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Abstract 

Unification of disjunctive feature descriptions 
is important for efficient unification-based pars- 
ing. This paper presents constraint projection, 
a new method for unification of disjunctive fea- 
ture structures represented by logical constraints. 
Constraint projection is a generalization of con- 
straint unification, and is more efficient because 
constraint projection has a mechanism for aban- 
doning information irrelevant to a goal specified 
by a list of variables. 

1 Introduction 

Unification is a central operation in recent com- 
putational linguistic research. Much work on 
syntactic theory and natural language parsing 
is based on unification because unification-based 
approaches have many advantages over other syn- 
tactic and computational theories. Unification- 
based formalisms make it easy to write a gram- 
mar. In particular, they allow rules and lexicon 
to be written declaratively and do not need trans- 
formations. 

Some problems remain, however. One of the 
main problems is the computational inefficiency 
of the unification of disjunctive feature struc- 
tures. Functional unification grammar (FUG) 
(Kay 1985) uses disjunctive feature structures for 
economical representation of lexical items. Using 
disjunctive feature structures reduces the num- 
ber of lexical items. However, if disjunctive fea- 
ture structures were expanded to disjunctive nor- 
mal form (DNF) 1 as in definite clause grammar 
(Pereira and Warren 1980) and Kay's parser (Kay 
1985), unification would take exponential time in 
the number of disjuncts. Avoiding unnecessary 
expansion of disjunction is important for efficient 
disjunctive unification. Kasper (1987) and Eisele 
and DSrre (1988) have tackled this problem and 
proposed unification methods for disjunctive fea- 
ture descriptions. 

~DNF has a form ¢bt Vq~ V¢3 V.-. Vq~n, where ¢i 
includes no disjunctions. 

These works are based on graph unification 
rather than on term unification. Graph unifica- 
tion has the advantage that  the number of argu- 
ments is free and arguments are selected by la- 
bels so that  it is easy to write a grammar and 
lexicon. Graph unification, however, has two dis- 
advantages: it takes excessive time to search for 
a specified feature and it requires much copying. 
We adopt term unification for these reasons. 

Although Eisele and DSrre (1988) have men- 
tioned that their algorithm is applicable to term 
unification as well as graph unification, this 
method would lose term unification's advantage 
of not requiring so much copying. On the con- 
trary, constraint unification (CU) (Hasida 1986, 
Tuda et al. 1989), a disjunctive unification 
method, makes full use of term unification ad- 
vantages. In CU, disjunctive feature structures 
are represented by logical constraints, particu- 
larly by Horn clauses, and unification is regarded 
as a constraint satisfaction problem. Further- 
more, solving a constraint satisfaction problem 
is identical to transforming a constraint into an 
equivalent and satisfiable constraint. CU unifies 
feature structures by transforming the constraints 
on them. The basic idea of CU is to transform 
constraints in a demand-driven way; that  is, to 
transform only those constraints which may not 
be satisfiable. This is why CU is efficient and does 
not require excessive copying. 

However, CU has a serious disadvantage. It 
does not have a mechanism for abandoning irrel- 
evant information, so the number of arguments 
in constraint-terms (atomic formulas) becomes 
so large that transt'ormation takes much time. 
Therefore, from the viewpoint of general natu- 
ral language processing, although CU is suitable 
for processing logical constraints with small struc- 
tures, it is not suitable for constraints with large 
structures. 

This paper presents constraint projection 
(CP), another method for disjunctive unifica- 
t i on .  The basic idea of CP is to abandon in- 
formation irrelevant to goals. For example, in 
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bottom-up parsing, if grammar consists of local 
constraints as in contemporary unification-based 
formalisms, it is possible to abandon informa- 
tion about daughter nodes after the application 
of rules, because the feature structure of a mother 
node is determined only by the feature structures 
of its daughter nodes and phrase structure rules. 
Since abandoning irrelevant information makes 
the resulting structure tighter, another applica- 
tion of phrase structure rules to it will be efficient. 
We use the term projection in the sense that  CP 
returns a projection of the input constraint on the 
specified variables. 

We explain how to express disjunctive feature 
structures by logical constraints in Section 2. Sec- 
tion 3 introduces CU and indicates its disadvan- 
tages. Section 4 explains the basic ideas and the 
algorithm of CP. Section 5 presents some results 
of implementation and shows that  adopting CP 
makes parsing efficient. 

2 Expressing Disjunctive Feature 
Structures by Logical 
Constraints 

This section explains the representation of dis- 
junctive feature structures by Horn clauses. We 
use the DEC-10 Prolog notation for writing Horn 
clauses. 

First, we can express a feature structure with- 
out disjunctions by a logical term. For example, 
(1) is translated into (2). FP°'" ] 

(1) / agr [num sin 

L subj [agr Inure [per ~irndg ] ] 
(2) cat (v ,  

agr (sing, 3rd), 
cat (_, agr (sing, 3rd), _) ) 

The arguments of the functor c a t  correspond to 
the pos (part of speech), agr (agreement), and 
snbj (subject) features. 

Disjunction and sharing are represented by 
the bodies of Horn clauses. An atomic formula 
in the body whose predicate has multiple defini- 
tion clauses represents a disjunction. For exam- 
ple, a disjunctive feature structure (3) in FUG 
(Kay 1985) notation, is translated into (4). 

"pos v 

{ [numsing .] } . . . ~  plural] agr [ ]  [per j 1st t /  
12nd j 'J 

(3) 
subj [ gr 

! [num L agr per 
(4) p ( c a t  (v ,  Agr, c a t  (_ ,  A g r , _ ) ) )  

• - not_3s  (Agr) .  
p ( c a t  (n,  agr  (s ing ,  3 r d ) ,  _) ) .  

not_3s ( agr ( sing, Per) ) 
: - Ist_or_2nd (Per). 

not_3s (agr(plural, _)). 
Ist_or_2nd(Ist). 
Ist_or_2nd(2nd). 

Here, the predicate p corresponds to the specifica- 
tion of the feature structure. A term p(X) means 
that the variable I is a candidate of the disjunc- 
tive feature structure specified by the predicate 
p. The A N Y  value used in FUG or the value of 
an unspecified feature can be represented by an 
anonymous variable '_'. 

We consider atomic formulas to be constraints 
on the variables they include. The atomic formula 
l s t _ o r _ 2 n d ( P e r )  in (4) constrains the variable 
Per  to be either 1s t  or h d .  In a similar way, 
not_3s  (Agr) means that  Agr is a term which has 
the form agr(l~um,Per),  and that//am is s ing  and 
Per  is subject to the constraint l s t _ o r _ 2 n d ( P e r )  
or that  }lure is p l u r a l .  

We do not use or consider predicates with- 
out their definition clauses because they make 
no sense as constraints. We call an atomic 
formula whose predicate has definition clauses 
a constraint-term, and we call a sequence of 
constraint-terms a constraint. A set of definition 
clauses like (4) is called a structure of a constraint. 

Phrase structure rules are also represented by 
logical constraints. For example, If rules are bi- 
nary and if L, R, and M stand for the left daughter, 
the right daughter, and the mother,  respectively, 
they stand in a ternary relation, which we repre- 
sent as psr(L,R,M).  Each definition clause o f p s r  
corresponds to a phrase structure rule. Clause (5) 
is an example. 

(5) p s r ( S u b j ,  
c a t  (v, Agr,  Subj ), 
c a t  ( s ,  Agr,  _)  ) .  

Definition clauses o f p s r  may have their own bod- 
ies. 

If a disjunctive feature structure is specified 
by a constraint-term p(X) and another is specified 
by q(Y), the unification of X and Y is equivalent 
to the problem of finding X which satisfies (6). 

(6) [p(X),q(X)] 
Thus a unification of disjunctive feature struc- 
tures is equivalent to a constraint satisfaction 
problem. An application of a phrase structure 
rule also can be considered to be a constraint sat- 
isfaction problem. For instance, if categories of 
left daughter and right daughter are stipulated 
by el(L) and c2(R), computing a mother cate- 
gory is equivalent to finding M which satisfies con- 
straint (7). 

(7) [ c l  (L) ,  c2 (R) , p s r  (L,R, M)] 

A Prolog call like (8) realizes this constraint 
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satisfaction. 

(8) : - e l  (L),  c2(R) ,ps r  (L,R,M), 
assert (c3(M)) ,fail. 

This method, however, is inefficient. Since Pro- 
log chooses one definition clause when multiple 
definition clauses are available, it must repeat a 
procedure many times. This method is equivalent 
to expanding disjunctions to DNF before unifica- 
tion. 

3 Cons t ra in t  Unificat ion and Its 
P rob lem 

This section explains constraint unification ~ 
(Hasida 1986, Tuda et al. 1989), a method of dis- 
junctive unification, and indicates its disadvan- 
tage. 

3.1 Basic  Ideas  of  C o n s t r a i n t  Uni f i ca t ion  

As mentioned in Section 1, we can solve a con- 
straint satisfaction problem by constraint trans- 
formation. What we seek is an efficient algo- 
rithm of transformation whose resulting structure 
is guaranteed satisfiability and includes a small 
number of disjuncts. 

CU is a constraint transformation system 
which avoids excessive expansion of disjunctions. 
The goal of CU is to transform an input con- 
straint to a modular constraint. Modular con- 
straints are defined as follows. 

(9) (Definition: modular) A constraint is mod- 
ular, iff 
1. every argument of every atomic formula 
is a variable, 
2. no variable occurs in two distinct places, 
and 
3. every predicate is modularly defined. 

A predicate is modularly defined iff the bodies of 
its definition clauses are either modular or NIL. 

For example, (10) is a modular constraint, 
while (11), (12), and (13) are not modular, when 
all the predicates are modularly defined. 

(10) [p(X,Y) ,q(Z,•)] 
(11) [p(X.X)] 
(12) [p(X,¥) ,q(Y.Z)] 
(13) [pCf(a)  ,g (Z) ) ]  

Constraint (10) is satisfiable because the predi- 
cates have definition clauses. Omitting the proof, 
a modular constraint is necessarily satisfiable. 
Transforming a constraint into a modular one is 
equivalent to finding the set of instances which 
satisfy the constraint. On the contrary, non- 
modular constraint may not be satisfiable. When 

~Constralnt unification is called conditioned unifi- 
cation in earlier papers. 

a constraint is not modular, it is said to have de- 
pendencies. For example, (12) has a dependency 
concerning ¥. 

The main ideas of CU are (a) it classi- 
fies constraint-terms in the input constraint into 
groups so that  they do not share a variable and 
it transforms them into modular constraints sepa- 
rately, and (b) it does not transform modular con- 
straints. Briefly, CU processes only constraints 
which have dependencies. This corresponds to 
avoiding unnecessary expansion of disjunctions. 
In CU, the order of processes is decided accord- 
ing to dependencies. This flexibility enables CU 
to reduce the amount of processing. 

We explain these ideas and the algorithm of 
CU briefly through an example. CU consists of 
two functions, namely, modularize(constraint) 
and integrate(constraint). We can execute CU 
by calling modularize. Function modularize di- 
vides the input constraint into several constraints, 
and returns a list of their integrations. If one of 
the integrations fails, modularization also fails. 
The function integrate creates a new constraint- 
term equivalent to the input constraint, finds 
its modular definition clauses, and returns the 
new constraint-term. Functions rnodularize and 
integrate call each other. 

Le t  us consider the execution of (14). 

(14) modularize( 
[p(X, Y), q(Y. Z), p(A. B) ,r(A) ,r(C)]) 

The predicates are defined as follows. 

(15) pCfCA),C):-rCA),rCC).  
(16) p(a.b). 
(17) q ( a , b ) .  
(18) q ( b , a ) .  
(19) rCa) .  
(20) r(b). 
The input constraint is divided into (21), (22), 
and (23), which are processed independently 
(idea (a)). 

(21) [p(x,Y),q(Y,z)] 
(22) [p(A,B) ,r(A)] 
(23) [r(C)]  

If the input constraint were not divided and (21) 
had multiple solutions, the processing of (22) 
would be repeated many times. This is one rea- 
son for the efficiency of CU. Constraint (23) is not 
transformed because it is already modular (idea 
(b)). Prolog would exploit the definition clauses 
of r and expend unnecessary computation time. 
This is another reason for CU's efficiency. 

To transform (21) and (22) into modular 
constraint-terms, (24) and (25) are called. 

(24) integrate([p(X,Y),q(Y,  Z)]) 
(25) integrate([p(A,B), r (A)] )  
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Since (24~ and (25) succeed and return 
e0(X,Y,Z)" and el(A,B),  respectively, (14) re- 
turns (26). 

(26) [c0(X,Y,Z), el  (A,B) , r(C)]  

This modularization would fail if either (24) or 
(25) failed. 

Next, we explain integrate through the exe- 
cution of (24). First, a new predicate c0 is made 
so that we can suppose (27). 

(27) cO (X,Y, Z) 4=:#p(X,Y), q(Y,Z) 

Formula (27) means that (24) returns c0(X,Y,Z) 
if the constraint [p(X,Y) ,q(Y,Z)] is satisfiable; 
that is, e0(X,¥,Z) can be modularly defined so 
that c0(X,Y,Z) and p(X,Y),q(Y,Z) constrain 
X, Y, and Z in the same way. Next, a target 
constraint-term is chosen. Although some heuris- 
tics may be applicable to this choice, we simply 
choose the first element p(X,Y) here. Then, the 
definition clauses of p are consulted. Note that 
this corresponds to the expansion of a disjunc- 
tion. 

First, (15) is exploited. The head of (15) 
is unified with p(X,Y) in (27) so that (27) be- 
comes (28). 

(28) c0(~ CA) ,C,Z)C=~r(A) ,r(C) ,q(C,Z) 
The term p(f (A) ,C)  has been replaced by its 
body r (A) , r (C)  in the right-hand side of (28). 
Formula (28) means that cO(f (A) ,C,Z) is true if 
the variables satisfy the right-hand side of (28). 
Since the right-hand side of (28) is not modu- 
lar, (29) is called and it must return a constraint 
like (30). 

(29) modularize(Er(A) ,rCC), qCC, Z)'l) 
(30) It(A) ,c2(C,Z)] 

Then, (31) is created as a definition clause of cO. 

(31) cOCf(l) ,C,Z):-rCA) ,c2(C,Z). 

Second, (16) is exploited. Then, (28) be- 
comes (32), (33) is called and returns (34), and 
(35) is created. 

(32) c0(a ,b ,Z)  ¢==~q(b,Z) 
(33) modularize( [q(b,Z) ] ) 
(34) [c3(Z)] 
(35) cO(a,b,Z):-c3(Z). 

As a result, (24) returns c0(X,Y,Z) because its 
definition clauses are made. 

All the Horn clauses made in this CU invoked 
by (14) are shown in (36). 

(36) c0(fCA) ,C,Z) : -r(A) ,c2(C,Z). 
c0(a ,b ,Z)  : -c3(Z) .  
c2(a ,b) .  

aWe use cn (n = 0, 1, 2,.- -) for the names of newly- 
made predicates. 

c2(b,a). 
c3(a). 
cl(a,b). 

When a new clause is created, if the predicate of 
a term in its body has only one definition clause, 
the term is unified with the head of the definition 
clause and is replaced by the body. This opera- 
tion is called reduction. For example, the second 
clause of (36) is reduced to (37) because c3 has 
only one definition clause. 

(37) c0 (a ,b ,a ) .  
CU has another operation called folding. It 

avoids repeating the same type of integrations 
so that it makes the transformation efficient. 
Folding also enables CU to handle some of the 
recursively-defined predicates such as member and 
append. 

3.2 Parsing with Constraint Unification 
We adopt the CYK algorithm (Aho and Ull- 
man 1972) for simplicity, although any algorithms 
may be adopted. Suppose the constraint-term 
caZ_n_m(X) means X is the category of a phrase 
from the (n + 1)th word to the ruth word in an 
input sentence. Then, application of a phrase 
structure rule is reduced to creating Horn clauses 
like (38). 

(38) ¢at_n_m(M) :-  
modularize( Ecat_n_k (L), 

ca t_k_m(R),  
psr(L,R,M)]).  

(2<re<l, 0<n<m - 2, n + l<_k<m - 1, 
where I is the sentence length.) 

The body of the created clause is the constraint 
returned by the modularization in the right-hand 
side. If the modularization fails, the clause is not 
created. 

3.3 P r o b l e m  of  Cons t ra in t  Unif icat ion 

The main problem of a CU-based parser is 
that the number of constraint-term arguments 
increases as parsing proceeds. For example, 
cat_0_2(M) is computed by (39). 

(39) modularize([cat_O_l (L), 
ca t_l_2 (R), 
psr(L,R,M)])  

This returns a constraint like [cO(L,R,N)]. Then 
(40) is created. 

(40) cat_0 2(M):-c0(L,R,M). 

Next, suppose that (40) is exploited in the follow- 
ing application of rules. 

(41) modularize( [cat_0_2(M), 
cat_2_3(Rl), 
psr(M,RI,MI)]) 
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Then (42) will be called. 

(42) modutarize( leo (L, It, H), 
cat_2_3(R1),  
psr(H,Rl ,M1)])  

It returns a constraint like cl(L,R,M,R1,M1). 
Thus the number of the constraint-term argu- 
ments increases. 

This causes computation time explosion for 
two reasons: (a) the augmentation of arguments 
increases the computation time for making new 
terms and environments, dividing into groups, 
unification, and so on, and (b) resulting struc- 
tures may include excessive disjunctions because 
of the ambiguity of features irrelevant to the 
mother categories. 

4 Constraint Project ion 
This section describes constraint projection (CP), 
which is a generalization of CU and overcomes the 
disadvantage explained in the previous section. 

4.1 Basic  Ideas  of  C o n s t r a i n t  P r o j e c t i o n  

Inefficiency of parsing based on CU is caused by 
keeping information about daughter nodes. Such 
information can be abandoned if it is assumed 
that we want only information about mother 
nodes. That  is, transformation (43) is more useful 
in parsing than (44). 

(43) rclCL),c2CR),psrCL,a,H) ' l  ~ [c3(H)] 
(44) [c l  (L),  c2(R) ,psr (L,R,H)]  

:=~ [c3(L,R,R)] 

Constraint [c3(M)] in (43) must be satisfiable 
and equivalent to the left-hand side concerning H. 
Since [c3(M)] includes only information about H, 
it must be a normal constraint, which is defined 
in (45). 

(45) (Definition: Normal) A constraint is normal 
iff 
(a) it is modular, and 
(b) each definition clause is a normal defini- 
tion clause; that is, its body does not include 
variables which do not appear in the head. 

For example, (46) is a normal definition clause 
while (47) is not. 

(46) p(a,X) : - r (X) .  
(47) q(X) : - s (X ,¥ ) .  

The operation (43) is generalized into a new 
operation constraint projection which is defined 
in (48). 

(48) Given a constraint C and a list of variables 
which we call goal, CP returns a normal con- 
straint which is equivalent to C concerning 
the variables in the goal, and includes only 
variables in the goal. 

* Symbols used: 

- X, Y . . . .  ; lists of variables. 
- P, Q . . . .  ; constraint-terms or sometimes 

"fail". 
- P ,  Q . . . .  ; constraints or sometimes "fail". 
- H, ~ . . . .  ; lists of constraints. 

• p r o j e c t ( P ,  X) returns a normal constraint (list of 
atomic formulas) on X. 

1. If P = NIL then return NIL. 
2. I f X = N I L ,  

If not(satisfiable(P)), then return "fail", 
Else return NIL. 

3. II := divide(P). 
4. Hin := the list of the members of  H which 

include variables in X.  
5. ]-[ex :--- the list of the members of H other 

than the members of  ~in. 
6. For each member R of ]]cx, 

If not(satisfiable(R)) then return "fail" 
7. S := NIL. 
8. For each member T of Hi,=: 

- V  := intersection(X, variables ap- 
pearing in T).  

- R := normalize(T, V). 
If R = 'faT', then return "fail", 
Else add R to S. 

9. Return S. 

• n o r m a l i z e ( S ,  V) returns a normal constraint- 
term (atomic formula) on V. 

1. If S does not include variables appearing in 
V, and S consists of a modular term, then 
Return S. 

2. S := a member of S that includes a variable 
in V. 

3. S'  :=  the rest of S. 
4. C := a term c . ( v ] ,  v2 ..... vn) .  where v],  

.... vn  are all the members of V and c .  is a 
new functor. 

5. success-flag := NIL. 
6. For each definition clause H :- B. of the 

predicate of S: 

- 0 := mgu(S, H). 
If 0 = fail, go to the next definition 
clause. 

- X :=  a list of  variables in C8. 
- Q := pro~ect(append(BO, S'0), X ). 

If. Q = fall, then go to the next defini- 
tton clause 
Else add C0: -Q.  to the database with 
reduction. 

7. If success-flag = NIL, then return "fail", 
else return C. 

• mgu  returns the most general unifier (Lloyd 
1984) 

• d i v i d e ( P )  divides P into a number of constraints 
which share no variables and returns the list of 
the constraints. 

• s a t i s f i a b l e ( P )  returns T i f  P is satisfiable, and 
NIL otherwise. ( s a t i s f i a b l e  is a slight modifica- 
tion of modularize of CU.) 

Figure 1: Algorithm of Constraint Projection 
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project([p(X,Y),q(Y,Z),p(A,S),r(A),r(e)],[X,e]) 

[pll,Y[,qlT.gll [plA,B),z(l)li [r(Cll 

~heck normalize([pll,[l,qlT,Zll,[g]) ~a|isfiabilit~ 

cO(l) r(C) 
I I 

[co(l).r(c)] 

Figure 2: A Sample Execution of project 

CP also divides input constraint C into several 
constraints according to dependencies, and trans- 
forms them separately. The divided constraints 
are classified into two groups: constraints which 
include variables in the goal, and the others. 
We call the former goal-relevant constraints and 
the latter goal-irrelevant constraints. Only goal- 
relevant constraints are transformed into normal 
constraints. As for goal-irrelevant constraints, 
only their satisfiability is examined, because they 
are no longer used and examining satisfiability is 
easier than transforming. This is a reason for the 
efficiency of CP. 

4.2 A l g o r i t h m  o f  C o n s t r a i n t  P r o j e c t i o n  

CP consists of two functions, project(constraint, 
goal(variable list)) and normalize(constraint, 
goal(variable list)), which respectively correspond 
to modularize and integrate in CU. We can ex- 
ecute CP by calling project. The algorithm of 
constraint projection is shown in Figure 14. 

We explain the algorithm of CP through the 
execution of (49). 

(49) project( 
[p(X,Y) ,q(Y ,Z) ,p(A,B) ,r(A) ,r (C)], 
Ix,c]) 

The predicates are defined in the same way as (15) 
to (20). This execution is illustrated in Figure 2. 
First, the input constraint is divided into (50), 
(51) and (52) according to dependency. 

(50) [p(x,Y),q(~,z)]  
(51) [p(A,B) ,r(h)] 
(52) [ r (C)]  

Constraints (50) and (52) are goal-relevant be- 
cause they include X and C, respectively. Since 

4Since the current version of CP does not have an 
operation corresponding to folding, it cannot handle 
recursively-defined predicates. 

normalize( I'p (X, Y) ,q(Y ,Z)],  [X]) / 
¢o(x)o ~(x Y) (Y Z) PJ " ,q • 

exploit ~ 
p ( f ( l ) , C ) : - r ( l ) , r ( C ) .  

l u n i f y  

cO(I (A) )o  r(A),r(C),q(C,Z) 

t 
p r o j e c t ( [ r l l l . , r l C l , q l C , g ) ] , [ l ] )  

[r lJ l l  

a$$erf 
cO( f ( l ) ) : - r ( l ) .  

I 
cO(I) 

e~loit ~ p(a,b). [ uniJ~ 

cO(a)CO, q(b,g)  

t 
r~ojea(ta(b, .z)], tl) 

t 
O 

a~sert t 
cO(a). 

I 

Figure 3: A Sample Execution of normalize 

(51) is goal-irrelevant, only its satisfiability is ex- 
amined and confirmed. If some goal-irrelevant 
constraints were proved not satisfiable, the pro- 
jection would fail. Constraint (52) is already nor- 
mal, so it is not processed. Then (53) is called to 
transform (50). 

(53) normalize ( [p(X, Y), q (¥ ,  Z) ] ,  [X]) 

The second argument (goal) is the list of variables 
that appear in both (50) and the goal of (49). 
Since this normalization must return a constraint 
like [c0(X)] ,  (49) returns (54). 

(54) [c0(X) , r (C) ]  

This includes only variables in the goal. This con- 
straint has a tighter structure than (26). 

Next, we explain the function normalize 
through the execution of (53). This execution is 
illustrated in Figure 3. First, a new term c0(X) is 
made so that we can suppose (55). Its arguments 
are all the variables in the goal. 

(55) c0 (x)c=~p(x,Y) ,q(Y,Z) 
The normal definition of cO should be found. 
Since a target constraint must include a variable 
in the goal, p(X,Y) is chosen. The definition 
clauses of p are (15) and (16). 

(15) pCfCA) ,C) : - rCA) , r (C) .  
(16) p ( a , b ) .  

The clause (15) is exploited at first. Its head is 
unified with p(X,Y) in (55) so that (55) becomes 
(56). (If this unification failed, the next definition 
clause would be exploited.) 

(56) c0 ( f  CA)) ¢=:¢,r (A) , r  (C),  q(C, Z) 

Tlm right-hand side includes some variables which 
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do not appear in the left-hand side. Therefore, 
(57) is called. 

(57) project([r(h),r(C),q(C,Z)], [AJ) 

This returns r(A), and (58) is created. 

(58) c0(f(a)):-r(A). 

Second, (16) is exploited and (59) is created 
in the same way. 

(59) c0(a). 
Consequently, (53) returns c0(X) because 

some definition clauses of cO have been created. 
All the Horn clauses created in this CP are 

shown in (60). 

(60) c0( f (A))  : - r (A) .  
cO(a). 

Comparing (60) with (36), we see that CP not 
only is efficient but also needs less memory space 
than CU. 

4.3 P a r s i n g  w i t h  C o n s t r a i n t  P r o j e c t i o n  

We can construct a CYK parser by using CP as 
in (61). 

(61) cat_n_m(M) "- 
project( [cat_ n_k (L),  

ca t_k_m(R) ,  
psr(L,R,M)] ,  

[ .]  ). 
(2<m<l ,  0 < n < m  - 2, n + l < k < m  - 1, 
where l is the sentence length.) 

For a simple example, let us consider parsing 
the sentence "Japanese work." by the following 
projection. 

(62) project([cat_of_japanese(L), 
cat_of_work (R). 
psr(L,R,M)] ,  

[M] ) 
The rules and leyScon are defined as follows: 

(63) psr(n(Num,Per) ,  
v(Num,Per, Tense) ,  
s (Tense)) .  

(64) cat_of_j apanes e (n (Num, third) ). 
(65) cat_of_work (v (Num, Per, present) ) 

: -not_3s (Num, Per). 
(66) not_3s (plural,_). 
(67) not_3s (singular,Per) 

: -first_or_second(Per). 
(68) first_or_second(first). 
(69) first_or_second(second). 

Since the constraint cannot be divided, (70) is 
called. 

(70) normalize([cat_of_japanese(L), 
cat_of_work(R), 

psr(L,R,M)] ,  
[M] ) 

The new term c0(M) is made, and (63) is ex- 
ploited. Then (71) is to be created if its right- 
hand side succeeds. 

(71) c0(s (Tense) )  : -  
project( [ca t_of  _] apanese (n(llum, Per)  ) ,  

cat_of_work (v(Num, Per ,Tense) ) ] ,  
[Tense] ). 

This projection calls (72). 

(72) normalize([cat_of_j apanese (n (gum, P e r ) ) ,  
cat_of_work (v ( ]lum, Per, Tens e) ) ], 

[Tense]). 

New term c l (Tense)  is made and (65) is ex- 
ploited. Then (73) is to be created if the right- 
hand side succeeds. 

(73) e l ( p r e s e n t )  :- 
project( [cat_of_j apanese (n(Num, Per) ), 

not_3s (Num, Per) ] ,  
:]).  

Since the first of argument of the projection is 
satisfiable, it returns NIL. Therefore, (74) is cre- 
ated, and (75) is created since the right-hand side 
of (71) returns cl(Tense). 

(74) cl  (present) .  

(75) c0(s (Tense))  : - c l  (Tense) .  

When asserted, (75) is reduced to (76). 

(76) c 0 ( s ( p r e s e n t ) ) .  

Consequently, [c0(M)] is returned. 
Thus CP can he applied to CYK parsing, but 

needless to say, CP can be applied to parsing al- 
gorithms other than CYK, such as active chart 
parsing. 

5 I m p l e m e n t a t i o n  

Both CU and CP have been implemented in Sun 
Common Lisp 3.0 on a Sun 4 spare station 1. 
They are based on a small Prolog interpreter 
written in Lisp so that they use the same non- 
disjunctive unification mechanism. We also im- 
plemented three CYK parsers that  adopt Prolog, 
CU, and CP as the disjunctive unification mecha- 
nism. Grammar and lexicon are based on ttPSG 
(Pollard and Sag 1987). Each lexical item has 
about three disjuncts on average. 

Table I shows comparison of the computation 
time of the three parsers. It indicates CU is not 
as efficient as CP when the input sentences are 
long. 
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Input sentence 
He wanted to be a doctor. 
You were a doctor when you were young. 
I saw a man with a telescope on the hill. 
He wanted to be a doctor when he was a student. 

CPU time (see.) 
Prolog CU CP 
3.88 6.88 5.64 

29.84 19.54 12.49 
(out of memory) 245.34 17.32 

65.27 19.34 14.66 

Table h Computation Time 

6 R e l a t e d  W o r k  

In the context of graph unification, Carter (1990) 
proposed a bottom-up parsing method which 
abandons information irrelevant to the mother 
structures. His method, however, fails to check 
the inconsistency of the abandoned information. 
Furthermore, it abandons irrelevant information 
after the application of the rule is completed, 
while CP abandons goal-irrelevant constraints dy- 
namically in its processes. This is another reason 
why our method is better. 

Another advantage of CP is that it does not 
need much copying. CP copies only the Horn 
clauses which are to be exploited. This is why 
CP is expected to be more efficient and need less 
memory space than other disjunctive unification 
methods. 

Hasida (1990) proposed another method 
called dependency propagation for overcoming the 
problem explained in Section 3.3. It uses tran- 
sclausal variables for efficient detection of depen- 
dencies. Under the assumption that informa- 
tion about daughter categories can be abandoned, 
however, CP should be more efficient because of 
its simplicity. 

7 C o n c l u d i n g  R e m a r k s  

We have presented constraint projection, a new 
operation for efficient disjunctive unification. The 
important feature of CP is that it returns con- 
straints only on the specified variables. CP can 
be considered not only as a disjunctive unifica- 
tion method but also as a logical inference sys- 
tem. Therefore, it is expected to play an impor- 
tant role in synthesizing linguistic analyses such 
as parsing and semantic analysis, and linguistic 
and non-linguistic inferences. 
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