

(E2 S1D1) (El S3 D2) (E2 S1D1)
(E2 $2 D1) (E2 S1D1) (E2 S2 D1)
(El $3 D2) - -> (E2 $2 D1) - -> (El $3 D2)
(E3 $4 D2) (E3 $4 D2) (E3 $4 D2)
by Site by Equipment by Date

Figure 4: Step 1. Sorting

puts the messages tha t have the same at t r ibute right
next to each other. In Fig. 2, equipment has rank
1 because it has 3 distinct equipment values - ALL-
DLC, DLC, and DSS-DLC; date has rank 2 because
it has two distinct date values - 1994 Q1 and 1994
Q3; site has rank 0. At t r ibute class and action (Fig.
1) are ignored because they are always the same at
this stage. When two at t r ibutes have the same rank,
the system breaks the tie based on a priority hierar-
chy determined by the domain experts. Because the
final sorting operat ion dominates the order of the
resulting messages, PLANDoc sorts the message list
f rom the lowest rank at t r ibute to the highest. In this
case, the ordering for sorting is site, equipment, and
then date. The resulting message list after sorting
each at t r ibute is shown in Fig. 4.

3.2 S t e p 2: M e r g i n g S a m e A t t r i b u t e

The list of sorted messages is traversed. When-
ever there is only one distinct a t t r ibute between
two adjacent messages, they are merged into one
message with a conjoined at t r ibute , which is a
list of the distinct a t t r ibutes from both messages.
Wha t about messages with two or more distinct at-
tr ibutes? Merging two messages with two or more
distinct a t t r ibutes will result in a syntactically valid
sentence but with an undesirable meaning: "*This
refinement activated ALL-DLC and DSS-DLC for
CSAs 3122 and 3130 in the third quarter of 1993."

By tracking which a t t r ibute is compound, a third
message can be merged into the aggregate message
if it also has the same distinct a t t r ibute . Continue
from Step 1, (E2 S1 D1) and (E2 $2 D1) are merged
because they have only one distinct a t t r ibute , site.
A new FD, (E2 (S1 $2) D1), is assembled to replace

330

those two messages. Note that although (El $3 D2)
and (E3 $4 D2) have the date in common, they are
not combined because they have more than one dis-
tinct attribute, site and equipment.

Step 2 is applied to the message list recursively
to generate possible crossing conjunction, as in the
following output which merges four messages: "This
refinement activated ALL-DLC and DSS-DLC for
CSAs 3122 and 3130 in the third quarter of 1993."
Though on the outset this phenomenon seems un-
likely, it does happen in our domain.

3.3 S t e p 3: I d e n t i t y D e l e t i o n

After merging at step 2, the message list left in an
action group either has only one message, or it has
more than one message with at least two distinct
attributes between them. Instead of generating two
separate sentences for (E2 (S1 $2) D1) and (El $3
D2), the system realizes that both the subject and
verb are the same, thus it uses deletion on identity to
generate "This refinement activated DLC for CSAs
3122 and 3130 in 1994 Q1 and [this refinement ac-
tivated] ALL-DLC for CSA 3134 in 1994 Q3." For
identical attributes across two messages (as shown
in the bracketed phrase), a "deletion" feature is in-
serted into the semantic FD, so that SURGE will
suppress the output .

3.4 S t e p 4: S e n t e n c e B r e a k

Applying deletion on identity blindly to the whole
message list might make the generated text incom-
prehensible because readers might have to recover
too much implicit information from the sentence.
As a result, the combining algorithm must have a
way to determine when to break the messages into
separate sentences that are easy to understand and
unambiguous.

How much information to pack into a sentence
does not depend on grammaticality, but on coher-
ence, comprehensibility, and aesthetics which are
hard to formalize. PLANDoc uses a heuristic that
always joins the first and second messages, and con-
tinues to do so for third and more if the distinct
attributes between the messages are the same. This
heuristics results in parallel syntactic structure and
the underlying semantics can be easily recovered.
Once the distinct attributes are different from the
combined messages, the system starts a new sen-
tence. Using the same example, (E2 (S1 $2) D1) and
(El $3 D2) have three distinct attributes. They are
combined because they are the first two messages.
Comparing the third message (E3 $4 D2) to (El $3
D2), they have different equipment and site, but not
date, so a sentence break will take place between
them. Aggregating all three messages together will
results in questionable output. Because of the par-
allel structure created between the first 2 messages,
readers are expecting a different date when reading
the third clause. The second occurrence of "1994

Q3" in the same sentence does not agree with read-
ers' expectation thus potentially confusing.

4 F u t u r e D i r e c t i o n s
In this paper, I have described a general algorithm
which not only reduces the amount of the text pro-
duced, but also increases the fluency of the text.
While other systems do generate conjunctions, they
deal~vith restricted cases such as conjunction of sub-
jects and predicates(Dalianis~zHovy93). There are
other interesting problems in aggregations. Gener-
ating marker words to indicate relationships in con-
joined structures, such as "respectively", is another
short term goal. Extending the current aggregation
algorithm to be more general is currently being in-
vestigated, such as combining related messages with
different actions.

5 A c k n o w l e d g e m e n t s
The author thanks Prof. Kathleen McKeown, and
Dr. Karen Kukich at Bellcore for their advice and
support. This research was conducted while sup-
ported by Bellcore project ~CU01403301A1, and
under the auspices of the Columbia University CAT
in High Performance Computing and Communica-
tions in Healthcare, a New York State Center for
Advanced Technology supported by the New York
State Science and Technology Foundation.

R e f e r e n c e s
Dalianis, Hercules, and Hovy, Edward. 1993. Ag-

gregation in Natural Language Generation. In
Proceedings of the Fourth European Workshop on
Natural Language Generation, Pisa, Italy.

Elhadad, Michael. 1991. FUF: The universal unifier
- user manual, version 5.0. Tech Report CUCS-
038-91, Columbia Univ.

Robin, Jacques. 1994. Revision-Based Generation
of Natural Language Summaries Providing Histor-
ical Background: Corpus-based analysis, design,
implementation and evaluation. Ph.D. thesis,
Computer Science Department, Columbia Univ.

Kukieh, K., McKeown, K., Morgan, N., Phillips, J.,
Robin, J., Shaw, J., and Lim, :I. 1993. User-Needs
Analysis and Design Methodology for an Auto-
mated Documentation Generator. In Proceedings
of the Fourth Bellcore/BCC Symposium on User-
Centered Design, Piseataway, NJ.

McKeown, Kathleen, Kukich, Karen, and Shaw,
James. 1994. Practical Issues in Automatic Doc-
umentation Generation. In Proceedings of the ~,th
Conference on Applied Natural Language Process-
ing, Stuttgart , p.7-14.

van Oirsouw, Robert. 1987. The Syntax of Coordi-
nation Beckenham: Croom Helm.

331

