
I N T E R L E A V I N G S Y N T A X A N D S E M A N T I C S I N
A N E F F I C I E N T B O T T O M - U P P A R S E R *

J o h n D o w d i n g , R o b e r t M o o r e , F r a n q o i s A n d r y ~ a n d D o u g l a s M o r a n

S R I I n t e r n a t i o n a l

333 R a v e n s w o o d A v e n u e
M e n l o P a r k , C A 94025

{ d o w d i n g , b m o o r e , a n d r y , m o r a n) @ a i . s r i . c o m

A b s t r a c t

We describe an efficient bottom-up parser that in-
terleaves syntactic and semantic structure build-
ing. Two techniques are presented for reducing
search by reducing local ambiguity: Limited left-
context constraints are used to reduce local syn-
tactic ambiguity, and deferred sortal-constraint
application is used to reduce local semantic am-
biguity. We experimentally evaluate these tech-
niques, and show dramatic reductions in both
number of chart edges and total parsing time.
The robust processing capabilities of the parser
are demonstrated in its use in improving the ac-
curacy of a speech recognizer.

I N T R O D U C T I O N

The parsing problem is typically framed as a
recognition problem: Given a grammar and a word
string, determine if the word string is a member of
the language described by the grammar. For some
applications, notably robust natural-language pro-
cessing and spoken-language understanding, this
is insufficient, since many utterances will not be
accepted by the grammar, because of nonstandard
language, inadequate grammatical coverage, or er-
rors made in speech recognition. In these cases,
it is still desirable to determine what well-formed
phrases occurred {n the word string, even when
the entire string is not recognized. The goal of the
parser described here is to construct a chart, as ef-
ficiently as possible, that contains all the syntacti-
cally well-formed semantically meaningful phrases

*This research was supported by the Advanced Re-
search Projects Agency under Contract ONR N00014-
90-C-0085 with the Office of Naval Research. The
views and conclusions contained in this document are
those of the authors and should not be interpreted as
necessarily representing the official policies, either ex-
pressed or implied, of the Advanced Research Projects
Agency of the U.S. Government.

tCurrent address: CAP GEMINI Innovation, 86-
90 Rue Thiers, 92513-Boulogne Billancourt, France,
andry@capsoget i . f r .

that occur in the word string.

The most efficient practical context-free
parsers (Earley, 1970; Graham, Harrison, and
Ruzzo, 1980) are left-corner parsers, which gain
efficiency by their ability to constrain the search
to find only phrases that might contribute to a
sentence that starts at the left edge of the string
being parsed. These strong left-context syntac-
tic constraints can prevent the parser from finding
some phrases that are well-formed, however. This
is a problem for us that is avoided by bottom-
up parsers (Kasami, 1965;Younger, 1967), but at
the expense of creating many more edges, which
can lead to dramatic increases in parse time.
Since our goal is to find only the phrases that
are semantically meaningful as well as syntacti-
cally well-formed, we also need to compute se-
mantic constraints for every syntactic phrase we
construct. This requires making finer distinctions
than syntax-only parsing, which can introduce ad-
ditional ambiguity, multiplying the number of dis-
tinct phrases found and increasing parse time.

We describe two special techniques for speed-
ing up bottom-up parsing by reducing local am-
biguity without sacrificing completeness. One
technique, "limited left-context checking," reduces
local syntactic ambiguity; the other, "deferred
sortal-constraint application," reduces local se-
mantic ambiguity. Both techniques are applied to
unification-based grammars. We analyze the per-
formance of these techniques on a 194-utterance
subset of the AP~PA ATIS corpus (MADCOW,
1992), using a broad-coverage grammar of English.
Finally, we present results using the output of the
parser to improve the accuracy of a speech recog-
nizer in a way that takes advantage of our ability
to find all syntactically well-formed semantically
meaningful phrases.

S Y N T A C T I C P A R S I N G

The parsing algorithm described here is imple-
mented in the Gemini spoken-language under-

110

standing system (Dowding et al., 1993), which
features a broad-coverage unification-based gram-
mar of English, with independent syntactic, se-
mantic and lexical components, in the style of
the SRI Core Language Engine (Alshawi, 1992).
Although we describe the syntactic parsing algo-
rithm as though it were parsing purely context-
free grammars, the ideas extend in a natural way
to unification-based grammar parsing. While the
chart for a context-free grammar contains edges
labeled by atomic nonterminal symbols, the chart
for a unification-based grammar contains edges la-
beled by complex feature-structure nonterminals.
For efficiency, we maintain edges in the chart
in only their most general form--new edges are
added to the chart only if they are more general
than existing edges, and we delete existing edges
that are less general than the new edge. Like the
Core Language Engine, we use a technique called
packing to prevent local ambiguity from multiply-
ing out into distinct edges at higher levels in the
tree. Packing is implemented by collapsing phrasal
analyses that share the same parent nonterminal
and using only the parent for further processing.

L i m i t e d L e f t - C o n t e x t C h e c k i n g

The motivation behind limited left-context check-
ing is the observation that most of the phrases
found by a pure bottom-up parser using our uni-
fication grammar contain syntactic gaps not li-
censed by any possible gap filler. In a pure
bottom-up parser, syntactic gaps must be hypoth-
esized between every pair of words and lead to
many spurious phrases being built. Earlier work
(Moore and Dowding, 1991) showed that over 80%
of the edges built by a bottom-up parser using our
grammar were in this class. Since these phrases
are semantically incomplete, they are of no inter-
est if they cannot be tied to a gap filler, even in the
robust processing applications we are concerned
with. Our approach is to use left-context check-
ing in a limited way to restrict the construction of
only this class of phrases.

We partition the set of grammatical cate-
gories in our grammar into two groups, context-
independent and context-dependent. Context-
independent phrases will be always be constructed
bottom-up whenever possible. Context-dependent
phrases will only be constructed if they are pre-
dicted by previously constructed phrases to the
left. For our purposes, the set of context-
dependent phrases are those that contain a syn-
tactic gap with no gap filler, and the context-
independent set is everything else. Note, how-
ever, that there is no constraint on the algorithm
that forces this. If every grammatical category
is context-dependent, then this algorithm reduces
to a left-corner parser, and if every category is

context-independent, then this algorithm reduces
to a pure bottom-up parser. One caveat is that
for the algorithm to work correctly, the set of
context-dependent categories must be closed un-
der the possible-left-corner-of relation.

The question remains of how to produce pre-
dictions for only those phrases in the context-
dependent set. As in Earley's algorithm, pre-
dictions are implemented as dotted grammar
rules. Unlike Earley's algorithm, however, predic-
tions are used only to license the construction of
context-dependent categories. Predictions are not
created for context-independent categories, and
they are not used in a completion phase to find
new reductions.

Predictions deriving from rules that create
context-dependent categories must themselves be
predicted. Thus, predictions are also divided
into context-independent and context-dependent.
A context-independent prediction will always be
added to the chart after the first child on the right-
hand side has been found. A context-dependent
prediction will only be added to the chart when the
first child on the right-hand side has been found,
and the head of the rule has been previously pre-
dicted or is a possible left corner of a category that
has been previously predicted. Tables contain-
ing the possible context-dependent and context-
independent predictions are constructed at com-
pile time.

An outline of the parser algorithm is given in
Figure 1. The algorithm is basically an all-paths,
left-to-right, bottom-up parser, with the modifica-
tions that (1) the edge resulting from a reduction
is added to the chart only if it is either a context-
independent phrase or is predicted, and (2) pre-
dictions are added at each point in the input for
the context-dependent phrases that are licensed
at that point. Some details of the parser have
been omitted, particularly those related to pars-
ing unification-based grammars that do not arise
when parsing context-free grammars. In addition,
the parser maintains a skeletal copy of the chart in
which edges are labeled only by the nonterminal
symbols contained in their context-free backbone,
which gives us more efficient indexing of the full
grammar rules. Other optimizations include us-
ing one-word look-ahead before adding new pre-
dictions, and using restrictors (Shieber, 1985) to
increase the generality of the predictions.

C o m p a r i s o n w i t h O t h e r P a r s e r s

Table 1 compares the average number of edges,
average number of predictions, and average parse
times 1 (in seconds) per utterance for the limited

1All parse times given in this paper were produced
on a S u n S P A R C s t a t i o n 10 /51 , running Quintus P r o -

111

For g rammar with start symbol ~, phrase struc-
ture rules P, lexicon L, context-independent cate-
gories CI, and context-dependent categories CD;
and for word string w = wl...wn:

Variant Edges Preds Secs
Bottom-Up 1191 0 14.6
Limited Left-Context 203 25 1.0
Left-Corner 112 78 4.0

Table h Comparison of Syntax-Only Parsers

if ~ E CD, predict(T, 0);
add_empty_categories (0) ;
for i from I to n do

foreach C such that C--+wi EL do
add_edge_to_chart(C, i-- i, i) ;
make_new_predictions(C, i- i, i) ;
find_new-reductions(C, i- l,i)

end
add_empty_categories (i) ;

end

sub f i n d m e w - r e d u c t i o n s (B , j, k) {
f o r e a c h A and a such t h a t A-~ ~B 6 P do

foreach i such that i = match((~, j) do
if A 6 CD and predicted(A,i) or A 6 CI

add_edge_to_chart(A, i, k);
make_new_predictions(A, i, k) ;
find_new_reductions(A, i, k) ;

end
end

}
sub add_empty_categories(i) {

foreach A such that A -+ e E P do
if A 6 CD and predicted(A,/) or A 6 CI

add_edge_to_chart(A, i, i) ;
make_new_predictions(A, i, i) ;
find_new_reductions(A, i, i) ;

end
}
sub make_new_predictions(A, i, j) {

foreach Aft E Predictions[i] do
predict (fl, j)

end
foreach H -+ A ~ B f l 6 P such that

H 6 CI and B E CD and fl 6 CI* do
predict (~B, j)

end
foreach H --+ A(~B$ 6 P such that

H E CD and B E CD and fl E CI*
and predicted(H, i) or
H left-corner-of C and predicted(C, i) do

predict (~B, j)
end

Figure 1: Limited Left-Context Algorithm

left-context parser with those for a variant equiv-
alent to a bot tom-up parser (when all categories
are context independent) and for a variant equiva-
lent to a left-corner parser (when all categories are
context dependent). The tests were performed on
a set of 194 utterances chosen at random from the
ARPA ATIS corpus (MADCOW, 1992), using a
broad-coverage syntactic grammar of English hav-
ing 84% coverage of the test set.

The limited left-context parser can be thought
of as at a midway point between the pure bot tom-
up parser and the left-corner parser, constructing
a subset of the phrases found by the bot tom-up
parser, and a superset of the phrases found by the
left-corner parser. Using limited left-context to
constrain categories containing syntactic gaps re-
duces the number of phrases by more than a fac-
tor of 5 and is almost 15 times faster than the
pure bot tom-up parser. The limited left-context
parser builds 81% more edges than the left-corner
parser, but many fewer predictions. Somewhat
surprisingly, this results in the limited left-context
parser being 4 times faster than the left-corner
parser. We conjecture that this is due to the fact
that context-independent phrases are licensed by
a static table that is quicker to check against than
dynamic predictions. This results in a lower av-
erage time per edge for the limited left-context
parser (0.005 seconds) than the left-corner parser
(0.036 seconds). Some additional penalty may also
have been incurred by not using dotted g rammar
rules to generate reductions, as in standard left-
corner parsing algorithms. 2

There are important differences between the
technique for limited prediction in this parser,
and other techniques for limited prediction such
as Shieber's notion of restriction (Shieber, 1985)
(which we also use). In methods such as Shieber's,
predictions are weakened in ways that can re-
sult in an overall gain in efficiency, but predic-
tions nevertheless must be dynamically generated
for every phrase that is built bot tom-up. In our

log version 3.1.4.
2Other than this, we do not believe that the

bottom-up and left-corner algorithms we tested suf-
fered from any unnecessary overheads from being im-
plemented as special cases of our general algorithm, as
we removed calls to subroutines that were unnecessary
for those special cases.

112

method, no predictions need to be generated for
the context-independent categories; from another
point of view, context-independent categories are
predicted statically, at compile time, for all points
in the input, rather than dynamically at run time.
Time is saved both because the predictions do not
have to be generated at run time, and because the
process of checking these static predictions is sim-
pler.

In previous work (Moore and Dowding, 1991),
we compared limited left-context checking to some
other methods for dealing with empty categories in
a bottom-up parser. Standard grammar transfor-
mation techniques (Hopcroft and Ullman, 1980)
can be used to eliminate empty nonterminals.
This approach is useful to eliminate some edges,
but still allows edges that dominate empty cat-
egories to be created. We found that using this
technique was faster than pure bot tom-up pars-
ing, but still significantly slower than limited left-
context checking. A further refinement is to trans-
form the grammar to eliminate both empty and
nonbranching rules. I.n the case of our grammar,
however, this resulted in such a large" increase in
grammar size as to be impractical.

An alternative method for making left-corner
parsers more robust is to explicitly add predictions
for start categories at every point in the input. If
every context-independent category is a possible
left corner of a start category, this approach will
result in the same set of edges in the chart that
the limited left-context approach builds, but at
the added expense of creating many more predic-
tions. Since increasing the total number of pre-
dictions increases parse time, we expect that this
technique would be significantly slower than lim-
ited left-context checking, although we have not
carried out any experiments on this approach.

The technique of precompiling the left-
daughter-of table is not unique to this parser, and
has appeared in both the GHR, parser (Graham,
Harrison, and Russo, 1980) and the Core Lan-
guage Engine parser (Alshawi, 1992).

I N T E R L E A V E D S E M A N T I C

P R O C E S S I N G

The Gemini system allows either syntax-only pars-
ing or parsing with syntactic and semantic pro-
cessing fully interleaved. In interleaved processing,
whenever a syntax rule successfully creates a new
syntactic phrase, corresponding semantic rules are
applied to construct possible logical forms for the
phrase, 3 the logical forms are checked to verify

3As a possible optimization, we tried combining the
syntactic and semantic rules at compile time. This
turned out to be slower than checking all syntactic

that they satisfy semantic sortal constraints, and
edges for interpretations that pass all constraints
are added to the chart. In general, this leads to
fewer syntactically distinct analyses being present
in the chart (since phrases that have no inter-
pretation satisfying sortal constraints do not pro-
duce edges), but semantic ambiguity can lead to
a greater total number of semantically distinct
edges. As is the case in syntax-only parsing, in-
terleaved processing uses packing to collapse anal-
yses for later processing. Analyses are collapsed if
they have the same parent nonterminal, incorpo-
rating both syntactic and semantic features, and
the same semantic sortal properties.

D e f e r r e d S o r t a l - C o n s t r a i n t A p p l i c a t i o n

In Gemini, there are two sources of semantic am-
biguity to be considered when interleaving syntax
and semantics in parsing: semantic rule ambiguity
and sortal ambiguity. For every syntactic rule of
the form:

Rulename: A,vn ~ B, vn, C, vn

there are one or more semantic rules indexed on
the same rule name:

Rulename:
(LFA, A,,,n) ~ (LFB, B,e,n), (LF¢ , C,,m)

Here, LFA, LFB and LFc are logical form expres-
sions indicating how the logical form LFA is to
be constructed from the logical forms of its chil-
dren LFB and LFc, and A, B, and C are category
expressions that are unified.

The second source of semantic ambiguity is
sortal ambiguity. Every atom in a logicM form
expression is assigned one or more semantic sorts.
For example, in the logical form fragment

exists ((A ; [flight]),
[and,

[flight, (A; [flight])] ; [prop],
[to, (A; [flight]),

('BOSTOn' ; [city])] ; [prop]] ;
[prop]) ;

[prop]

the atoms exists, and, flight, to and 'BOSTON'
have sort assignments (sorts are printed as the
right-hand side of the ';' operator). Some
atoms like 'BOSTON' are assigned atomic sorts
like [c i t y] , while other atoms like to are as-
signed more complex sorts, for instance, a func-

constraints first, at least for our grammar at the time.
We speculate that this is due to unifying multiple vari-
ants of the same syntactic pattern against the chart in
cases where one syntactic rule has several correspond-
ing semantic rules, and that applying syntactic rules
first provides an effective filter for faster matching.

113

tion from flights and cities to propositions, rep-
resented as ([[f l i g h t] , [c i t y]] , [prop]). Sorts
for nonatomic logical form expressions are then
constructed recursively from the subexpressions
they contain. For instance, the expression [t o ,
(A; [f l i g h t]) , ('BOSTON'; [c i t y])] is assigned
the sort [prop] because there is a possible sort
assignment for to consistent with the relation to
holding between something of sort [f l i g h t] and
something of sort [c i t y] .

If an atom within a logical form expression
has more than one possible sort assignment, then
the expression may be ambiguous if the other sorts
in the expression do not further constrain it; if a
logical form expression associated with a syntactic
edge is ambiguous, then new edges are added to
the chart for each of the possible semantic read-
ings. This is very common with sort assignments
for logical form functors. If all the arguments of
the functor have already been found at the point
when the functor is first encountered in a logi-
cal form expression, then usually only one possi-
ble sort assignment for the functor will apply, and
the resulting semantic edge will be sortally unam-
biguous. If the functor is encountered in a phrase
where one or more of its arguments have not yet
been encountered, such as a verb phrase before it
has been combined with its §ubject, edges for all
possible sorts for the missing arguments will be
hypothesized, creating local sort ambiguities. As
can be seen in Table 2, there is a modest increase
in the number of edges created per utterance due
to semantic rule ambiguity, but a much more dra-
matic increase due to sortal ambiguity.

The approach we have taken to deal with this
problem is to prevent sortal ambiguity from mul-
tiplying out into distinct edges in the chart, by
deferring the application of sortal constraints in
eases where sortal ambiguities would be created.
To implement this approach, we associate with ev-
ery semantic edge a set (possibly empty) of de-
ferred sort assignments. In order to construct this
set for an edge, we create deferred sort assignments
for any logical form atoms introduced by the se-
mantic rule or lexical entry that created the edge
that have more than one possible sort, given all
the information we have at that edge (such as the
sorts of the arguments of a functor). For a phrasal
edge, we add to this any deferred sort assignments
inherited from the daughters of the edge.

Once the set of deferred sorts has been con-
structed, but before the new edge is added to the
chart, the set is analyzed to determine whether it
is consistent, and to remove any deferred sort as-
signments that have become unambiguous because
of unifications performed in creating the edge.
Since the deferred sort assignments can share logic
variables, it is possible that even though each de-

farted assignment is ambiguous, there is no assign-
ment of sorts that can satisfy all constraints at the
same time, in which case the edge is rejected. The
incorporation of additional information from sib-
ling nodes can result in a sortal ambiguity becom-
ing resolved when an edge is constructed, in which
case the resulting sort assignment is applied and
removed from the set of deferred sort assignments.
Finally, we check whether the deferred sort assign-
ments, although individually ambiguous, jointly
have a unique solution. In this case, that assign-
ment of values is applied, and the set of deferred
sort assignments becomes the empty set.

Type of
Processing
Syntax Only
Plus Semantic Rules
Plus Sorts
With Deferred Sorts

Edges/ Sees/ Sees/
Utt Edge Utt
203 0.005 0.98
209 0.006 1.20
357 0.011 4.04
194 0.007 1.33

Table 2: Results of Deferring Sortal Constraints

The effectiveness of this technique is demon-
strated by Table 2, which compares the average
number of edges per utterance, average parse time
per edge, and average parse time per utterance
for four different modes of processing: syntax-
only parsing, interleaving syntax and semantics
without applying sortal constraints, interleaving
syntax and semantics while immediately apply-
ing sortal constraints, and interleaving syntax and
semantics while deferring ambiguous sortal con-
straints. We can see that the total number of
semantic edges is reduced significantly, resulting
in a decrease in the total syntax+semantics+sorts
time by a factor of 3. Note that despite the addi-
tion of semantic rule ambiguity, the total number
of edges built during interleaved syntactic and se-
mantic processing is less than the number of edges
built using syntax alone, demonstrating that we
in fact succeed in using semantic information to
prune the syntactic search space.

I M P R O V I N G A C C U R A C Y I N

S P E E C H R E C O G N I T I O N

One of our prime motivations in designing a parser
to find all syntactically well-formed semantically
meaningful phrases in a word string was to be
able to use it for the robust application of natural-
language constraints in speech recognition. Most
attempts to apply natural-language constraints in
speech recognition have relied on finding a com-
plete parse for a recognition hypothesis. Many
have worked by simply picking as the preferred
hypothesis the string with the highest recognition

1 1 4

score that can be completely parsed and inter-
preted.

It seems virtually impossible, however, to
create a natural-language grammar that models
spontaneous spoken language accurately enough
to avoid introducing more errors than it corrects,
if applied in this way. A state-of-the-art natural-
language grammar for a problem such as the
ARPA ATIS task might fail to find a complete
analysis for 10% or more of test utterances. In this
case, a substantial recognition error rate would be
introduced, because of the correct utterances that
would be completely excluded, and it is extremely
unlikely that the grammar would result in enough
reduction of the recognition errors of a state-of-
the-art speech recognizer on other utterances to
overcome the errors it introduces.

We have taken a different approach based on
the observation that , even when our grammar fails
to provide a complete analysis of an utterance, it is
usually possible to find a small number of semanti-
cally meaningful phrases that span the utterance.
We therefore use our parser to find the minimal
number of semantically meaningful phrases needed
to span a recognition hypothesis and to compute
a natural-language score for the hypothesis based
on this number. Having a parser tha t finds all
syntactically well-formed semantically meaningful
phrases is an obvious prerequisite to taking such
an approach.

We have applied this idea in a system combin-
ing Gemini with SRI's DECIPHER TM speech rec-
ognizer (Murveit et al., 1993), which was tested in
the December 1993 ARPA ATIS benchmark evalu-
ation (Pallet et al., 1994). The following example
from the evaluation test set illustrates the basic
approach:

hypothesis: [list flights][of fare code][a][q]
reference: [list flightsl[of fare code of q]

These two word strings represent the recognizer's
first hypothesis for the utterance and the reference
transcription of the utterance, each bracketed ac-
cording to the best analysis that Gemini was able
to find as a sequence of semantically meaningful
phrases. Because of a missing sortal possibility,
Gemini did not allow the preposition of to re-
late a noun phrase headed by flights to a noun
phrase headed by fare code, so it was not possi-
ble to find a single complete analysis for either
word string. Gemini was, however, able to find a
single phrase spanning of fare code of q, but re-
quired three phrases to span of fare code a q, so it
still strongly preferred the reference transcription
of the utterance over the recognizer's first hypoth-
esis.

The integration of Gemini and DECIPHER

was implemented by combining a Gemini score
with the recognition score for each of the rec-
ognizer's N-top hypotheses and selecting the hy-
pothesis with the best overall score. 4 The Gemini
score was computed as a somewhat ad hoc combi-
nation of the number of phrases needed to cover
the hypothesis, a bonus if the hypothesis could be
analyzed as a single sentence (as opposed to any
other single grammatical phrase), and penalties
for using certain "dispreferred" grammar rules.
This score was then scaled by an empirically op-
timized parameter and added to the recognition
score.

We carried out a detailed analysis of the
preliminary results of the December 1993 ARPA
ATIS benchmark evaluation to determine the ef-
fect of incorporating natural-language information
into recognition in this way. Overall, the word
error rate improved from 6.0% to 5.7% (5.0% im-
provement), and the utterance error rate improved
from 29.6% to 27.8% (6.1% improvement). These
improvements, while modest, were measured to be
statistically significant at the 95% confidence level
according to the rhatched-pair sentence segment
(word error) test and the McNemar (sentence er-
ror) test.

In more detail, the first hypothesis of the rec-
ognizer was correct for 704 of 995 utterances for
which the natural-language grammar was used. Of
these, the natural-language grammar failed to find
complete analysis for 62. The combined system
nevertheless chose the correct hypothesis in 57 of
these cases; thus, only 5 correct hypotheses were
lost due to lack of grammar coverage. On the
other hand, use of the natural-language grammar
resulted in correcting 22 incorrect recognizer first
hypotheses. Moreover, 4 of these were not com-
pletely analyzable by the natural-language gram-
mar, but were chosen because they received a bet-
ter analysis as a sequence of phrases than the first
hypothesis of the recognizer.

We also analyzed which of the natural-
language factors incorporated in the Gemini score
were responsible for the corrections and errors rel-
ative to the performance of the recognizer alone.
For the 22 utterances that were corrected, in 18
cases the correction was due to the preference for
fewer fragments, in 3 cases the correction was due
to the preference for complete sentences, and in
only one case did the correction result from a
grammar rule preference. Of the 5 utterance errors
introduced by Gemini, 3 turned out to be cases
in which the reference transcription was incorrect
and the hypothesis selected by Gemini was actu-

4The value of N was variable, but sufficiently large
(typically hundreds) that a limit on N was never a
factor in which hypothesis was chosen.

115

ally correct, one was due to inadequate grammat-
ical coverage resulting in a larger number of frag-
ments for the correct hypothesis, and one was due
to a grammatical rule preference. We concluded
from this that the preference for fewer fragments
is clearly useful and the preference for complete
sentences seems to be somewhat useful, but there
is no evidence that the current system of rule pref-
erences is of any benefit in speech recognition. A
more systematic approach to rule preferences, such
as one based on a statistical grammar, may be of
more benefit, however.

C O N C L U S I O N S

We have described an efficient parser that oper-
ates bottom-up to produce syntactic and semantic
structures fully interleaved. Two techniques com-
bine to reduce the total ambiguity represented in
the chart. Limited left-context constraints reduce
local syntactic ambiguity, and deferred sortal-
constraint application reduces local semantic am-
biguity. We have expermentally evaluated these
techniques, and shown order-of-magnitude reduc-
tions in both number of chart edges and total pars-
ing time. The robust processing capabilities of the
parser have also been shown to be able to provide
a small but significant increase in the accuracy of
a speech recognizer.

A C K N O W L E D G M E N T S

We would like to thank Mark Gawron for helpful
comments on earlier drafts, and the SRI speech
group, particularly Harry Bratt, for help perform-
ing the speech recognition experiments.

R E F E R E N C E S

Alshawi, H. (ed.). 1992. The Core Language En-
gine. MIT Press, Cambridge, Massachusetts.

Dowding, J., Garwon, J., Appelt, D., Bear, 3 ,
Cherny, L., Moore, R., and Moran, D. 1993.
GEMINI: A Natural Language Understand-
ings System for Spoken-Language Understand-
ing, in 31st Annual Meeting of the Association
for Computational Linguistics, Columbus, Ohio
(June), pp. 54-61.

Earley, J. 1970. An Efficient Context-Free Parsing
Algorithm, Communications of the ACM, 31,2
(Feb.), pp. 94-102.

Graham, S., Harrison, M., and Ruzzo, W. 1980.
An Improved Context-Free Recognizer, ACM
Transactions on Programming Languages and
Systems, 2,3 (July), pp. 415-462.

Hopcroft, J. and Ullman, J. 1980. Introduc-
tion to Automata Theory, Languages, and Com-

putation, Addison-Wesley Publishing, Reading,
Massachusetts.

Kasami, T. 1965. An Efficient Recognition and
Syntax Algorithm for Context-Free Languages,
Scientific Report AFCRL-65-758, Air Force
Cambridge Research Laboratory, Bedford, Mas-
sachusetts.

MADCOW 1992. Multi-site Data Collection for a
Spoken Language Corpus, in Proceedings of the
DARPA Speech and Natural Language Work-
shop, February 23-26, pp. 7-14.

Moore, R., and Dowding, J. 1991. Efficient
Bottom-Up Parsing, in Proceedings of the
DARPA Speech and Natural Language Work-
shop, February 19-22, pp. 200-203.

Murveit, H., Butzberger, J., Digalakis, V. and
Weintraub, M. 1993. Large-Vocabulary Dicta-
tion Using SRI's DECIPHER T M Speech Recog-
nition System: Progressive-Search Techniques,
in Proceedings of the IEEE International Con-
ference on Acoustics, Speech and Signal Process-
ing, Minneapolis, Minnesota (April), pp. II-319-
II-322.

Pallet, D. et al. 1994. 1993 Benchmark Tests
for the ARPA Spoken Language Program, in
Proceedings of the ARPA Workshop on Human
Language Technology, March 8-11.

Shieber, S. 1985. Using Restriction to Ex-
tend Parsing Algorithms for Complex-Feature-
Based Formalisms, in 23rd Annual Meeting of
the Association for Computational Linguistics,
Chicago, Illinois (July), pp. 145-152.

Younger, D. 1967. Recognition and Parsing of
Context-Free Languages in Time n a, Informa-
tion and Control, 10, 2, pp. 189-208.

116

