
Syntactic Graphs and Constraint Satisfaction
Jeff Martin

Department of Linguistics, University of Maryland
College Park, MD 20742

jeffmar@umiacs.umd.edu

In this paper I will consider parsing as a discrete
combinatorial problem which consists in constructing a
labeled graph that satisfies a set of linguistic
constraints. I will identify some properties of linguistic
constraints which allow this problem to be solved
efficiently using constraint satisfaction algorithms. I
then describe briefly a modular parsing algorithm
which constructs a syntactic graph using a set of
generative operations and applies a filtering algorithm
to eliminate inconsistent nodes and edges.

The model of grammar I will assume is not a monolithic
rule system, but instead decomposes grammatical
problems into multiple constraints, each describing a
certain dimension of linguistic knowledge. The
grammar is partitioned into operations and constraints.
Some of these are given in (1); note that many
constraints, including linear precedence, are not
discussed here. I assume also that the grammar
specifies a lexicon, which is a list of complex categories
or attribute-value structures (Johnson 1988), along with
a set of partial functions which define the possible
categories of the grammar.

(1) Operations Constraints
PROJECT-X CASEMARK(X,Y)
ADJOIN-X THETAMARK(X,Y)
MOVE-X AGREE(X,Y)
INDEX-X ANTECEDE(X,Y)

This cluster of modules incorporates operations and
constraints from both GB theory (Chomsky 1981) and
TAG (Johsi 1985). PROJECT-X is a category-neutral X-
bar grammar consisting of three context-free metarules
which yield a small set of unordered elementary trees.
ADJOIN-X, which consists of a single adjunction
schema, is a restricted type of tree adjunction which
takes two trees and adjoins one to a projection of the
head of the other. The combined schema are given in
(2):

(2) X2 = { X1, Y2}
X l = {x0,Y2}

Xn = (0 (a lexical category)
Xn = {Xn, Yn}

specifier axiom
complement axiom

labeling axiom
adjunction axiom

MOVE-X constructs chains which link gaps to
antecedents, while INDEX-X assigns indices to nodes
from the set of natural numbers. In the parsing model
to be discussed below, these make up the four basic
operations of a nondeterministic automaton that
generates sets of cantidate structures. Although these
sets are finite, their size is not bounded above by a

polynomial function in the size of the input. I showed in
Martin(1989) that if X-bar and adjunction rules together
allow four attachment levels, then the number of
possible (unordered) trees formed by unconstrained
application of these rules to a string of n terminals is

o(4n). Also, Fong(1989) has shown that the number of
n z1

distinct indexings for n noun phrases is bn= Xm= 1 {m},

whose closed form solut ion is exponential .
Unconstrained use of these operations therefore results
in massive overgeneration, caused by the fact that they
encode only a fragment of the knowledge in a grammar.

Unlike operations, the constraints in (1) crucially
depend on the attributes of lexical items and
nonterminal nodes. Three key properties of the
constraints can be exploited to achieve an efficient
filtering algorithm:

(i) they apply in local government configurations
(ii) they depend on node attributes whose domain of
values is small
(iii) they are binary

For example, agreement holds between a phrase YP
and a head Xo if and only if YP governs Xo, and YP and
Xo share a designated agreement vector, such as
[(zperson, ~number]; case marking holds between a
head Xo and a phrase YP if and only if Xo governs YP,
and Xo and YP share a designated case feature; and so
forth. Lebeaux (1989) argues that only closed classes of
features can enter into government relations. Unlike
open lexical classes such as (3a), it is feasible to list the
members of closed classes extensionally, for example
the case features in (3b):

(3)a.
b.

Verb : {eat, sing, cry }
Case : {Nom, Acc, Dat, Gen}

Constraints express the different types of attribute
dependency which may hold between a governor and a
governed node in a government domain. Each
constraint can be represented as a binary predicate
P(X,Y) which yields True if and only if a designated
subset of attributes do not have distinct values in the
categories X and Y. We may picture such predicates as
specifying a path which must be unifiable in the
directed acyclic graphs representing the categories X
and Y.

Before presenting the outline of a parsing algorithm
incorporating such constraints, it is necessary to
introduce the notion of boolean constraint satisfaction

355

problem (BCSP) as defined in Mackworth (1987). Given
a finite set of variables {V1,V 2 Vn} with associated
domains {D1,D2,...,Dn} , constraint relations are stated
on certain subsets of the variables; the constraints
denote subsets of the cartesian product of the domains
of those variables. The solution set is the largest subset
of the cartesian product D1 x D2 x ... x Dn such that
each n-tuple in that set satisfies all the constraints.
Binary CSP's can be represented as a graph by
associating a pair (Vi, Di) with each node. An edge
between nodes i and j denotes a binary constraint Pij
between the corresponding variables, while loops at a
node i denote unary constraints Pi which restrict the
domain of the node. Consistency is defined as follows:

(4) Node i is consistent iff Vx[x~ D i] ~Pi(x).

Arc i,j is consistent iff Vx[x~ D i] :=~ 3y[y~ Dj ,~Pij(x,y)].
A path of length 2 from node i through node m to
node j is consistent iff

VxVz[Pij(x,z)] ~3y[yE Dm ^ Pim(x,y)^ Pmj(Y,Z)].

A network is node, arc, and path consistent iff all its
nodes, arcs and paths are consistent. Path consistency
can be generalized to paths of arbitrary length.

The parsing algorithm tries to find a consistent labeling
for a syntactic graph representing the set of all syntactic
analyses of an input string (see Seo & Simmons 1989 for
a similar packed representation). The graph is
constructed from left to fight by the operations Project-
X, Adjoin-X, Move-X and Index-X, which generate new
nodes and arcs. In this scheme, overgeneration does
not result in an abundance of parallel structures, but
rather in the presence of superfluous nodes and arcs in
a single graph. Each new node and arc generated is
associated with a set of constraints; these associations
are defined statically by the grammar. For example,
complement arcs are associated with thetamarking
constraints , specifier arcs are associated with
ag reement constraints , and indexing arcs are
associated with coreference constraints. On each cycle
the parser attempts to connect two consistently labeled
subgraphs G1 and G2, where G1 represents the
analyses of a leftmost portion of the input string, and G2
represents the analyses of the rightmost substring
under consideration. The parse cycle contains three
basic steps:

(a) select an operation
(b) apply the operation to graphs G1 and G2, yielding G3
(c) apply node, arc and path consistency to the

extended graph (;3.

Step (c) deletes inconsistent values from the domain at
a node; also, if a node or arc is inconsistent, it is deleted.
Note that nodes in syntactic graphs are labeled by

linguistic categories which may contain many attribute-
value pairs. Thus, a node typically represents not one
but a set of variables whose values are relevant to the
constraint predicates. The properties of locality and
finite domains mentioned above turn out to be useful in
the filtering step. Locality guarantees that the algorithm
need only apply in a government domain. Therefore, it
is not necessary to make the entire graph consistent
after each extension, but only the largest subgraph
which is a government domain and contains the nodes
and edges most recently connected. The fact that the
domains of attributes have a limited range is useful
when the value of an attr ibute is unknown or
ambiguous. In such cases, the number of possible
solutions obtained by choosing an exact value for the
attribute is small.

In this paper I have sketched the design of a parsing
algorithm which makes direct use of a modular system
of g r ammat i ca l pr inciples . The p rob lem of
overgeneration is solved by performing a limited
amount of local computation after each generation
step. This approach is quite different from one which
preprocesses the g r ammar by folding together
grammatical rules and constraints off-line. While this
latter approach can achieve an a priori pruning of the
search space by eliminating overgeneration entirely, it
may do so at the cost of an explosion in grammar size.

References

Chomsky, N. (1981) Lectures on Government and
Binding. Foris, Dordrecht.
Fong, S. (1990) "Free Indexation: Combinatorial
Analysis and a Compositional Algorithm. Proceedings
of the ACL 1990.
Johnson, M. (1988) Attribute-Value Logic and the
Theory of Grammar. CSLI Lecture Notes Series,
Chicago University Press.
Johsi, A. (1985) "Tree Adjoining Grammars," In D.
Dowty, L. Karttunen & A. Zwicky (eds.), Natural
Language Processing. Cambridge U. Press, Cambridge,
England.
Lebeaux, D. (1989) Language Acquisition and the Form
of Grammar. Doctora l d i s se r t a t ion , U. of
Massachusetts, Amherst, Mass.
Mackworth, A. (1987) "Constraint Satisfaction," In: S
Shapiro (ed.), Encyclopedia of Artificial Intelligence,
Wiley, New York.
Mackworth, A. (1977) "Consistency in networks of
relations," Artif.InteU. 8(1), 99-118.
Martin, J. (1989) "Complexity of Decision Problems in
GB Theory," ms., U. of Maryland.
Seo, J. & R. Simmons (1989). "Syntactic Graphs: A
Representation for the Union of All Ambiguous Parse
Trees," Computational Linguistics 15:1.

3.56

