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We describe an efficient bottom-up parser that in- 
terleaves syntactic and semantic structure build- 
ing. Two techniques are presented for reducing 
search by reducing local ambiguity: Limited left- 
context constraints are used to reduce local syn- 
tactic ambiguity, and deferred sortal-constraint 
application is used to reduce local semantic am- 
biguity. We experimentally evaluate these tech- 
niques, and show dramatic reductions in both 
number of chart edges and total parsing time. 
The robust processing capabilities of the parser 
are demonstrated in its use in improving the ac- 
curacy of a speech recognizer. 

I N T R O D U C T I O N  

The parsing problem is typically framed as a 
recognition problem: Given a grammar and a word 
string, determine if the word string is a member of 
the language described by the grammar. For some 
applications, notably robust natural-language pro- 
cessing and spoken-language understanding, this 
is insufficient, since many utterances will not be 
accepted by the grammar, because of nonstandard 
language, inadequate grammatical coverage, or er- 
rors made in speech recognition. In these cases, 
it is still desirable to determine what well-formed 
phrases occurred {n the word string, even when 
the entire string is not recognized. The goal of the 
parser described here is to construct a chart, as ef- 
ficiently as possible, that contains all the syntacti- 
cally well-formed semantically meaningful phrases 
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that  occur in the word string. 

The most efficient practical context-free 
parsers (Earley, 1970; Graham, Harrison, and 
Ruzzo, 1980) are left-corner parsers, which gain 
efficiency by their ability to constrain the search 
to find only phrases that  might contribute to a 
sentence that  starts at the left edge of the string 
being parsed. These strong left-context syntac- 
tic constraints can prevent the parser from finding 
some phrases that  are well-formed, however. This 
is a problem for us that  is avoided by bottom- 
up parsers (Kasami, 1965;Younger, 1967), but at 
the expense of creating many more edges, which 
can lead to dramatic increases in parse time. 
Since our goal is to find only the phrases that 
are semantically meaningful as well as syntacti- 
cally well-formed, we also need to compute se- 
mantic constraints for every syntactic phrase we 
construct. This requires making finer distinctions 
than syntax-only parsing, which can introduce ad- 
ditional ambiguity, multiplying the number of dis- 
tinct phrases found and increasing parse time. 

We describe two special techniques for speed- 
ing up bottom-up parsing by reducing local am- 
biguity without sacrificing completeness. One 
technique, "limited left-context checking," reduces 
local syntactic ambiguity; the other, "deferred 
sortal-constraint application," reduces local se- 
mantic ambiguity. Both techniques are applied to 
unification-based grammars. We analyze the per- 
formance of these techniques on a 194-utterance 
subset of the AP~PA ATIS corpus (MADCOW, 
1992), using a broad-coverage grammar of English. 
Finally, we present results using the output of the 
parser to improve the accuracy of a speech recog- 
nizer in a way that  takes advantage of our ability 
to find all syntactically well-formed semantically 
meaningful phrases. 

S Y N T A C T I C  P A R S I N G  

The parsing algorithm described here is imple- 
mented in the Gemini spoken-language under- 
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standing system (Dowding et al., 1993), which 
features a broad-coverage unification-based gram- 
mar of English, with independent syntactic, se- 
mantic and lexical components, in the style of 
the SRI Core Language Engine (Alshawi, 1992). 
Although we describe the syntactic parsing algo- 
rithm as though it were parsing purely context- 
free grammars, the ideas extend in a natural way 
to unification-based grammar parsing. While the 
chart for a context-free grammar contains edges 
labeled by atomic nonterminal symbols, the chart 
for a unification-based grammar contains edges la- 
beled by complex feature-structure nonterminals. 
For efficiency, we maintain edges in the chart 
in only their most general form--new edges are 
added to the chart only if they are more general 
than existing edges, and we delete existing edges 
that are less general than the new edge. Like the 
Core Language Engine, we use a technique called 
packing to prevent local ambiguity from multiply- 
ing out into distinct edges at higher levels in the 
tree. Packing is implemented by collapsing phrasal 
analyses that  share the same parent nonterminal 
and using only the parent for further processing. 

L i m i t e d  L e f t - C o n t e x t  C h e c k i n g  

The motivation behind limited left-context check- 
ing is the observation that most of the phrases 
found by a pure bottom-up parser using our uni- 
fication grammar contain syntactic gaps not li- 
censed by any possible gap filler. In a pure 
bottom-up parser, syntactic gaps must be hypoth- 
esized between every pair of words and lead to 
many spurious phrases being built. Earlier work 
(Moore and Dowding, 1991) showed that over 80% 
of the edges built by a bottom-up parser using our 
grammar were in this class. Since these phrases 
are semantically incomplete, they are of no inter- 
est if they cannot be tied to a gap filler, even in the 
robust processing applications we are concerned 
with. Our approach is to use left-context check- 
ing in a limited way to restrict the construction of 
only this class of phrases. 

We partition the set of grammatical cate- 
gories in our grammar into two groups, context- 
independent and context-dependent. Context- 
independent phrases will be always be constructed 
bottom-up whenever possible. Context-dependent 
phrases will only be constructed if they are pre- 
dicted by previously constructed phrases to the 
left. For our purposes, the set of context- 
dependent phrases are those that contain a syn- 
tactic gap with no gap filler, and the context- 
independent set is everything else. Note, how- 
ever, that  there is no constraint on the algorithm 
that  forces this. If every grammatical category 
is context-dependent, then this algorithm reduces 
to a left-corner parser, and if every category is 

context-independent, then this algorithm reduces 
to a pure bottom-up parser. One caveat is that  
for the algorithm to work correctly, the set of 
context-dependent categories must be closed un- 
der the possible-left-corner-of relation. 

The question remains of how to produce pre- 
dictions for only those phrases in the context- 
dependent set. As in Earley's algorithm, pre- 
dictions are implemented as dotted grammar 
rules. Unlike Earley's algorithm, however, predic- 
tions are used only to license the construction of 
context-dependent categories. Predictions are not 
created for context-independent categories, and 
they are not used in a completion phase to find 
new reductions. 

Predictions deriving from rules that  create 
context-dependent categories must themselves be 
predicted. Thus, predictions are also divided 
into context-independent and context-dependent. 
A context-independent prediction will always be 
added to the chart after the first child on the right- 
hand side has been found. A context-dependent 
prediction will only be added to the chart when the 
first child on the right-hand side has been found, 
and the head of the rule has been previously pre- 
dicted or is a possible left corner of a category that  
has been previously predicted. Tables contain- 
ing the possible context-dependent and context- 
independent predictions are constructed at com- 
pile time. 

An outline of the parser algorithm is given in 
Figure 1. The algorithm is basically an all-paths, 
left-to-right, bottom-up parser, with the modifica- 
tions that (1) the edge resulting from a reduction 
is added to the chart only if it is either a context- 
independent phrase or is predicted, and (2) pre- 
dictions are added at each point in the input for 
the context-dependent phrases that  are licensed 
at that point. Some details of the parser have 
been omitted, particularly those related to pars- 
ing unification-based grammars that  do not arise 
when parsing context-free grammars. In addition, 
the parser maintains a skeletal copy of the chart in 
which edges are labeled only by the nonterminal 
symbols contained in their context-free backbone, 
which gives us more efficient indexing of the full 
grammar rules. Other optimizations include us- 
ing one-word look-ahead before adding new pre- 
dictions, and using restrictors (Shieber, 1985) to 
increase the generality of the predictions. 

C o m p a r i s o n  w i t h  O t h e r  P a r s e r s  

Table 1 compares the average number of edges, 
average number of predictions, and average parse 
times 1 (in seconds) per utterance for the limited 

1All parse times given in this paper were produced 
on a S u n  S P A R C s t a t i o n  10 /51 ,  running Quintus P r o -  
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For g rammar  with start  symbol ~,  phrase struc- 
ture rules P,  lexicon L, context-independent cate- 
gories CI,  and context-dependent categories CD; 
and for word string w = wl...wn: 

Variant Edges Preds Secs 
Bottom-Up 1191 0 14.6 
Limited Left-Context 203 25 1.0 
Left-Corner 112 78 4.0 

Table h Comparison of Syntax-Only Parsers 

if ~ E CD, predict(T, 0); 
add_empty_categories (0) ; 
for i from I to n do 

foreach C such that C--+wi EL do 
add_edge_to_chart(C, i-- i, i) ; 
make_new_predictions(C, i- i, i) ; 
find_new-reductions(C, i- l,i) 

end 
add_empty_categories (i) ; 

end 

sub f i n d m e w - r e d u c t i o n s ( B ,  j, k) { 
f o r e a c h  A and a such t h a t  A-~ ~B 6 P do 

foreach i such that i = match((~, j) do 
if A 6 CD and predicted(A,i) or A 6 CI 

add_edge_to_chart(A, i, k); 
make_new_predictions(A, i, k) ; 
find_new_reductions(A, i, k) ; 

end 
end 

} 
sub add_empty_categories(i) { 

foreach A such that A -+ e E P do 
if A 6 CD and predicted(A,/) or A 6 CI 

add_edge_to_chart(A, i, i) ; 
make_new_predictions(A, i, i) ; 
find_new_reductions(A, i, i) ; 

end 
} 
sub make_new_predictions(A, i, j) { 

foreach Aft E Predictions[i] do 
predict (fl, j )  

end 
foreach H -+ A ~ B f l  6 P such that 

H 6 CI and B E CD and fl 6 CI* do 
predict (~B, j) 

end 
foreach H --+ A(~B$ 6 P such that 

H E CD and B E CD and fl E CI* 
and predicted(H, i) or 
H left-corner-of C and predicted(C, i) do 

predict (~B, j) 
end 

Figure 1: Limited Left-Context Algorithm 

left-context parser with those for a variant equiv- 
alent to a bot tom-up parser (when all categories 
are context independent) and for a variant equiva- 
lent to a left-corner parser (when all categories are 
context dependent). The tests were performed on 
a set of 194 utterances chosen at random from the 
ARPA ATIS corpus (MADCOW, 1992), using a 
broad-coverage syntactic grammar  of English hav- 
ing 84% coverage of the test set. 

The limited left-context parser can be thought 
of as at a midway point between the pure bot tom-  
up parser and the left-corner parser, constructing 
a subset of the phrases found by the bot tom-up 
parser, and a superset of the phrases found by the 
left-corner parser. Using limited left-context to 
constrain categories containing syntactic gaps re- 
duces the number of phrases by more than a fac- 
tor of 5 and is almost 15 times faster than the 
pure bot tom-up parser. The limited left-context 
parser builds 81% more edges than the left-corner 
parser, but many fewer predictions. Somewhat 
surprisingly, this results in the limited left-context 
parser being 4 times faster than the left-corner 
parser. We conjecture that  this is due to the fact 
that  context-independent phrases are licensed by 
a static table that  is quicker to check against than 
dynamic predictions. This results in a lower av- 
erage time per edge for the limited left-context 
parser (0.005 seconds) than the left-corner parser 
(0.036 seconds). Some additional penalty may also 
have been incurred by not using dotted g rammar  
rules to generate reductions, as in standard left- 
corner parsing algorithms. 2 

There are important  differences between the 
technique for limited prediction in this parser, 
and other techniques for limited prediction such 
as Shieber's notion of restriction (Shieber, 1985) 
(which we also use). In methods such as Shieber's, 
predictions are weakened in ways that  can re- 
sult in an overall gain in efficiency, but predic- 
tions nevertheless must be dynamically generated 
for every phrase that  is built bot tom-up.  In our 

log version 3.1.4. 
2Other than this, we do not believe that the 

bottom-up and left-corner algorithms we tested suf- 
fered from any unnecessary overheads from being im- 
plemented as special cases of our general algorithm, as 
we removed calls to subroutines that were unnecessary 
for those special cases. 
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method, no predictions need to be generated for 
the context-independent categories; from another 
point of view, context-independent categories are 
predicted statically, at compile time, for all points 
in the input, rather than dynamically at run time. 
Time is saved both because the predictions do not 
have to be generated at run time, and because the 
process of checking these static predictions is sim- 
pler. 

In previous work (Moore and Dowding, 1991), 
we compared limited left-context checking to some 
other methods for dealing with empty categories in 
a bottom-up parser. Standard grammar transfor- 
mation techniques (Hopcroft and Ullman, 1980) 
can be used to eliminate empty nonterminals. 
This approach is useful to eliminate some edges, 
but still allows edges that  dominate empty cat- 
egories to be created. We found that  using this 
technique was faster than pure bot tom-up pars- 
ing, but still significantly slower than limited left- 
context checking. A further refinement is to trans- 
form the grammar to eliminate both empty and 
nonbranching rules. I.n the case of our grammar, 
however, this resulted in such a large" increase in 
grammar size as to be impractical. 

An alternative method for making left-corner 
parsers more robust is to explicitly add predictions 
for start  categories at every point in the input. If 
every context-independent category is a possible 
left corner of a start  category, this approach will 
result in the same set of edges in the chart that 
the limited left-context approach builds, but at 
the added expense of creating many more predic- 
tions. Since increasing the total number of pre- 
dictions increases parse time, we expect that this 
technique would be significantly slower than lim- 
ited left-context checking, although we have not 
carried out any experiments on this approach. 

The technique of precompiling the left- 
daughter-of table is not unique to this parser, and 
has appeared in both the GHR, parser (Graham, 
Harrison, and Russo, 1980) and the Core Lan- 
guage Engine parser (Alshawi, 1992). 

I N T E R L E A V E D  S E M A N T I C  

P R O C E S S I N G  

The Gemini system allows either syntax-only pars- 
ing or parsing with syntactic and semantic pro- 
cessing fully interleaved. In interleaved processing, 
whenever a syntax rule successfully creates a new 
syntactic phrase, corresponding semantic rules are 
applied to construct possible logical forms for the 
phrase, 3 the logical forms are checked to verify 

3As a possible optimization, we tried combining the 
syntactic and semantic rules at compile time. This 
turned out to be slower than checking all syntactic 

that  they satisfy semantic sortal constraints, and 
edges for interpretations that pass all constraints 
are added to the chart. In general, this leads to 
fewer syntactically distinct analyses being present 
in the chart (since phrases that have no inter- 
pretation satisfying sortal constraints do not pro- 
duce edges), but semantic ambiguity can lead to 
a greater total number of semantically distinct 
edges. As is the case in syntax-only parsing, in- 
terleaved processing uses packing to collapse anal- 
yses for later processing. Analyses are collapsed if 
they have the same parent nonterminal, incorpo- 
rating both syntactic and semantic features, and 
the same semantic sortal properties. 

D e f e r r e d  S o r t a l - C o n s t r a i n t  A p p l i c a t i o n  

In Gemini, there are two sources of semantic am- 
biguity to be considered when interleaving syntax 
and semantics in parsing: semantic rule ambiguity 
and sortal ambiguity. For every syntactic rule of 
the form: 

Rulename: A,vn ~ B, vn, C, vn 

there are one or more semantic rules indexed on 
the same rule name: 

Rulename: 
( LFA, A,,,n) ~ ( LFB, B,e,n), ( LF¢ , C,,m) 

Here, LFA, LFB and LFc are logical form expres- 
sions indicating how the logical form LFA is to 
be constructed from the logical forms of its chil- 
dren LFB and LFc, and A, B, and C are category 
expressions that are unified. 

The second source of semantic ambiguity is 
sortal ambiguity. Every atom in a logicM form 
expression is assigned one or more semantic sorts. 
For example, in the logical form fragment 

exists ( (A ; [flight] ), 
[and, 

[flight, (A; [flight] )] ; [prop], 
[to, (A; [flight] ), 

('BOSTOn' ; [city] )] ; [prop]] ; 
[prop] ) ; 

[prop] 

the atoms exists, and, flight, to and 'BOSTON' 
have sort assignments (sorts are printed as the 
right-hand side of the ';' operator). Some 
atoms like 'BOSTON' are assigned atomic sorts 
like [ c i t y ] ,  while other atoms like to  are as- 
signed more complex sorts, for instance, a func- 

constraints first, at least for our grammar at the time. 
We speculate that this is due to unifying multiple vari- 
ants of the same syntactic pattern against the chart in 
cases where one syntactic rule has several correspond- 
ing semantic rules, and that applying syntactic rules 
first provides an effective filter for faster matching. 
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tion from flights and cities to propositions, rep- 
resented as ( [ [ f l i g h t ] ,  [ c i t y ]  ] ,  [prop] ). Sorts 
for nonatomic logical form expressions are then 
constructed recursively from the subexpressions 
they contain. For instance, the expression [ t o ,  
(A; [ f l i g h t ]  ) ,  ('BOSTON'; [ c i t y ]  )] is assigned 
the sort [prop] because there is a possible sort 
assignment for to  consistent with the relation to  
holding between something of sort [ f l i g h t ]  and 
something of sort [ c i t y ] .  

If an atom within a logical form expression 
has more than one possible sort assignment, then 
the expression may be ambiguous if the other sorts 
in the expression do not further constrain it; if a 
logical form expression associated with a syntactic 
edge is ambiguous, then new edges are added to 
the chart for each of the possible semantic read- 
ings. This is very common with sort assignments 
for logical form functors. If all the arguments of 
the functor have already been found at the point 
when the functor is first encountered in a logi- 
cal form expression, then usually only one possi- 
ble sort assignment for the functor will apply, and 
the resulting semantic edge will be sortally unam- 
biguous. If the functor is encountered in a phrase 
where one or more of its arguments have not yet 
been encountered, such as a verb phrase before it 
has been combined with its §ubject, edges for all 
possible sorts for the missing arguments will be 
hypothesized, creating local sort ambiguities. As 
can be seen in Table 2, there is a modest increase 
in the number of edges created per utterance due 
to semantic rule ambiguity, but a much more dra- 
matic increase due to sortal ambiguity. 

The approach we have taken to deal with this 
problem is to prevent sortal ambiguity from mul- 
tiplying out into distinct edges in the chart, by 
deferring the application of sortal constraints in 
eases where sortal ambiguities would be created. 
To implement this approach, we associate with ev- 
ery semantic edge a set (possibly empty) of de- 
ferred sort assignments. In order to construct this 
set for an edge, we create deferred sort assignments 
for any logical form atoms introduced by the se- 
mantic rule or lexical entry that  created the edge 
that  have more than one possible sort, given all 
the information we have at that  edge (such as the 
sorts of the arguments of a functor). For a phrasal 
edge, we add to this any deferred sort assignments 
inherited from the daughters of the edge. 

Once the set of deferred sorts has been con- 
structed, but before the new edge is added to the 
chart, the set is analyzed to determine whether it 
is consistent, and to remove any deferred sort as- 
signments that  have become unambiguous because 
of unifications performed in creating the edge. 
Since the deferred sort assignments can share logic 
variables, it is possible that even though each de- 

farted assignment is ambiguous, there is no assign- 
ment of sorts that can satisfy all constraints at the 
same time, in which case the edge is rejected. The 
incorporation of additional information from sib- 
ling nodes can result in a sortal ambiguity becom- 
ing resolved when an edge is constructed, in which 
case the resulting sort assignment is applied and 
removed from the set of deferred sort assignments. 
Finally, we check whether the deferred sort assign- 
ments, although individually ambiguous, jointly 
have a unique solution. In this case, that assign- 
ment of values is applied, and the set of deferred 
sort assignments becomes the empty set. 

Type of 
Processing 
Syntax Only 
Plus Semantic Rules 
Plus Sorts 
With Deferred Sorts 

Edges/ Sees/ Sees/ 
Utt Edge Utt 
203 0.005 0.98 
209 0.006 1.20 
357 0.011 4.04 
194 0.007 1.33 

Table 2: Results of Deferring Sortal Constraints 

The effectiveness of this technique is demon- 
strated by Table 2, which compares the average 
number of edges per utterance, average parse time 
per edge, and average parse time per utterance 
for four different modes of processing: syntax- 
only parsing, interleaving syntax and semantics 
without applying sortal constraints, interleaving 
syntax and semantics while immediately apply- 
ing sortal constraints, and interleaving syntax and 
semantics while deferring ambiguous sortal con- 
straints. We can see that the total number of 
semantic edges is reduced significantly, resulting 
in a decrease in the total syntax+semantics+sorts 
time by a factor of 3. Note that despite the addi- 
tion of semantic rule ambiguity, the total number 
of edges built during interleaved syntactic and se- 
mantic processing is less than the number of edges 
built using syntax alone, demonstrating that we 
in fact succeed in using semantic information to 
prune the syntactic search space. 

I M P R O V I N G  A C C U R A C Y  I N  

S P E E C H  R E C O G N I T I O N  

One of our prime motivations in designing a parser 
to find all syntactically well-formed semantically 
meaningful phrases in a word string was to be 
able to use it for the robust application of natural- 
language constraints in speech recognition. Most 
attempts to apply natural-language constraints in 
speech recognition have relied on finding a com- 
plete parse for a recognition hypothesis. Many 
have worked by simply picking as the preferred 
hypothesis the string with the highest recognition 
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score that can be completely parsed and inter- 
preted. 

It seems virtually impossible, however, to 
create a natural-language grammar that  models 
spontaneous spoken language accurately enough 
to avoid introducing more errors than it corrects, 
if applied in this way. A state-of-the-art natural- 
language grammar for a problem such as the 
ARPA ATIS task might fail to find a complete 
analysis for 10% or more of test utterances. In this 
case, a substantial recognition error rate would be 
introduced, because of the correct utterances that  
would be completely excluded, and it is extremely 
unlikely that the grammar would result in enough 
reduction of the recognition errors of a state-of- 
the-art speech recognizer on other utterances to 
overcome the errors it introduces. 

We have taken a different approach based on 
the observation that ,  even when our grammar fails 
to provide a complete analysis of an utterance, it is 
usually possible to find a small number of semanti- 
cally meaningful phrases that  span the utterance. 
We therefore use our parser to find the minimal 
number of semantically meaningful phrases needed 
to span a recognition hypothesis and to compute 
a natural-language score for the hypothesis based 
on this number. Having a parser tha t  finds all 
syntactically well-formed semantically meaningful 
phrases is an obvious prerequisite to taking such 
an approach. 

We have applied this idea in a system combin- 
ing Gemini with SRI's DECIPHER TM speech rec- 
ognizer (Murveit et al., 1993), which was tested in 
the December 1993 ARPA ATIS benchmark evalu- 
ation (Pallet et al., 1994). The following example 
from the evaluation test set illustrates the basic 
approach: 

hypothesis: [list flights][of fare code][a][q] 
reference: [list flightsl[of fare code of q] 

These two word strings represent the recognizer's 
first hypothesis for the utterance and the reference 
transcription of the utterance, each bracketed ac- 
cording to the best analysis that  Gemini was able 
to find as a sequence of semantically meaningful 
phrases. Because of a missing sortal possibility, 
Gemini did not allow the preposition of to re- 
late a noun phrase headed by flights to a noun 
phrase headed by fare code, so it was not possi- 
ble to find a single complete analysis for either 
word string. Gemini was, however, able to find a 
single phrase spanning of fare code of q, but re- 
quired three phrases to span of fare code a q, so it 
still strongly preferred the reference transcription 
of the utterance over the recognizer's first hypoth- 
esis. 

The integration of Gemini and DECIPHER 

was implemented by combining a Gemini score 
with the recognition score for each of the rec- 
ognizer's N-top hypotheses and selecting the hy- 
pothesis with the best overall score. 4 The Gemini 
score was computed as a somewhat ad hoc combi- 
nation of the number of phrases needed to cover 
the hypothesis, a bonus if the hypothesis could be 
analyzed as a single sentence (as opposed to any 
other single grammatical phrase), and penalties 
for using certain "dispreferred" grammar rules. 
This score was then scaled by an empirically op- 
timized parameter  and added to the recognition 
score. 

We carried out a detailed analysis of the 
preliminary results of the December 1993 ARPA 
ATIS benchmark evaluation to determine the ef- 
fect of incorporating natural-language information 
into recognition in this way. Overall, the word 
error rate improved from 6.0% to 5.7% (5.0% im- 
provement), and the utterance error rate improved 
from 29.6% to 27.8% (6.1% improvement). These 
improvements, while modest, were measured to be 
statistically significant at the 95% confidence level 
according to the rhatched-pair sentence segment 
(word error) test and the McNemar (sentence er- 
ror) test. 

In more detail, the first hypothesis of the rec- 
ognizer was correct for 704 of 995 utterances for 
which the natural-language grammar was used. Of 
these, the natural-language grammar failed to find 
complete analysis for 62. The combined system 
nevertheless chose the correct hypothesis in 57 of 
these cases; thus, only 5 correct hypotheses were 
lost due to lack of grammar coverage. On the 
other hand, use of the natural-language grammar 
resulted in correcting 22 incorrect recognizer first 
hypotheses. Moreover, 4 of these were not com- 
pletely analyzable by the natural-language gram- 
mar, but were chosen because they received a bet- 
ter analysis as a sequence of phrases than the first 
hypothesis of the recognizer. 

We also analyzed which of the natural- 
language factors incorporated in the Gemini score 
were responsible for the corrections and errors rel- 
ative to the performance of the recognizer alone. 
For the 22 utterances that were corrected, in 18 
cases the correction was due to the preference for 
fewer fragments, in 3 cases the correction was due 
to the preference for complete sentences, and in 
only one case did the correction result from a 
grammar rule preference. Of the 5 utterance errors 
introduced by Gemini, 3 turned out to be cases 
in which the reference transcription was incorrect 
and the hypothesis selected by Gemini was actu- 

4The value of N was variable, but sufficiently large 
(typically hundreds) that a limit on N was never a 
factor in which hypothesis was chosen. 
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ally correct, one was due to inadequate grammat- 
ical coverage resulting in a larger number of frag- 
ments for the correct hypothesis, and one was due 
to a grammatical rule preference. We concluded 
from this that the preference for fewer fragments 
is clearly useful and the preference for complete 
sentences seems to be somewhat useful, but there 
is no evidence that the current system of rule pref- 
erences is of any benefit in speech recognition. A 
more systematic approach to rule preferences, such 
as one based on a statistical grammar, may be of 
more benefit, however. 

C O N C L U S I O N S  

We have described an efficient parser that oper- 
ates bottom-up to produce syntactic and semantic 
structures fully interleaved. Two techniques com- 
bine to reduce the total ambiguity represented in 
the chart. Limited left-context constraints reduce 
local syntactic ambiguity, and deferred sortal- 
constraint application reduces local semantic am- 
biguity. We have expermentally evaluated these 
techniques, and shown order-of-magnitude reduc- 
tions in both number of chart edges and total pars- 
ing time. The robust processing capabilities of the 
parser have also been shown to be able to provide 
a small but significant increase in the accuracy of 
a speech recognizer. 
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