
The Replace Operator

Lauri Karttunen
Rank Xerox Research Centre

6, chemin de Maupertuis
F-38240 Meylan, France

lauri, karttunen@xerox, fr

A b s t r a c t

This paper introduces to the calculus of
regular expressions a replace operator and
defines a set of replacement expressions
that concisely encode alternate variations
of the operation. Replace expressions de-
note regular relations, defined in terms of
other regular expression operators. The
basic case is unconditional obligatory re-
placement. We develop several versions of
conditional replacement that allow the op-
eration to be constrained by context

O. Introduction

Linguistic descriptions in phonology, morphology,
and syntax typically make use of an operation that
replaces some symbol or sequence of symbols by
another sequence or symbol. We consider here the
replacement operation in the context of finite-state
grammars.

Our purpose in this paper is twofold. One is to
define replacement in a very general way, explicitly
allowing replacement to be constrained by input
and ou tpu t contexts, as in two-level rules
(Koskenniemi 1983), but without the restriction of
only single-symbol replacements. The second ob-
jective is to define replacement within a general
calculus of regular expressions so that replace-
ments can be conveniently combined with other
kinds of operations, such as composition and un-
ion, to form complex expressions.

Our replacement operators are close relatives of the
rewrite-operator defined in Kaplan and Kay 1994,
but they are not identical to it. We discuss their
relationship in a section at the end of the paper.

0. 1. Simple regular expressions

The replacement operators are defined by means of
regular expressions. Some of the operators we use

to define them are specific to Xerox implementa-
tions of the finite-state calculus, but equivalent
formulations could easily be found in other nota-
tions.

The table below describes the types of expressions
and special symbols that are used to define the
replacement operators.

[1]
(A) option (union of A with the

empty string)
~A complement (negation)
\A term complement (any symbol

other than A)
$A contains (all strings containing at

least one A)
A* Kleene star
A+ Kleene plus
A/B ignore (A interspersed with

strings from B)
A B concatenation
A [B union
A & B intersection
A - B relative complement (minus)
A . x . B crossproduct (Cartesian product)
A . o. B composition

Square brackets, [l , are used for grouping expres-
sions. Thus [AI is equivalent to A while (A) is not.
The order in the above table corresponds to the
precedence of the operations. The prefix operators
(- , \ , and $) bind more tightly than the postfix
operators (*, +, a n d /) , which in turn rank above
concatenation. Union, intersection, and relative
complement are considered weaker than concate-
nation but stronger than crossproduct and compo-
sition. Operators sharing the same precedence are
interpreted left-to-right. Our new replacement
operator goes in a class between the Boolean op-
erators and composition. Taking advantage of all
these conventions, the fully bracketed expression

[2]
[[[~[all* [[b]/x]] I el .x. d ;

16

can be rewritten more concisely as

~a* b/x I c .x. d

[31

Expressions that contain the crossproduct (. x .) or
the composition (. o .) operator describe regular
relations rather than regular languages. A regular
relation is a mapping from one regular language to
another one. Regular languages correspond to
simple finite-state automata; regular relations are
modeled by finite-state transducers. In the relation
a . x . B, we call the first member, A, the uppe r
language and the second member, B, the lower lan-
guage.

To make the notation less cumbersome, we sys-
tematically ignore the distinction between the lan-
guage A and the identity relation that maps every
string of A to itself. Correspondingly, a simple au-
tomaton may be thought of as representing a lan-
guage or as a transducer for its identity relation.
For the sake of convenience, we also equate a lan-
guage consisting of a single string with the string
itself. Thus the expression a b c may denote, de-
pending on the context, (i) the string abc , (ii) the
language consisting of the string abc, and (iii) the
identity relation on that language.

We recognize two kinds of symbols: simple sym-
bols (a, b, c, etc.) and fst pairs (a : b, y : z, etc.). An
fst pair a : b can be thought of as the crossproduct
of a and b, the minimal relation consisting of a (the
upper symbol) and b (the lower symbol). Because
we regard the identity relation on A as equivalent
to A, we write a : a as just a. There are two special
symbols

[4]
0 epsilon (the empty string).
? any symbol in the known alphabet and its

extensions.

The escape character, %, allows letters that have a
special meaning in the calculus to be used as ordi-
nary symbols. Thus %& denotes a literal ampersand
as opposed to &, the intersection operator; %0 is the
ordinary zero symbol.

The following simple expressions appear fre-
quently in our formulas:

[5]
[] the empty string language.
~ $ [] the null set.

?* the universal ("sigma-star") language: all
possible strings of any length including the
empty string.

1. Unconditional replacement

To the regular-expression language described
above, we add the new replacement operator. The
unconditional replacement of UPPER by LOWER is
written

[6]
UPPER -> LOWER

Here UPPER and LOWER are any regular expres-
sions that describe simple regular languages. We
define this replacement expression as

[71
[NO UPPER [UPPER .x. LOWER]] *

NO UPPER ;

where NO UPPER abbreviates ~$ [UPPER - []].
The d e f i ~ i o n describes a regular relation whose
members contain any number (including zero) of
iterations of [UPPER . x . LOWER], possibly alter-
nating with strings not containing UPPER that are
mapped to themselves.

1.1. Examples

We illustrate the meaning of the replacement op-
erator with a few simple examples. The regular
expression

[8]
a b I c -> x ;

(same as [[a b] [c] -> x)

describes a relation consisting of an infinite set of
pairs such as

[9]
a b a c a

x a x a

where all occurrences of ab and c are mapped to x
interspersed with unchanging pairings. It also in-
dudes all possible pairs like

[101
x a x a

x a x a

that do not contain either ab or c anywhere.

Figure 1 shows the state diagram of a transducer
that encodes this relation. The transducer consists
of states and arcs that indicate a transition from

17

state to state over a given pair of symbols. For con-
venience we represent identity pairs by a single
symbol; for example, we write a : a as a. The sym-
bol ? represents here the identity pairs of symbols
that are not explicitly present in the network. In
this case, ? stands for any identity pair other than
a : a, b : b, c : c, and x : x. Transitions that differ
only with respect to the label are collapsed into a
single multiply labelled arc. The state labeled 0 is
the start state. Final states are distinguished by a
double circle.

? C : ~ a

C:X - -

Figure 1: a b I c -> x

Every pair of strings in the relation corresponds to
a path from the initial 0 state of the transducer to a
final state. The a b a c a to x a x a path is 0 - 1 - 0 - 2 -
0-2, where the 2 -0 transition is over a c : x arc.

In case a given input string matches the replace-
ment relation in two ways, two outputs are pro-
duced. For example,

[111
a b] b c -> x ;

c ?

Figure 2: a b [b c - > x

maps abc to both ax and xc:

a b c , a b c

a x x c

[121

The corresponding transducer paths in Figure 2 are
0 - 1 - 3 - 0 and 0 - 2 - 0 - 0 , where the last 0 -0 transi-
tion is over a c arc.

If this ambiguity is not des i rable , we may write
two replacement expressions and compose them to
indicate which replacement should be preferred if a
choice has to be made. For example, if the ab match
should have precedence, we write

[13]
a b - > x

o0o
b c -> x ;

a:x

X X

Figure3: a b -> x . o . b c -> x

This composite relation produces the same output
as the previous one except for strings like a bc
where it unambiguously makes only the first re-
placement, giving xc as the output. The a b e to xc
path in Figure 3 is 0 - 2 - 0 - 0 .

1.2. Special cases

Let us illustrate the meaning of the replacement
operator by considering what our definition im-
plies in a few spedal cases.

If UPPER is the empty set, as in

[] -> a [b

[141

the expression compiles to a transducer that freely
inserts as and bs in the input string.

If UPPER describes the null set, as in,

~$[] -> a [b ;
[151

18

the LOWER part is irrelevant because there is no
replacement. This expression is a description of the
sigma-star language.

If LOWER describes the empty set, replacement be-
comes deletion. For example,

[16]
a I b-> []

removes all as and bs from the input.

If LOWER describes the null set, as in

a [b -> ~$[] ;
[17]

all strings containing UPPER, here a or b, are ex-
cluded from the upper side language. Everything
else is mapped to iiself. An equivalent expression is
~$ [a [b].

1.3. Inverse replacement

The inverse replacement operator.

UPPER <- LOWER
[18]

is defined as the inverse of the relation LOWER ->
UPPER.

1.4. Optional replacement

An optional version of unconditional replacement
is derived simply by augmenting LOWER with UP-
PER in the replacement relation.

[19]
UPPER (->) LOWER

is defined as

UPPER -> [LOWER [UPPER]

[20]

The optional replacement relation maps UPPER to
both LOWER and UPPER. The optional version of < -
is defined in the same way.

2. Conditional replacement

We now extend the notion of simple replacement
by allowing the operation to be constrained by a
left and a right context. A conditional replacement
expression has four components: UPPER, LOWER,
LEFT, and RIGHT. They must all be regular expres-
sions that describe a simple language. We write the
replacement part UPPER -> LOWER, as before, and

the context part as LEFT _ RIGHT, where the
underscore indicates where the replacement takes
place.

In addition, we need a separator between the re-
placement and the context part. We use four alter-
nate separators, [I, / / , \ \ and \ / , which gives rise
to four types of conditional replacement expres-
sions:

[21l
(1) Upward-oriented:
UPPER -> LOWER J[LEFT RIGHT ;

(2) Right-oriented:
UPPER-> LOWER // LEFT RIGHT ;

(3) Left-oriented:
UPPER -> LOWER \\ LEFT RIGHT ;

(4) Downward-oriented:
UPPER -> LOWER \/ LEFT RIGHT ;

All four kinds of replacement expressions describe
a relation that maps UPPER to LOWER between
LEFT and RIGHT leaving everything else un-
changed. The difference is in the intelpretation of
'%etween LEFT and RIGHT."

2.1. Overview: divide and conquer

We define UPPER-> LOWER l[LEFT RIGHT

and the other versions of conditional replacement

in terms of expressions that are already in our regu-
lar expression language, including the uncondi-
tional version just defined. Our general intention is
to make the conditional replacement behave ex-
actly like unconditional replacement except that the
operation does not take place unless the specified
context is present.

This may seem a simple matter but it is not, as
Kaplan and Kay 1994 show. There are several
sources of complexity. One is that the part that is
being replaced may at the same time serve as the
context of another adjacent replacement. Another
complication is the fact just mentioned: there are
several ways to constrain a replacement by a con-
text.

We solve both problems using a technique that was
originally invented for the implementat ion of
phonological rewrite rules (Kaplan and Kay 1981,
1994) and later adapted for two-level rules (Kaplan,
Karttunen, Koskenniemi 1987; Kar t tunen and

19

Beesley 1992). The strategy is first to decompose the
complex relation into a set of relatively s imple
components, define the components independently
of one another, and then define the whole opera-
tion as a composit ion of these auxiliary relations.

We need six intermediate relations, to be defined
shortly:

[22]
(1) InsertBrackets
(2) ConstrainBrackets
(3) LeftContext
(4) RightContext
(5) Replace
(6) RemoveBrackets

Relations (1), (5), and (6) involve the unconditional
replacement operator defined in the previous sec-
tion.

Two auxiliary symbols, < and >, are introduced in
(1) and (6). The left bracket, <, indicates the end of a
left context. The right bracket, >, marks the begin-
ning of a complete right context. The distribution of
the auxiliary brackets is controlled by (2), (3), and
(4). The relations (1) and (6) that introduce the
brackets internal to the composit ion at the same
time remove them from the result.

2.2. Basic defini t ion

The full spedfication of the six component relations
is given below. Here UPPER, LOWER, LEFT, and
RIGHT are placeholders for regular expressions of
any complexity.

In each case we give a regular expression that pre-
cisely defines the component followed by an Eng-
lish sentence describing the same language or rela-
tion. In our regular expression language, we have
to prefix the auxiliary context markers with the
escape symbol % to dist inguish them from other
uses of < and >.

[23]
(1) InsertBrackets

[] <- %< 1%> ;

The relation that eliminates from the upper side lan-
guage all context markers that appear on the lower
side.

[24]
(2) ConstrainBrackets

~$ [%< %>] ;

The language consisting of strings that do not contain
<> anywhere.

[2s]
(3) LeftContext

-[-[...LEFT] [<...]] &
~[[...LEFT] ~[<...]] ;

The language in which any instance of < is immedi-
ately preceded by LEFT, and every LEFT is ii~iedi-
ately followed by <, ignoring irrelevant brackets.

Here [...LEFT] is an abbreviation for [[?*
LEFT/[%<I%>]] - [2" %<]], that is, anystring
ending in LEFT, ignoring all brackets except for a
final <. Similarly, [%<...] stands for [%</%>
? *], any string beginning with <, ignoring the
other bracket.

[26]
(4) RightContext

~[[...>] -[RIGHT...] &
~[~[...>] [RIGHT...] ;

The language in which any instance of > is immedi-
ately followed by RIGHT, and any RIGHT is immedi-
ately preceded by >, ignoring irrelevant brackets.

Here [...>] abbreviates [?* %>/%<], and
RIGHT... stands for [RIGHT/ [%< 1%>] - [%>
? *]], that is, any string beginning with RIGHT,
ignoring all brackets except for an initial >.

[27]
(5) Replace

%< UPPER/[%<I %>] %>
->

%< LOWER/ [%< I %>] %> ;

The unconditional replacement of <UPPER> by
<LOWER>, ignoring irrelevant brackets.

The redundant brackets on the lower side are im-
portant for the other versions of the operation.

[28]
(6) RemoveBrackets

%< t % > - > [] ;

20

The relation that maps the strings of the upper lan-
guage to the same strings without any context mark-
ers.

The upper side brackets are eliminated by the in-
verse replacement defined in (1).

2.3. Four ways of using contexts

The complete definition of the first version of con-
ditional replacement is the composition of these six
relations:

[29]
UPPER -> LOWER [l LEFT RIGHT ;

InsertBrackets

oO.

ConstrainBrackets

oO.

LeftContext

°O.

RightContext

.Oo

Replace

oO.

RemoveBrackets ;

The composition with the left and right context
constraints prior to the replacement means that any
instance of UPPER that is subject to replacement is
surrounded by the proper context on the upper
side. Within this region, replacement operates just
as it does in the unconditional case.

Three other versions of conditional replacement
can be defined by applying one, or the other, or
both context constraints on the lower side of the
relation. It is done by varying the order of the three
middle relations in the composition. In the right-
oriented version (/ /) , the left context is checked on
the lower side of replacement:

[30]
UPPER -> LOWER // LEFT RIGHT ;

° o .

RightContext

°Oo

Replace
oOo

LeftContext

°.o

The left-oriented version applies the constraints in
the opposite order:

UPPER -> LOWER \\ LEFT RIGHT

[31]

. ° °

LeftContext

.O.

Replace
.o.

RightContext
° ° °

The first three versions roughly correspond to the
three alternative interpretations of phonological
rewrite rules discussed in Kaplan and Kay 1994.
The upward-oriented version corresponds to si-
multaneous rule application; the right- and left-
oriented versions can model rightward or leftward
iterating processes, such as vowel harmony and
assimilation.

The fourth logical possibility is that the replace-
ment operation is constrained by the lower context.

[32]
UPPER -> LOWER \/ LEFT RIGHT ;

° o o

Replace

.O.

LeftContext

oOo

RightContext
. • °

When the component relations are composed to-
gether in this manner, UPPER gets mapped to
LOWER just in case it ends up between LEFT and
RIGHT in the output string.

2.4. Examples

Let us illustrate the consequences of these defini-
tions with a few examples. We consider four ver-
sions of the same replacement expression, starting
with the upward-oriented version

[331
a b-> x II a b a ;

applied to the string abababa. The resulting rela-
tion is

ab ab a b a

a b x x a

The second and the third occurrence of ab are re-
placed by x here because they are between ab and

21

x on the upper side language of the relation• A
transducer for the relation is shown in Figure 4.

• x b

?l x ' < ! /

Figure4: a b - > x I I a b _ a

The path through the network that maps abababa
to abxxa is 0 - 1 - 2 - 5 - 7 - 5 - 6 - 3 .

The right-oriented version,

a b -> x // a b a;

? 9
b

X

O--G Cr

Figure5: a b - > x / / a b _ a

givesusadif ferentresul t :

a b a b a b a

ab x aba

b ?

b
?

(
a:x

Figure6: a b - > x \ \ a b _ a

With a b a b a b a composed on the upper side, it
yields

[38]
a b a b a b a

a b a b x a

[35] by the path 0 - 1 - 2 - 3 - 4 - 5 - 6 - 3 .

[36]

following the path 0 - 1 - 2 - 5 - 6 - 1 - 2 - 3. The last
occurrence of ab must remain unchanged because it
does not have the required left context on the lower
side.

The left-oriented version of the rule shows the
opposite behavior because it constrains the left
context on the upper side of the replacement re-
lation and the right context on the lower side.

[37]
a b -> x \\ a b a ;

The first two occurrences of ab remain unchanged
because neither one has the proper right context on
the lower side to be replaced by x.

Finally, the downward-oriented fourth version:
[39]

a b -> x \/ a b a ;

a:x

Figure7: a b - > x \ / a b _ a

This time, surprisingly, we get two outputs from
the same input:

[40]
ab a b a b a , ab ab aba

a b x a b a a b a b x a

Path 0-1-2-5-6-1-2-3 yields abxaba, path 0-
1-2-3-4-5-6-1 gives us ababxa

It is easy to see that if the constraint for the re-
placement pertains to the lower side, then in this
case it can be satisfied in two ways.

22

3. Comparisons

3.1. Phonological rewrite rules

Our definition of replacement is in its technical
aspects very closely related to the way phonologi-
cal rewrite-rules are defined in Kaplan and Kay
1994 but there are important differences. The initial
motivation in their original 1981 presentation was
to model a left-to-right deterministic process of rule
application. In the course of exploring the issues,
Kaplan and Kay developed a more abstract notion
of rewrite rules, which we exploit here, but their
1994 paper retains the procedural point of view.

Our paper has a very different starting point. The
basic case for us is unconditional obligatory re-
placement, defined in a purely relational way
without any consideration of how it might be ap-
plied. By starting with obligatory replacement, we
can easily define an optional version of the opera-
tor. For Kaplan and Kay, the primary notion is op-
tional rewriting. It is quite cumbersome for them to
provide an obligatory version. The results are not
equivalent.

Although people may agree, in the case of simple
phonological rewrite rules, what the outcome of a
deterministic rewrite operation should be, it is not
clear that this is the case for replacement expres-
sions that involve arbitrary regular languages. For
that reason, we prefer to define the replacement
operator in relational terms without relying on an
uncertain intuition about a particular procedure.

3.2. Two-level rules

Our definition of replacement also has a close con-
nection to two-level rules. A two-level rule always
specifies whether a context element belongs to the
input (= lexical) or the output (= surface) context of
the rule. The two-level model also shares our pure
relational view of replacement as it is not con-
cerned about the application procedure. But the
two-level formalism is only defined for symbol-to-
symbol replacements.

4. Conclusion

The goal of this paper has been to introduce to the
calculus of regular expressions a replace operator,
->, with a set of associated replacement expressions
that concisely encode alternate variations of the
operation.

We defined uncondit ional and conditional re-
placement, taking the unconditional obligatory
replacement as the basic case. We provide a simple
declarative definition for it, easily expressed in
terms of the other regular expression operators,
and extend it to the conditional case providing four
ways to constrain replacement by a context.

These definitions have already been implemented.
The figures in this paper correspond exactly to the
output of the regular expression compiler in the
Xerox finite-state calculus.

Acknowledgments

This work is based on many years of productive
collaboration with Ronald M. Kaplan and Martin
Kay. I am particularly indebted to Kaplan for
writing a very helpful critique, even though he
strongly prefers the approach of Kaplan and Kay
1994. Special thanks are also due to Kenneth R.
Beesley for technical help on the definitions of the
replace operators and for expert editorial advice. I
am grateful to Pasi Tapanainen, Jean-Pierre
Chanod and Annie Zaenen for helping to correct
many terminological and rhetorical weaknesses of
the initial draft.

References

Kaplan, Ronald M., and Kay, Martin (1981).
Phonological Rules and Finite- State Transducers.
Paper presented at the Annual Meeting of the
Linguistic Society of America. New York.

Kaplan, Ronald M. and Kay, Martin (1994). Regular
Models of Phonological Rule Systems. Computa-
tional Linguistics. 20:3 331-378. 1994.

Karttunen, Lauri, Koskenniemi, Kimmo, and
Kaplan, Ronald M. (1987) A Compiler for Two-
level Phonological Rules. In Report No. CSLI-87-
108. Center for the Study of Language and In-
formation. Stanford University.

Karttunen, Lauri and Beesley, Kenneth R. (1992).
Two-level Rule Compiler. Technical Report. ISTL-
92-2. Xerox Palo Alto Research Center.

Koskenniemi, Kimmo (1983). Two-level Morphology:
A General Computational Model for Word-Form Re-
cognition and Production. Department of General
Linguistics. University of Helsinki.

23

