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In this paper we describe a new technique for 
parsing free text: a transformational grammar I 
is automatically learned that  is capable of accu- 
rately parsing text into binary-branching syntac- 
tic trees with nonterminals unlabelled. The algo- 
r i thm works by beginning in a very naive state of 
knowledge about phrase structure. By repeatedly 
comparing the results of bracketing in the current 
state to proper bracketing provided in the training 
corpus, the system learns a set of simple structural 
transformations that  can be applied to reduce er- 
ror. After describing the algorithm, we present 
results and compare these results to other recent 
results in automatic  grammar induction. 

I N T R O D U C T I O N  

There has been a great deal of interest of late in 
the automatic  induction of natural language gram- 
mar. Given the difficulty inherent in manually 
building a robust parser, along with the availabil- 
ity of large amounts of training material, auto- 
matic grammar  induction seems like a path worth 
pursuing. A number of systems have been built 
that  can be trained automatically to bracket text 
into syntactic constituents. In (MM90) mutual in- 
formation statistics are extracted from a corpus of 
text and this information is then used to parse 
new text. (Sam86) defines a function to score the 
quality of parse trees, and then uses simulated an- 
nealing to heuristically explore the entire space of 
possible parses for a given sentence. In (BM92a), 
distributional analysis techniques are applied to a 
large corpus to learn a context-free grammar.  

The most promising results to date have been 
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1 Not in the traditional sense of the term. 

based on the inside-outside algorithm, which can 
be used to train stochastic context-free grammars.  
The inside-outside algorithm is an extension of 
the finite-state based Hidden Markov Model (by 
(Bak79)), which has been applied successfully in 
many areas, including speech recognition and part  
of speech tagging. A number of recent papers 
have explored the potential  of using the inside- 
outside algorithm to automatically learn a gram- 
mar (LY90, SJM90, PS92, BW92, CC92, SRO93). 

Below, we describe a new technique for gram- 
mar induction. The algorithm works by beginning 
in a very naive state of knowledge about  phrase 
structure. By repeatedly comparing the results of 
parsing in the current state to the proper phrase 
structure for each sentence in the training corpus, 
the system learns a set of ordered transformations 
which can be applied to reduce parsing error. We 
believe this technique has advantages over other 
methods of phrase structure induction. Some of 
the advantages include: the system is very simple, 
it requires only a very small set of transforma- 
tions, a high degree of accuracy is achieved, and 
only a very small training corpus is necessary. The 
trained transformational parser is completely sym- 
bolic and can bracket text in linear t ime with re- 
spect to sentence length. In addition, since some 
tokens in a sentence are not even considered in 
parsing, the method could prove to be consid- 
erably more robust than a CFG-based approach 
when faced with noise or unfamiliar input. After 
describing the algorithm, we present results and 
compare these results to other recent results in 
automatic phrase structure induction. 

T R A N S F O R M A T I O N - B A S E D  

E R R O R - D R I V E N  L E A R N I N G  

The phrase structure learning algorithm is a 
transformation-based error-driven learner. This 
learning paradigm, illustrated in figure 1, has 
proven to be successful in a number of differ- 
ent natural language applications, including part  
of speech tagging (Bri92, BM92b), prepositional 
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Figure 1: Transformation-Based Error-Driven 
Learning. 

phrase a t tachment  (BR93), and word classifica- 
tion (Bri93). In its initial state, the learner is 
capable of annotat ing text but is not very good 
at doing so. The initial state is usually very easy 
to create. In part  of speech tagging, the initial 
state annotator  assigns every word its most likely 
tag. In prepositional phrase at tachment,  the ini- 
tial state annotator  always attaches prepositional 
phrases low. In word classification, all words are 
initially classified as nouns. The naively annotated 
text is compared to the true annotation as indi- 
cated by a small manually annotated corpus, and 
transformations are learned that  can be applied to 
the output  of the initial state annotator  to make 
it bet ter  resemble the truth. 

L E A R N I N G  P H R A S E  
S T R U C T U R E  

The phrase structure learning algorithm is trained 
on a small corpus of partially bracketed text which 
is also annotated with part of speech informa- 
tion. All of the experiments presented below 
were done using the Penn Treebank annotated 
corpus(MSM93). The learner begins in a naive 
initial state, knowing very little about the phrase 
structure of the target corpus. In particular, all 
that  is initially known is that  English tends to 
be right branching and that  final punctuation 
is final punctuation.  Transformations are then 
learned automatically which transform the out- 

put of the naive parser into output  which bet- 
ter resembles the phrase structure found in the 
training corpus. Once a set of transformations 
has been learned, the system is capable of taking 
sentences tagged with parts of speech and return- 
ing a binary-branching structure with nontermi- 
nals unlabelled. 2 

T h e  Initial  S ta te  O f  T h e  Parser  

Initially, the parser operates by assigning a right- 
linear structure to all sentences. The only excep- 
tion is that  final punctuation is attached high. So, 
the sentence "The dog and old cat ate ." would be 
incorrectly bracketed as: 

( ( T h e ( d o g ( a n d ( o l d  ( c a t  a t e ) ) ) ) ) .  ) 

The parser in its initial state will obviously 
not bracket sentences with great accuracy. In 
some experiments below, we begin with an even 
more naive initial state of knowledge: sentences 
are parsed by assigning them a random binary- 
branching structure with final punctuat ion always 
attached high. 

Structura l  Trans format ions  

The next stage involves learning a set of trans- 
formations that  can be applied to the output  of 
the naive parser to make these sentences better 
conform to the proper structure specified in the 
training corpus. The list of possible transforma- 
tion types is prespecified. Transformations involve 
making a simple change triggered by a simple en- 
vironment. In the current implementation,  there 
are twelve allowable transformation types: 

• (1-8) (AddHelete) a ( le f t lr ight)  parenthesis to 
the ( lef t lr ight)  of part  of speech tag X. 

• (9-12) (Add]delete) a (left]right) parenthesis 
between tags X and Y. 

To carry out a transformation by adding or 
deleting a parenthesis, a number of additional sim- 
ple changes must take place to preserve balanced 
parentheses and binary branching. To give an ex- 
ample, to delete a left paren in a particular envi- 
ronment, the following operations take place (as- 
suming, of course, that  there is a left paren to 
delete): 

1. Delete the left paren. 

2. Delete the right paren that  matches the just  
deleted paren. 

3. Add a left paren to the left of the constituent 
immediately to the left of the deleted left paren. 

2This is the same output given by systems de- 
scribed in (MM90, Bri92, PS92, SRO93). 

260 



4. Add a right paren to the right of the con- 
sti tuent immediate ly  to the right of the deleted 
left paren. 

5. If  there is no constituent immediately to the 
right, or none immediate ly  to the left, then the 
t ransformat ion fails to apply. 

Structurally, the t ransformation can be seen 
as follows. If we wish to delete a left paten to 
the right of constituent X 3, where X appears in a 
subtree of the form: 

X 
A 

YY Z 

carrying out these operations will t ransform this 
subtree into: 4 

Z 
A 

X YY 

Given the sentence: 5 

The  dog barked . 

this would initially be bracketed by the naive 
parser as: 

( ( T h e ( d o g b a r k e d ) ) . )  

If  the t ransformat ion delete a left parch to 
the right of  a de terminer  is applied, the structure 
would be t ransformed to the correct bracketing: 

( ( ( T h e d o g )  b a r k e d ) ,  ) 

To add a right parenthesis to the right of YY, 
YY must  once again be in a subtree of the form: 

X 

3To the right of the rightmost terminal dominated 
by X if X is a nonterminal. 

4The twelve transformations can be decomposed 
into two structural transformations, that shown 
here and its converse, along with six triggering 
environments. 

5Input sentences are also labelled with parts of 
speech. 

If  it is, the following steps are carried out to 
add the right paren: 

1. Add the right paren. 

2. Delete the left paten tha t  now matches the 
newly added paren. 

3. Find the right paren that  used to match  the just  
deleted paren and delete it. 

4. Add a left paren to match  the added right paren. 

This results in the same structural  change as 
deleting a left paren to the right of X in this par- 
ticular structure. 

Applying the t ransformat ion add a right paten 
to the right of  a noun to the bracketing: 

( ( T h e ( d o g b a r k e d ) ) . )  

will once again result in the correct bracketing: 

( ( ( T h e d o g ) b a r k e d ) . )  

Learning Transformations 

Learning proceeds as follows. Sentences in the 
training set are first parsed using the naive parser 
which assigns right linear structure to all sen- 
tences, attaching final punctuat ion high. Next, for 
each possible instantiat ion of the twelve transfor- 
mat ion templates,  tha t  particular t ransformat ion 
is applied to the naively parsed sentences. The re- 
suiting structures are then scored using some mea- 
sure of success tha t  compares these parses to the 
correct structural descriptions for the sentences 
provided in the training corpus. The  t ransforma- 
tion resulting in the best scoring structures then 
becomes the first t ransformat ion of the ordered set 
of t ransformations tha t  are to be learned. Tha t  
t ransformation is applied to the right-linear struc- 
tures, and then learning proceeds on the corpus 
of improved sentence bracketings. The  following 
procedure is carried out repeatedly on the train- 
ing corpus until no more t ransformations can be 
found whose application reduces the error in pars- 
ing the training corpus: 

1. The best t ransformat ion is found for the struc- 
tures output  by the parser in its current state. 6 

2. The t ransformation is applied to the output  re- 
sulting from bracketing the corpus using the 
parser in its current state. 

3. This t ransformation is added to the end of the 
ordered list of t ransformations.  

SThe state of the parser is defined as naive initial- 
state knowledge plus all transformations that cur- 
rently have been learned. 
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4. Go to 1. 

After a set of t ransformations has been 
learned, it can be used to effectively parse fresh 
text. To parse fresh text, the text is first naively 
parsed and then every t ransformation is applied, 
in order, to the naively parsed text. 

One nice feature of this method is that  dif- 
ferent measures of bracketing success can be used: 
learning can proceed in such a way as to t ry to 
optimize any specified measure of success. The 
measure we have chosen for our experiments is the 
same measure described in (PS92), which is one of 
the measures that  arose out of a parser evaluation 
workshop (ea91). The measure is the percentage 
of constituents (strings of words between matching 
parentheses) from sentences output  by our system 
which do not cross any constituents in the Penn 
Treebank structural  description of the sentence. 
For example,  if our system outputs:  

( ( ( T h e b i g )  ( d o g a t e ) ) . )  

and the Penn Treebank bracketing for this sen- 
tence was: 

( ( ( T h e b i g d o g )  a t e ) .  ) 

then the constituent the big would be judged cor- 
rect whereas the constituent dog ate would not. 

Below are the first seven t ransformations 
found from one run of training on the Wall Street 
Journal  corpus, which was initially bracketed us- 
ing the right-linear initial-state parser. 

1. Delete a left paren to the left of a singular noun. 

2. Delete a left paren to the left of a plural noun. 

3. Delete a left paren between two proper nouns. 

4. Delet a left paten to the right of a determiner. 

5. Add a right paten to the left of a comma.  

6. Add a right paren to the left of a period. 

7. Delete a right paren to the left of a plural noun. 

The first four t ransformations all extract  noun 
phrases f rom the right linear initial structure. The 
sentence "The cat meowed ." would initially be 
bracketed as: 7 

( ( T h e  ( c a t  m e o w e d ) )  . ) 

Applying the first t ransformation to this 
bracketing would result in: 

7These examples are not actual sentences in the 
corpus. We have chosen simple sentences for clarity. 

( ( ( T h e c a t ) m e o w e d ) . )  

Applying the fifth t ransformat ion to the 
bracketing: 

( ( We ( ran ( 

would result in 

( ( ( We ran ) 

( a n d ( t h e y w a l k e d ) ) ) ) ) . )  

, ( a n d ( t h e y  w a l k e d ) ) ) ) .  ) 

R E S U L T S  

In the first experiment we ran, training and test- 
ing were done on the Texas Ins t ruments  Air Travel 
Information System (ATIS) corpus(HGD90).  8 In 
table 1, we compare results we obtained to re- 
sults cited in (PS92) using the inside-outside al- 
gori thm on the same corpus. Accuracy is mea- 
sured in terms of the percentage of noncrossing 
constituents in the test corpus, as described above. 
Our system was tested by using the training set 
to learn a set of t ransformations,  and then ap- 
plying these t ransformations to the test set and 
scoring the resulting output .  In this experiment,  
64 transformations were learned (compared with 
4096 context-free rules and probabilit ies used in 
the inside-outside algori thm experiment) .  I t  is sig- 
nificant that  we obtained comparable  performance 
using a training corpus only 21% as large as that  
used to train the inside-outside algori thm. 

Method # of Training Accuracy 
Corpus Sentences 

Inside-Outside 700 90.36% 
Transformation 

Learner 150 91.12% 

Table 1: Compar ing two learning methods  on the 
ATIS corpus. 

After applying all learned t ransformat ions  to 
the test corpus, 60% of the sentences had no cross- 
ing constituents, 74% had fewer than two crossing 
constituents, and 85% had fewer than three. The 
mean sentence length of the test corpus was 11.3. 
In figure 2, we have graphed percentage correct 
as a function of the number  of t ransformat ions  
that  have been applied to the test corpus. As 
the t ransformation number  increases, overtraining 
sometimes occurs. In the current implementa t ion  
of the learner, a t ransformat ion is added to the 
list if it results in any positive net change in the 

Sin all experiments described in this paper, results 
are calculated on a test corpus which was not used in 
any way in either training the learning algorithm or in 
developing the system. 
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training set. Toward the end of the learning proce- 
dure, t ransformations are found tha t  only affect a 
very small percentage of training sentences. Since 
small counts are less reliable than large counts, we 
cannot reliably assume that  these t ransformations 
will also improve performance in the test corpus. 
One way around this overtraining would be to set 
a threshold: specify a min imum level of improve- 
ment  tha t  must  result for a t ransformation to be 
learned. Another possibility is to use additional 
training mater ial  to prune the set of learned trans- 
formations.  
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Figure 2: Results From the ATIS Corpus, Starting 
With Right-Linear Structure. 

We next ran an experiment to determine what 
performance could be achieved if we dropped the 
initial right-linear assumption.  Using the same 
training and test sets as above, sentences were ini- 
tially assigned a random binary-branching struc- 
ture, with final punctuat ion always attached high. 
Since there was less regular structure in this case 
than in the right-linear case, many  more transfor- 
mat ions  were found, 147 t ransformations in total. 
When these t ransformations were applied to the 
test set, a bracketing accuracy of 87.13% resulted. 

The ATIS corpus is structurally fairly regular. 
To determine how well our algori thm performs on 
a more complex corpus, we ran experiments on 
the Wall Street Journal.  Results from this exper- 
iment can be found in table 2. 9 Accuracy is again 

9For sentences of length 2-15, the initial right-linear 
parser achieves 69% accuracy. For sentences of length 

measured  as the percentage of constituents in the 
test set which do not cross any Penn Treebank 
constituents.l° 

As a point of comparison, in (SRO93) an ex- 
periment was done using the inside-outside algo- 
r i thm on a corpus of WSJ sentences of length 1-15. 
Training was carried out on a corpus of 1,095 sen- 
tences, and an accuracy of 90.2% was obtained in 
bracketing a test set. 

# Training # of 
Sent. Corpus Trans- % 

Length Sents formations Accuracy 
2-15 250 83 88.1 
2-15 500 163 89.3 
2-15 1000 221 91.6 
2-20 250 145 86.2 
2-25 250 160 83.8 

Table 2: WSJ Sentences 

In the corpus we used for the experiments  of 
sentence length 2-15, the mean sentence length 
was 10.80. In the corpus used for the experi- 
ment  of sentence length 2-25, the mean length 
was 16.82. As would be expected, performance 
degrades somewhat  as sentence length increases. 
In table 3, we show the percentage of sentences in 
the test corpus tha t  have no crossing constituents, 
and the percentage tha t  have only a very small 
number  of crossing constituents.11 

Sent 
Length 

2-15 
2-15 
2-25 

# 
Training 
Corpus 
Sents 
500 
1000 
250 

% of 
O-error 
Sents 
53.7 
62.4 
29.2 

% of 
<_l-error 

Sents 
72.3 
77.2 
44.9 

% of 
<2-error 

Sents 
84.6 
87.8 
59.9 

Table 3: WSJ Sentences. 

In table 4, we show the s tandard deviation 
measured from three different randomly chosen 
training sets of each sample size and randomly 
chosen test sets of 500 sentences each, as well as 

2-20, 63% accuracy is achieved and for sentences of 
length 2-25, accuracy is 59%. 

a°In all of our experiments carried out on the Wall 
Street Journal, the test set was a randomly selected 
set of 500 sentences. 

nFor sentences of length 2-15, the initial right linear 
parser parses 17% of sentences with no crossing errors, 
35% with one or fewer errors and 50% with two or 
fewer. For sentences of length 2-25, 7% of sentences 
are parsed with no crossing errors, 16% with one or 
fewer, and 24% with two or fewer. 
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the accuracy as a function of training corpus size 
for sentences of length 2 to 20. 

# Training 
Corpus Sents 

% 
Correct 

0 63.0 
10 75.8 
50 82.1 
100 84.7 
250 86.2 
750 87.3 

Std. 
Dev. 
0.69 
2.95 
1.94 
0.56 
0.46 
0.61 

Table 4: WSJ Sentences of Length 2 to 20. 

We also ran an experiment on WSJ sen- 
tences of length 2-15 star t ing with random binary- 
branching structures with final punctuat ion at- 
tached high. In this experiment,  325 transfor- 
mat ions  were found using a 250-sentence training 
corpus, and the accuracy resulting from applying 
these t ransformat ions  to a test set was 84.72%. 

Finally, in figure 3 we show the sentence 
length distribution in the Wall Street Journal  cor- 
pus. 
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Figure 3: The  Distribution of Sentence Lengths in 
the WSJ Corpus. 

While the numbers  presented above allow 
us to compare  the t ransformat ion learner with 
systems trained and tested on comparable cor- 
pora, these results are all based upon the as- 
sumpt ion  tha t  the test da ta  is tagged fairly re- 
liably (manual ly  tagged text was used in all of 

these experiments, as well in the experiments  of 
(PS92, SRO93).) When parsing free text, we can- 
not assume that  the text will be tagged with the 
accuracy of a human annotator .  Instead, an au- 
tomatic  tagger would have to be used to first tag 
the text before parsing. To address this issue, we 
ran one experiment where we randomly induced a 
5% tagging error rate beyond the error rate of the 
human annotator .  Errors were induced in such a 
way as to preserve the unigram par t  of speech tag 
probabil i ty distribution in the corpus. The  exper- 
iment was run for sentences of length 2-15, with a 
training set of 1000 sentences and a test set of 500 
sentences. The resulting bracketing accuracy was 
90.1%, compared to 91.6% accuracy when using 
an unadulterated training corpus. Accuracy only 
degraded by a small amount  when training on the 
corpus with adulterated par t  of speech tags, sug- 
gesting that  high parsing accuracy rates could be 
achieved if tagging of the input were done auto- 
matical ly by a par t  of speech tagger. 

C O N C L U S I O N S  

In this paper, we have described a new approach 
for learning a g r a m m a r  to automat ica l ly  parse 
text. The method can be used to obtain high 
parsing accuracy with a very small  t raining set. 
Instead of learning a tradit ional g r ammar ,  an or- 
dered set of structural  t ransformations is learned 
that  can be applied to the output  of a very naive 
parser to obtain binary-branching trees with un- 
labelled nonterminals.  Experiments  have shown 
that  these parses conform with high accuracy to 
the structural descriptions specified in a manual ly  
annotated corpus. Unlike other recent a t t empts  
at au tomat ic  g r a m m a r  induction tha t  rely heav- 
ily on statistics both in training and in the re- 
sulting g rammar ,  our learner is only very weakly 
statistical. For training, only integers are needed 
and the only mathemat ica l  operations carried out 
are integer addition and integer comparison.  The 
resulting g r a m m a r  is completely symbolic. Un- 
like learners based on the inside-outside algori thm 
which a t t empt  to find a g r a m m a r  to maximize 
the probabil i ty of the training corpus in hope that  
this g r ammar  will match  the g r a m m a r  tha t  pro- 
vides the most  accurate structural  descriptions, 
the t ransformation-based learner can readily use 
any desired success measure in learning. 

We have already begun the next step in this 
project: automat ical ly  labelling the nonterminal  
nodes. The parser will first use the ~ransforma- 
~ioual grammar to output  a parse tree without 
nonterminal labels, and then a separate algori thm 
will be applied to that  tree to label the nontermi-  
nals. The nonterminal-node labelling algori thm 
makes use of ideas suggested in (Bri92), where 
nonterminals are labelled as a function of the la- 
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bels of their daughters. In addition, we plan to 
experiment with other types of transformations. 
Currently, each transformation in the learned list 
is only applied once in each appropriate environ- 
ment. For a transformation to be applied more 
than once in one environment, it must appear in 
the transformation list more than once. One pos- 
sible extension to the set of transformation types 
would be to allow for transformations of the form: 
add/delete a paren as many times as is possible 
in a particular environment. We also plan to ex- 
periment with other scoring functions and control 
strategies for finding transformations and to use 
this system as a postprocessor to other grammar 
induction systems, learning transformations to im- 
prove their performance. We hope these future 
paths will lead to a trainable and very accurate 
parser for free text. 
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