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A b s t r a c t  

This paper describes TextTiling, an algorithm for parti- 
tioning expository texts into coherent multi-paragraph 
discourse units which reflect the subtopic structure of 
the texts. The algorithm uses domain-independent lex- 
ical frequency and distribution information to recog- 
nize the interactions of multiple simultaneous themes. 
Two fully-implemented versions of the algorithm are de- 
scribed and shown to produce segmentation that corre- 
sponds well to human judgments of the major subtopic 
boundaries of thirteen lengthy texts. 

I N T R O D U C T I O N  

The structure of expository texts can be characterized 
as a sequence ofsubtopical discussions that occur in the 
context of a few main topic discussions. For example, a 
popular science text called Stargazers, whose main topic 
is the existence of life on earth and other planets, can be 
described as consisting of the following subdiscussions 
(numbers indicate paragraph numbers): 

1-3 Intro - the search for life in space 
4-5 The moon's chemical composition 
6-8 How early proximity of  the moon shaped it 

9-12 How the moon helped life evolve on earth 
13 Improbability of  the earth-moon system 

14-16 Binary/trinary star systems make life un- 
likely 

17-18 The low probability of  non-binary/trinary 
systems 

19-20 Properties of  our sun that facilitate life 
21 Summary  

Subtopic structure is sometimes marked in techni- 
cal texts by headings and subheadings which divide the 
text into coherent segments; Brown & Yule (1983:140) 
state that this kind of division is one of the most basic 
in discourse. However, many expository texts consist of 
long sequences of paragraphs with very little structural 

demarcation. This paper presents fully-implemented al- 
gorithms that use lexical cohesion relations to partition 
expository texts into multi-paragraph segments that re- 
flect their subtopic structure. Because the model of dis- 
course structure is one in which text is partitioned into 
contiguous, nonoverlapping blocks, I call the general 
approach TextTiling. The ultimate goal is to not only 
identify the extents of the subtopical units, but to label 
their contents as well. This paper focusses only on the 
discovery of subtopic structure, leaving determination 
of subtopic content to future work. 

Most discourse segmentation work is done at a finer 
granularity than that suggested here. However, for 
lengthy written expository texts, multi-paragraph seg- 
mentation has many potential uses, including the im- 
provement of computational tasks that make use of dis- 
tributional information. For example, disambiguation 
algorithms that train on arbitrary-size text windows, 
e.g., Yarowsky (1992) and Gale et ai. (1992b), and al- 
gorithms that use lexical co-occurrence to determine se- 
mantic relatedness, e.g., Schfitze (1993), might benefit 
from using windows with motivated boundaries instead. 

Information retrieval algorithms can use subtopic 
structuring to return meaningful portions of a text if 
paragraphs are too short and sections are too long 
(or are not present). Motivated segments can also be 
used as a more meaningful unit for indexing long texts. 
Salton et al. (1993), working with encyclopedia text, 
find that comparing a query against sections and then 
paragraphs is more successful than comparing against 
full documents alone. I have used the results of Text- 
Tiling in a new paradigm for information access on full- 
text documents (Hearst 1994). 

The next section describes the discourse model that 
motivates the approach. This is followed by a descrip- 
tion of two algorithms for subtopic structuring that 
make use only of lexical cohesion relations, the evalua- 
tion of these algorithms, and a summary and discussion 
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of future work. 

T H E  D I S C O U R S E  M O D E L  
Many discourse models assume a hierarchical segmen- 
tation model, e.g., at tentional/ intentional  structure 
(Crosz & Sidner 1986) and Rhetorical Structure Theory 
(Mann ~ Thompson 1987). Although many aspects of 
discourse analysis require such a model, I choose to cast 
expository text into a linear sequence of segments, both 
for computat ional  simplicity and because such a struc- 
ture is sufficient for the coarse-grained tasks of interest 
here. 1 
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m 
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Figure 1: Skorochod'ko's text structure types. Nodes 
correspond to sentences and edges between nodes indi- 
cate strong term overlap between the sentences. 

Skorochod'ko (1972) suggests discovering a text 's  
structure by dividing it up into sentences and seeing 
how much word overlap appears among the sentences. 
The overlap forms a kind of intra-structure; fully con- 
nected graphs might indicate dense discussions of a 
topic, while long spindly chains of connectivity might 
indicate a sequential account (see Figure 1). The cen- 
tral idea is that  of defining the structure of a text as a 
function of the connectivity patterns of the terms that  
comprise it. This is in contrast with segmenting guided 
primarily by fine-grained discourse cues such as register 
change, focus shift, and cue words. From a computa- 
tional viewpoint, deducing textual topic structure from 
lexical connectivity alone is appealing, both because it 
is easy to compute, and also because discourse cues are 
sometimes misleading with respect to the topic struc- 
ture (Brown & Yule 1983)(§3). 

1 Additionally, (Passonneau & Litman 1993) concede the 
difficulty of eliciting hierarchical intentional structure with 
any degree of consistency from their human judges. 

The topology most of interest to this work is the final 
one in the diagram, the Piecewise Monolithic Structure, 
since it represents sequences of densely interrelated dis- 
cussions linked together, one after another. This topol- 
ogy maps nicely onto that  of viewing documents as a 
sequence of densely interrelated subtopical discussions, 
one following another. This assumption, as will be seen, 
is not always valid, but  is nevertheless quite useful. 

This theoretical stance bears a close resemblance to 
Chafe's notion of The Flow Model of discourse (Chafe 
1979), in description of which he writes (pp 179-180): 

Our d a t a . . ,  suggest that  as a speaker moves from 
focus to focus (or from thought to thought) there 
are certain points at which there may be a more or 
less radical change in space, time, character config- 
uration, event structure, or, even, world . . . .  At 
points where all of these change in a maximal way, 
an episode boundary is strongly present. But often 
one or another will change considerably while oth- 
ers will change less radically, and all kinds of var- 
ied interactions between these several factors are 
possible. 2 

Although Chafe's work concerns narrative text,  the 
same kind of observation applies to expository text. 
The  TextTiling algorithms are designed to recognize 
episode boundaries by determining where thematic 
components like those listed by Chafe change in a max- 
imal way. 

Many researchers have studied the patterns of occur- 
rence of characters, setting, time, and the other the- 
matic factors that  Chafe mentions, usually in the con- 
text of narrative. In contrast, I a t t empt  to determine 
where a relatively large set of active themes changes 
simultaneously, regardless of the type of thematic fac- 
tor. This is especially important  in expository text in 
which the subject mat ter  tends to structure the dis- 
course more so than characters, setting, etc. For ex- 
ample, in the Stargazers text, a discussion of continen- 
tal movement, shoreline acreage, and habitability gives 
way to a discussion of binary and unary star systems. 
This is not so much a change in setting or character 
as a change in subject matter .  Therefore, to recognize 
where the subtopic changes occur, I make use of lexical 
cohesion relations (Halliday & Hasan 1976) in a manner 
similar to that  suggested by Skorochod'ko. 

Morris and Hirst's pioneering work on computing dis- 
course structure from lexical relations (Morris & Hirst 
1991), (Morris 1988) is a precursor to the work reported 
on here. Influenced by Halliday & Hasan's (1976) the- 
ory of lexical coherence, Morris developed an algorithm 
that  finds chains of related terms via a comprehensive 
thesaurus (Roget's Fourth Edition). 3 For example, the 

2Interestingly, Chafe arrived at the Flow Model after 
working extensively with, and then becoming dissatisfied 
with, a hierarchical model of paragraph structure like that 
of Longacre (1979). 

3The algorithm is executed by hand since the thesaurus 
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4 trinary 
8 astronomer 1 
7 o r b i t  1 
6 pull 

16 p lane t  1 
7 galaxy 1 
4 lunar 

19 l i f e  1 1 
27 moon 
3 move 
7 continent 
3 shoreline 
6 time 
3 water 
6 say 
3 species 
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Figure 2: Distribution of selected terms from the Stargazer text, with a single digit frequency per sentence number 
(blanks indicate a frequency of zero). 

words residential and apartment both index the same 
thesaural category and can thus be considered to be 
in a coherence relation with one another. The chains 
are used to structure texts according to the at ten- 
t ional/ intentional  theory of discourse structure (Grosz 
& Sidner 1986), and the extent of the chains correspond 
to the extent of a segment. The algorithm also incorpo- 
rates the notion of "chain returns" - repetition of terms 
after a long hiatus - to close off an intention that  spans 
over a digression. 

Since the Morris & Hirst (1991) algori thm a t t empts  
to discover at tent ional / intent ional  structure, their goals 
are different than those of TextTiling. Specifically, the 
discourse structure they a t t empt  to discover is hierar- 
chical and more fine-grained than that  discussed here. 
Thus their model is not set up to take advantage of 
the fact that  multiple simultaneous chains might occur 
over the same intention. Furthermore,  chains tend to 
overlap one another extensively in long texts. Figure 2 
shows the distribution, by sentence number,  of selected 
terms from the Stargazers text. The  first two terms 
have fairly uniform distribution and so should not be 
expected to provide much information about  the di- 
visions of the discussion. The next two terms occur 
mainly at the beginning and the end of the text, while 
terms binary through planet have considerable overlap 

is not generally available online. 

from sentences 58 to 78. There is a somewhat  well- 
demarked cluster of terms between sentences 35 and 50, 
corresponding to the grouping together of paragraphs 
10, 11, and 12 by human judges who have read the text. 

From the diagram it is evident that  s imply looking 
for chains of repeated terms is not sufficient for deter- 
mining subtopic breaks. Even combining terms that  are 
closely related semantically into single chains is insuf- 
ficient, since often several different themes are active 
in the same segment. For example,  sentences 37 - 51 
contain dense interaction among the terms move, con- 
tinent, shoreline, time, species, and life, and all but the 
lat ter  occur only in this region. However, it is the case 
that  the interlinked terms of sentences 57 - 71 (space, 
star, binary, trinary, astronomer, orbit ) are closely re- 
lated semantically, assuming the appropr ia te  senses of 
the terms have been determined. 

A L G O R I T H M S  F O R  D I S C O V E R I N G  

S U B T O P I C  S T R U C T U R E  

Many researchers (e.g., Halliday ~z Hasan (1976), Tan- 
hen (1989), Walker (1991)) have noted tha t  term rep- 
etition is a strong cohesion indicator. I have found in 
this work tha t  term repetition alone is a very useful in- 
dicator of subtopic structure, when analyzed in terms 
of multiple simultaneous information threads. This  sec- 
tion describes two algorithms for discovering subtopic 
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structure using term repetition as a lexical cohesion in- 
dicator. 

The first method compares, for a given window size, 
each pair of adjacent blocks of text according to how 
similar they are lexically. This method assumes that  the 
more similar two blocks of text are, the more likely it is 
that  the current subtopic continues, and, conversely, if 
two adjacent blocks of text  are dissimilar, this implies a 
change in subtopic flow. The second method,  an exten- 
sion of Morris & Hirst's (1991) approach, keeps track 
of active chains of repeated terms, where membership 
in a chain is determined by location in the text. The  
method determines subtopic flow by recording where in 
the discourse the bulk of one set of chains ends and a 
new set of chains begins. 

The core algorithm has three main parts: 

1. Tokenization 

2. Similarity Determination 

3. Boundary Identification 

Tokenization refers to the division of the input text 
into individual lexical units. For both versions of the 
algorithm, the text is subdivided into psuedosentences 
of a pre-defined size w (a parameter  of the algorithm) 
rather than actual syntactically-determined sentences, 
thus circumventing normalization problems. For the 
purposes of the rest of the discussion these groupings of 
tokens will be referred to as token-sequences. In prac- 
tice, setting w to 20 tokens per token-sequence works 
best for many texts. The morphologically-analyzed to- 
ken is stored in a table along with a record of the token- 
sequence number it occurred in, and how frequently it 
appeared in the token-sequence. A record is also kept of 
the locations of the paragraph breaks within the text. 
Closed-class and other very frequent words are elimi- 
nated from the analysis. 

After tokenization, the next step is the comparison 
of adjacent pairs of blocks of token-sequences for over- 
all lexical similarity. Another important  parameter  for 
the algorithm is the blocksize: the number of token- 
sequences that  are grouped together into a block to be 
compared against an adjacent group of token-sequences. 
This value, labeled k, varies slightly from text to text; 
as a heuristic it is the average paragraph length (in 
token-sequences). In practice, a value of k = 6 works 
well for many texts. Actual paragraphs are not used 
because their lengths can be highly irregular, leading 
to unbalanced comparisons. 

Similarity values are computed for every token- 
sequence gap number; that  is, a score is assigned to 
token-sequence gap i corresponding to how similar the 
token-sequences from token-sequence i -  k through i are 
to the token-sequences from i + 1 to i + k + 1. Note that  
this moving window approach means that  each token- 
sequence appears in k * 2 similarity computations. 

Similarity between blocks is calculated by a cosine 
measure: given two text blocks bl and bz, each with k 
token-sequences, 

•/E t 2 n ~JJt,bx Et=l ~/)2 t,b~ 

where t ranges over all the terms that have been reg- 
istered during the tokenization step, and wt,b~ is the 
weight assigned to term t in block /)I- In this version 
of the algorithm, the weights on the terms are simply 
their frequency within the block .4 Thus if the similarity 
score between two blocks is high, then the blocks have 
many terms in common. This formula yields a score 
between 0 and 1, inclusive. 

These scores can be plotted, token-sequence number 
against similarity score. However, since similarity is 
measured between blocks bl and b2, where bl spans 
token-sequences i - k through i and b2 spans i + 1 to 
i + k + 1, the measurement 's  z-axis coordinate falls be- 
tween token-sequences i and i + 1. Rather than plot- 
ting a token-sequence number on the x-axis, we plot 
token-sequence gap number i. The plot is smoothed 
with average smoothing; in practice one round of aver- 
age smoothing with a window size of three works best 
for most texts. 

Boundaries are determined by changes in the se- 
quence of similarity scores. The token-sequence gap 
numbers are ordered according to how steeply the slopes 
of the plot are to either side of the token-sequence gap, 
rather than by their absolute similarity score. For a 
given token-sequence gap i, the algorithm looks at the 
scores of the token-sequence gaps to the left of i as long 
are their values are increasing. When the values to the 
left peak out, the difference between the score at the 
peak and the score at i is recorded. The same proce- 
dure takes place with the token-sequence gaps to the 
right of i; their scores are examined as long as they 
continue to rise. The relative height of the peak to the 
right of i is added to the relative height of the peak to 
the left. (A gap occurring at a peak will have a score 
of zero since neither of its neighbors is higher than it.) 
These new scores, called depth scores, corresponding to 
how sharp a change occurs on both sides of the token- 
sequence gap, are then sorted. Segment boundaries are 
assigned to the token-sequence gaps with the largest 
corresponding scores, adjusted as necessary to corre- 
spond to true paragraph breaks. A proviso check is 
done that  prevents assignment of very close adjacent 
segment boundaries. Currently there must be at least 
three intervening token-sequences between boundaries. 
This helps control for the fact that  many texts have 
spurious header information and single-sentence para- 
graphs. 

The algorithm must determine how many segments 
to assigned to a document,  since every paragraph is a 

4Earlier work weighted the terms according to their fre- 
quency times their inverse document frequency. In these 
more recent experiments, simple term frequencies seem to 
work better. 
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Figure 3: Judgments of seven readers on the Stargazer text. Internal numbers indicate location of gaps between 
paragraphs; x-axis indicates token-sequence gap number, y-axis indicates judge number, a break in a horizontal line 
indicates a judge-specified segment break. 
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Figure 4: Results of the block similarity algorithm on the Stargazer text. Internal numbers indicate paragraph 
numbers, x-axis indicates token-sequence gap number, y-axis indicates similarity between blocks centered at the 
corresponding token-sequence gap. Vertical lines indicate boundaries chosen by the algorithm; for example, the 
leftmost vertical line represents a boundary after paragraph 3. Note how these align with the boundary gaps of 
Figure 3 above. 

potential segment boundary. Any attempt to make an 
absolute cutoff is problematic since there would need 
to be some correspondence to the document style and 
length. A cutoff based on a particular valley depth is 
similarly problematic• 

I have devised a method for determining the number 
of boundaries to assign that scales with the size of the 
document and is sensitive to the patterns of similarity 
scores that it produces: the cutoff is a function of the 
average and standard deviations of the depth scores for 
the text under analysis• Currently a boundary is drawn 
only if the depth score exceeds g - ¢r/2. 

E V A L U A T I O N  
One way to evaluate these segmentation algorithms is 
to compare against judgments made by human readers, 
another is to compare the algorithms against texts pre- 
marked by authors, and a third way is to see how well 
the results improve a computational task. This section 

compares the algorithm against reader judgments, since 
author markups are fallible and are usually applied to 
text types that this algorithm is not designed for, and 
Hearst (1994) shows how to use TextTiles in a task 
(although it does not show whether or not the results 
of the algorithms used here are better than some other 
algorithm with similar goals). 

R e a d e r  J u d g m e n t s  

Judgments were obtained from seven readers for each 
of thirteen magazine articles which satisfied the length 
criteria (between 1800 and 2500 words) 5 and which 
contained little structural demarkation. The judges 

SOne longer text of 2932 words was used since reader 
judgments had been obtained for it from an earlier ex- 
periment. Judges were technical researchers. Two texts 
had three or four short headers which were removed for 
consistency. 
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were asked simply to mark the paragraph boundaries 
at which the topic changed; they were not given more 
explicit instructions about  the granularity of the seg- 
mentation. 

Figure 3 shows the boundaries marked by seven 
judges on the Stargazers text.  This format  helps il- 
lustrate the general trends made by the judges and 
also helps show where and how often they disagree. 
For instance, all but  one judge marked a boundary be- 
tween paragraphs 2 and 3. The dissenting judge did 
mark a boundary after 3, as did two of the concurring 
judges. The next three major  boundaries occur after 
paragraphs 5, 9, 12, and 13. There is some contention 
in the later paragraphs; three readers marked both 16 
and 18, two marked 18 alone, and two marked 17 alone. 
The outline in the Introduction gives an idea of what 
each segment is about.  

Passonneau & Litman (1993) discuss at length con- 
siderations about evaluating segmentation algorithms 
according to reader judgment information. As Figure 3 
shows, agreement among judges is imperfect, but trends 
can be discerned. In Passonneau & Litman's  (1993) 
data, if 4 or more out of 7 judges mark a boundary, the 
segmentation is found to be significant using a variation 
of the Q-test (Cochran 1950). My data  showed similar 
results. However, it isn't clear how useful this signifi- 
cance information is, since a simple majori ty does not 
provide overwhelming proof about the objective real- 
ity of the subtopic break. Since readers often disagree 
about where to draw a boundary marking for a topic 
shift, one can only use the general trends as a basis 
from which to compare different algorithms. Since the 
goals of TextTil ing are better  served by algorithms that  
produce more rather than fewer boundaries, I set the 
cutoff for "true" boundaries to three rather than four 
judges per paragraph. 6 The remaining gaps are consid- 
ered nonboundaries. 

R e s u l t s  

Figure 4 shows a plot of the results of applying the block 
comparison algorithm to the Stargazer text. When the 
lowermost portion of a valley is not located at a para- 
graph gap, the judgment  is moved to the nearest para- 
graph gap. 7 For the most part,  the regions of strong 
similarity correspond to the regions of strong agree- 
ment among the readers. (The results for this text were 
fifth highest out of the 13 test texts.) Note however, 
that  the similarity information around paragraph 12 is 
weak. This paragraph briefly summarizes the contents 
of the previous three paragraphs; much of the terminol- 

6Paragraphs of three or fewer sentences were combined 
with their neighbor if that neighbor was deemed to follow at 
"true" boundary, as in paragraphs 2 and 3 of the Stargazers 
text. 

rThis might be explained in part by (Stark 1988) who 
shows that readers disagree measurably about where to 
place paragraph boundaries when presented with texts with 
those boundaries removed. 

ogy that  occurred in all of them reappears in this one 
location (in the spirit of a Grosz ~; Sidner (1986) "pop" 
operation). Thus it displays low similarity both to itself 
and to its neighbors. This is an example of a breakdown 
caused by the assumptions about the subtopic struc- 
ture. It is possible that  an additional pass through the 
text could be used to find structure of this kind. 

The final paragraph is a summary of the entire text; 
the algorithm recognizes the change in terminology 
from the preceding paragraphs and marks a boundary; 
only two of the readers chose to differentiate the sum- 
mary; for this reason the algorithm is judged to have 
made an error even though this sectioning decision is 
reasonable. This illustrates the inherent fallibility of 
testing against reader judgments,  although in part  this 
is because the judges were given loose constraints. 

Following the advice of Gale et al. (1992a), I compare 
the Mgorithm against both upper and lower bounds. 
The upper bound in this case is the reader judgment 
data. The lower bound is a baseline algorithm that  is 
a simple, reasonable approach to the problem that  can 
be automated.  A simple way to segment the texts is 
to place boundaries randomly in the document,  con- 
straining the number of boundaries to equal that  of the 
average number of paragraph gaps assigned by judges. 
In the test data, boundaries are placed in about  41% of 
the paragraph gaps. A program was written that  places 
a boundary at each potential gap 41% of the time (us- 
ing a random number generator), and run 10,000 times 
for each text,  and the average of the scores of these runs 
was found. These scores appear in Table 1 (results at 
33% are also shown for comparison purposes). 

The algorithms are evaluated according to how many 
true boundaries they select out of the total selected 
(precision) and how many true boundaries are found out 
of the total possible (recall) (Salton 1988). The recall 
measure implicitly signals the number of missed bound- 
aries (false negatives, or deletion errors); the number of 
false positives, or insertion errors, is indicated explic- 
itly. 

In many cases the algorithms are almost correct but 
off by one paragraph, especially in the texts that  the al- 
gorithm performs poorly on. When the block similarity 
algorithm is allowed to be off by one paragraph, there is 
dramatic improvement in the scores for the texts that 
lower part  of Table 2, yielding an overall precision of 
83% and recall of 78%. As in Figure 4, it is often the 
case that  where the algorithm is incorrect, e.g., para- 
graph gap 11, the overall blocking is very close to what 
the judges intended. 

Table 1 shows that  both the blocking algorithm and 
the chaining algorithm are sandwiched between the up- 
per and lower bounds. Table 2 shows some of these 
results in more detail. The block similarity algorithm 
seems to work slightly better than the chaining algo- 
rithm, although the difference may not prove significant 
over the long run. Furthermore, in both versions of the 
algorithm, changes to the parameters of the algorithm 
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Baseline 33% 
Baseline 41% 
Chains 
Blocks 
Judges 

Precision Recall 

.44 .08 .37 .04' 

.43 .08 .42 .03 

.64 .17 .58 .17 

.66 .18 .61 .13 

.81 .06 .71 .06 

Table 1: Precision and Recall values for 13 test texts. 

perturbs the resulting boundary markings. This is an 
undesirable property and perhaps could be remedied 
with some kind of information-theoretic formulation of 
the problem. 

S U M M A R Y  A N D  F U T U R E  W O R K  

This paper has described algorithms for the segmen- 
tation of expository texts into discourse units that  re- 
flect the subtopic structure of expository text. I have 
introduced the notion of the recognition of multiple si- 
multaneous themes, which bears some resemblance to 
.Chafe's Flow Model of discourse and Skorochod'ko's 
text structure types. The algorithms are fully imple- 
mented: term repetition alone, without use of thesaural 
relations, knowledge bases, or inference mechanisms, 
works well for many of the experimental texts. The 
structure it obtains is coarse-grained but generally re- 
flects human judgment data. 

Earlier work (Hearst 1993) incorporated thesaural 
information into the algorithms; surprisingly the lat- 
est experiments find that  this information degrades the 
performance. This could very well be due to problems 
with the algorithm used. A simple algorithm that  just  
posits relations among terms that  are a small distance 
apart according to WordNet (Miller et al. 1990) or Ro- 
get's 1911 thesaurus (from Project Gutenberg), mod- 
eled after Morris and Hirst's heuristics, might work bet- 
ter. Therefore I do not feel the issue is closed, and in- 
stead consider successful grouping of related words as 
future work. As another possible alternative Kozima 
(1993) has suggested using a (computationally expen- 
sive) semantic similarity metric to find similarity among 
terms within a small window of text (5 to 7 words). 
This work does not incorporate the notion of multi- 
ple simultaneous themes but instead just  tries to find 
breaks in semantic similarity among a small number 
of terms. A good strategy may be to substitute this 
kind of similarity information for term repetition in al- 
gorithms like those described here. Another possibility 
would be to use semantic similarity information as com- 
puted in Schiitze (1993), Resnik (1993), or Dagan et ai. 
(1993). 

The use of discourse cues for detection of segment 
boundaries and other discourse purposes has been ex- 
tensively researched, although predominantly on spo- 
ken text (see Hirschberg & Litman (1993) for a sum- 

mary of six research groups' treatments of 64 cue 
words). It is possible that  incorporation of such in- 
formation may provide a relatively simple way improve 
the cases where the algorithm is off by one paragraph. 
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.67 6 1 

.70 7 2 

Table 2: Scores by text,  showing precision and recall. (C) indicates the number  of correctly placed boundaries, (I) 
indicates the number  of inserted boundaries. The number  of deleted boundaries can be determined by subtract ing 
(C) from Total  Possible. 
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